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Abstract Most existing classification methods are aimed

at minimization of empirical risk (through some simple

point-based error measured with loss function) with added

regularization. We propose to approach the classification

problem by applying entropy measures as a model objec-

tive function. We focus on quadratic Renyi’s entropy and

connected Cauchy–Schwarz Divergence which leads to the

construction of extreme entropy machines (EEM). The

main contribution of this paper is proposing a model based

on the information theoretic concepts which on the one

hand shows new, entropic perspective on known linear

classifiers and on the other leads to a construction of very

robust method competitive with the state of the art non-

information theoretic ones (including Support Vector

Machines and Extreme Learning Machines). Evaluation on

numerous problems spanning from small, simple ones from

UCI repository to the large (hundreds of thousands of

samples) extremely unbalanced (up to 100:1 classes’

ratios) datasets shows wide applicability of the EEM in

real-life problems. Furthermore, it scales better than all

considered competitive methods.

Keywords Rapid learning � Extreme learning machines �
Classification � Random projections � Entropy

1 Introduction

There is no one, universal, perfect optimization criterion

that can be used to train machine learning model. Even for

linear classifiers, one can find multiple objective functions,

error measures to minimize, regularization methods to

include [15]. Most existing classification methods are

aimed at minimization of empirical risk (through some

simple point-based error measured with loss function) with

added regularization. We propose to approach this problem

in more information theoretic way by investigating appli-

cability of entropy measures as a classification model

objective function. We focus on quadratic Renyi’s entropy

and connected Cauchy–Schwarz Divergence.

One of the information theoretic concepts which has

been found very effective in machine learning is the

entropy measure. In particular, the rule of maximum

entropy modeling led to the construction of MaxEnt model

and its structural generalization—Conditional Random

Fields which are considered state of the art in many

applications. In this paper, we propose to use Renyi’s

quadratic cross entropy as the measure of two densities’

estimations divergence to find the best linear classifier. It is

a conceptually different approach than typical entropy

models as it works in the input space instead of decisions

distribution. As a result, we obtain a model closely related

to the Fisher Discriminant (or more generally Linear Dis-

criminant Analysis) which deepens the understanding of

this classical approach. Together with a powerful extreme

data transformation, we obtain a robust, nonlinear model

competitive with the state of the art models not based on

information theory such as Support Vector Machines

(SVM [4]), Extreme Learning Machines (ELM [11]) or

Least Squares Support Vector Machines (LS-SVM [23]).

We also show that under some simplifying assumptions
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ELM and LS-SVM can be seen through a perspective of

information theory as their solutions are (up to some con-

stants) identical to the ones obtained by proposed method.

To draw the general idea of proposed method, we

shortly summarize it here. Figure 1 is provided for better

intuition. We begin with data in the input space X , trans-

form it randomly into Hilbert space H where we model

them as Gaussians, then perform optimization leading to

the projection on R through b and perform density-based

classification leading to nonlinear decision boundary in X .

It is worth noting that as a result we obtain model that:

– has a trivial implementation (under 20 lines of code in

Python),

– learns rapidly,

– is well suited for unbalanced problems,

– constructs nonlinear hypothesis,

– scales very well (better than SVM, LS-SVM and ELM),

– has a few hyperparameters which are easy to optimize.

Paper is structured as follows: first, we recall some

preliminary information regarding ELMs and Support

Vector Machines, including Least Squares Support

Vector Machines. Next, we introduce extreme entropy

machine (EEM) together with its kernelized extreme

counterpart—extreme entropy kernel machine (EEKM).

We show some connections with existing models and

some different perspectives for looking at proposed

model. In particular, we show how learning capabilities

of EEMs (and EEKM) resemble those of ELM (and LS-

SVM, respectively). During evaluation on over 20 binary

datasets (of various sizes and characteristics), we analyze

generalization capabilities and learning speed. We show

that it can be a valuable, robust alternative for existing

methods. In particular, we show that it achieves analo-

gous of ELM stability in terms of the hidden layer size.

We conclude with future development plans and open

problems.

2 Preliminaries

Let us begin with recalling some basic information

regarding extreme learning machines [12] and Support

Vector Machines [4] which are further used as a competing

models for proposed solution. We focus here on the opti-

mization problems being solved to underline some basic

differences between these methods and EEMs.

2.1 Extreme learning machines

Extreme Learning Machines are relatively young models

introduced by Huang et al. [11] which are based on the

idea that single layer feed forward neural networks (SLFN)

can be trained without iterative process by performing

linear regression on the data mapped through random,

nonlinear projection (random hidden neurons). More pre-

cisely speaking, basic ELM architecture consists of d input

neurons connected with each input space dimension which

are fully connected with h hidden neurons by the set of

weights wj (selected randomly from some arbitrary distri-

bution) and set of biases bj (also randomly selected). Given

some generalized nonlinear activation function G, one can

express the hidden neurons activation matrix H for the

whole training set fðxi; tiÞgNi¼1 such that xi 2 R
d and ti 2

f�1;þ1g and formulate following optimization problem

2.1.1 Optimization problem: extreme learning machine

minimize
b

Hb� tk k2

where Hij ¼ Gðxi;wj; bjÞ; i ¼ 1; . . .;N; j ¼ 1; . . .; h:

If we denote the weights between hidden layer and output

neurons by b it is easy to show [12] that putting

b ¼ Hyt;

Fig. 1 Visualization of the whole EEM classification process. From the left linearly non separable data in X ; data mapped to the H space, where

we find covariance estimators; density of projected Gaussians on which the decision is based; decision boundary in the input space X

384 Pattern Anal Applic (2017) 20:383–400

123



gives the best solution in terms of mean squared error of

the regression:

Hb� tk k2¼ HðHytÞ � t
�
�

�
�
2¼ min

a2Rh
Ha� tk k2;

where Hy denotes the Moore–Penrose pseudoinverse of H.

Final classification of the new point x can be now per-

formed analogously by classifying according to

clðxÞ ¼ sign Gðx;w1; b1Þ . . . Gðx;wh; bhÞ½ �bð Þ:

As it is based on the ordinary least squares optimization, it

is possible to balance it in terms of unbalanced datasets by

performing weighted ordinary least squares. In such a

scenario, given a vector s such that si is a square root of the

inverse of the xi’s class size and s � X denotes element-wise

multiplication between s and X:

b ¼ ðs �HÞys � t:

2.2 Support vector machines and least squares

support vector machines

One of the most well-known classifiers of the last decade is

Vapnik’s support vector machine [4], based on the princi-

ple of creating a linear classifier that maximizes the sepa-

rating margin between elements of two classes.

2.2.1 Optimization problem: support vector machine

minimize
b;b;n

1

2
bk k2þC

XN

i¼1

ni

subject to tiðhb; xii þ bÞ� 1� ni
ni � 0; i ¼ 1; . . .;N:

here, C denotes the tradeoff between fitting to the data

(minimization of the empirical risk) and a size of the

separating margin (minimization of model complexity).

One needs to fit this hyperparameter to get the best gen-

eralization results. SVM can be further kernelized (delin-

earized) using any kernel K (valid in the Mercer’s sense)

which leads to the following optimization problem.

2.2.2 Optimization problem: kernel support vector

machine

maximize
b

XN

i¼1

bi �
1

2

XN

i;j¼1

bibjtitjKðxi; xjÞ

subject to
XN

i¼1

biti ¼ 0

0� bi �C; i ¼ 1; . . .;N:

This is a quadratic optimization problem with linear con-

straints, which can be efficiently solved using quadratic

programming techniques. Due to the use of hinge loss

function on ni, SVM attains very sparse solutions in terms

of nonzero bi. As a result, classifier does not have to

remember the whole training set, but instead, the set of so-

called support vectors (SV ¼ fxi : bi [ 0g). A point x is

classified according to

clðxÞ ¼ sign
X

xi2SV
tibiKðxi; xÞ þ b

 !

:

It appears that if we change the loss function to the

quadratic one, we can greatly reduce the complexity of the

resulting optimization problem, leading to the so-called

Least Squares Support Vector Machines (LS-SVM).

2.2.3 Optimization problem: least squares support vector

machine

minimize
b;b;n

1

2
bk k2þC

XN

i¼1

n2i

subject to tiðhb; xii þ bÞ� 1� ni
ni � 0; i ¼ 1; . . .;N:

and decision is made according to

clðxÞ ¼ signðhb; xi þ bÞ:

As Suykens et al. showed [23] this can be further gener-

alized for arbitrary kernel-induced spaces, where we clas-

sify according to:

clðxÞ ¼ sign
XN

i¼1

tibiKðxi; xÞ þ b

 !

;

where bi are Lagrange multipliers associated with partic-

ular training examples xi and b is a threshold, found by

solving the linear system

0 1lT

1l KðX;XÞ þ I=C

" #

b

b

� �

¼
0

t

� �

where 1l is a vector of ones and I is an identity matrix of

appropriate dimensions. Thus, a training procedure becomes

b

b

� �

¼ 0 1lT

1l KðX;XÞ þ I=C

" #�1
0

t

� �

:

Similar to the classical SVM, this formulation is highly

unbalanced (its results are skewed towards bigger classes).

To overcome this issue, one can introduce a weighted

version [24], using diagonal matrix of weights Q, such that

diagðQÞi is inversely proportional to the size of xi’s class

and
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b

b

� �

¼ 0 1lT

1l KðX;XÞ þQ=C

" #�1
0

t

� �

:

Unfortunately, due to the introduction of the square loss,

the Support Vector Machines sparseness of the solution is

completely lost. Resulting training has a closed-form

solution, but requires the computation of the whole Gram

matrix and the resulting machine has to remember1 whole

training set to perform new point’s classification.

3 Extreme entropy machines

Let us first recall the formulation of the linear classification

problem in the highly dimensional feature spaces, i.e.,

when number of samples N is equal (or less) than dimen-

sion of the data space, dimðHÞ. In particular, we formulate

the problem in the limiting case2 when dimðHÞ ¼ 1:

Problem 1 We are given finite number of (often linearly

independent) points h� in an infinite dimensional Hilbert

space H. Points hþ 2 Hþ constitute the positive class,

while h� 2 H� the negative class.

We search for b 2 H such that the sets bTHþ and bTH�

are optimally separated.

Observe that in itself (without additional regularization)

the problem is not well posed as, by applying the linear

independence of the data, for arbitrary mþ 6¼ m� in R we

can easily construct b 2 H such that

bTHþ ¼ fmþg and bTH� ¼ fm�g: ð1Þ

However, this leads to a model case of overfitting, which

typically yields suboptimal results on the testing set (dif-

ferent from the original training samples).

To make the problem well posed, we typically need to:

1. add/allow some error in the data,

2. specify some objective function including term penal-

izing model’s complexity.

Popular choices of the objective function include per-point

classification loss (like square loss in neural networks or

hinge loss in SVM) with a regularization term added, often

expressed as the square of the norm of our operator b (like

in SVM or in weight decay regularization of neural net-

works). In general, one can divide objective functions

derivations into following categories:

– regression based (like in neural networks or ELM),

– probabilistic (like in the case of Naive Bayes),

– geometric (like in SVM),

– information theoretic (entropy models).

We focus on the last group of approaches, and investigate

the applicability of the Cauchy–Schwarz Divergence [13],

which for two densities f and g is given by

DCSðf ; gÞ ¼ ln

Z

f 2
� �

þ ln

Z

g2
� �

� 2 ln

Z

fg

� �

¼ �2 ln

Z

f

kfk2
g

kgk2

� �

:

Cauchy–Schwarz Divergence is connected to Renyi’s

quadratic cross entropy (H�
2 [21]) and Renyi’s quadratic

entropy (H2), defined for densities f, g as

H�
2 ðf ; gÞ ¼ � ln

Z

fg

� �

H2ðf Þ ¼ H�
2 ðf ; f Þ ¼ � ln

Z

f 2
� �

;

consequently

DCSðf ; gÞ ¼ 2H�
2 ðf ; gÞ � H2ðf Þ � H2ðgÞ

and as showed in [7], it is well suited as a discrimination

measure which allows the construction of multi-threshold

linear classifiers. In general, increase of the value of Cau-

chy–Schwarz Divergence results in better sets’ (densities’)

discrimination. Unfortunately, there are a few problems

with such an approach:

– true datasets are discrete, so we do not know actual

densities f and g,

– statistical density estimators require rather large sample

sizes and are very computationally expensive.

There are basically two approaches which help us recover

underlying densities from the samples. First one is per-

forming some kind of density estimation, like the well-

known Kernel Density Estimation (KDE) technique, which

is based on the observation that any arbitrary continuous

distribution can be approximated arbitrarily closely by the

convex combination of Gaussians [26]. The other approach

is to assume some density model (distribution’s family)

and fit its parameters to maximize the data generation

probability. In statistics, it is known as maximum likeli-

hood estimation (MLE) approach. MLE has an advantage

that in general it produces much simpler densities

descriptions than KDE as the second one’s description

scales linearly in terms of sample size.

A common choice of density models are Gaussian dis-

tributions due to their nice theoretical and practical (com-

putational) capabilities. As mentioned earlier, the convex

combination of Gaussians can approximate the given

1 There are some pruning techniques for LS-SVM but we are not

investigating them here.
2 Which is often obtained by the kernel approach.
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continuous distribution f with arbitrary precision. To fit a

Gaussian mixture model (GMM) to given dataset, one

needs an algorithm such as Expectation Maximization [8]

or conceptually similar Cross-entropy clustering [25].

However, for simplicity and strong regularization, we

propose to model f as one big Gaussian Nðm;RÞ. One of

the biggest advantages of such an approach is closed-form

MLE parameter estimation, as we simply put m equal to

the empirical mean of the data, and R as some data

covariance estimator. Second, this way we introduce an

error to the data which has an important regularizing role

and leads to better posed optimization problem.

Let us recall that the Shannon’s differential entropy

(expressed in nits) of the continuous distribution f is

Hðf Þ ¼ �
Z

f ln f :

We will show that choice of normal distributions is not

arbitrary but supported by the assumptions of the entropy

maximization. Following result is known [5], but we

include the whole reasoning for completeness.

Lemma 1 Normal distribution Nðm;RÞ has a maximum

Shannon’s differential entropy among all real-valued dis-

tributions with mean m 2 R
h and covariance R 2 R

h�h.

Proof Let f and g be arbitrary distributions with covari-

ance R and meansm. For simplicity, we assume thatm ¼ 0

but the analogous proof holds for arbitrary mean, then

Z

fhihjdhidhj ¼
Z

ghihjdhidhj ¼ Rij;

so for quadratic form A
Z

Af ¼
Z

Ag:

Notice that

lnNð0;RÞ½h� ¼ ln
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞh detðRÞ
q expð�1

2
hTR�1hÞ

0

B
@

1

C
A

¼ � 1

2
lnðð2pÞh detðRÞÞ � 1

2
hTR�1h

is a quadratic form plus constant. Thus,

Z

f lnNð0;RÞ ¼
Z

Nð0;RÞ lnNð0;RÞ;

which together with non-negativity of Kullback–Leibler

Divergence gives

0�DKLðf jj N ð0;RÞÞ

¼
Z

f lnð f

Nð0;RÞÞ

¼
Z

f ln f �
Z

f lnNð0;RÞ

¼ �Hðf Þ �
Z

f lnNð0;RÞ

¼ �Hðf Þ �
Z

Nð0;RÞ lnNð0;RÞ

¼ �Hðf Þ þ HðN ð0;RÞÞ;

Consequently, HðN ð0;RÞÞ�Hðf Þ: h

There appears nontrivial question how to find/estimate

the desired Gaussian as the covariance can be singular. In

this case, to regularize the covariance, we apply the well-

known Ledoit–Wolf approach [16]

R� ¼ covyðH� Þ ¼ ð1� e� ÞcovðH� Þ þ e� trðcovðH� ÞÞh�1I;

where covð�Þ is an empirical covariance and e� is a

shrinkage coefficient given in closed form by Ledoit and

Wolf [16]. We would like to underline that this estimator is

parameterless and is optimal in the sense that it minimizes

the expected quadratic loss between true covariance matrix

and the estimator under general asymptotics (meaning that

both dataset size and its dimension grow to infinity, but

their ratio converges to a constant).

Thus, our optimization problem can be stated as follows:

Problem 2 (Optimization problem) Suppose that we are

given two datasets H� in a Hilbert space H which come

from the Gaussian distributions Nðm� ;R� Þ. Find b 2 H
such that the datasets

bTHþ and bTH�

are optimally discriminated in terms of Cauchy–Schwarz

Divergence.

Because H� has density Nðm� ;R� Þ, we know that

bTX� has the density NðbTm� ; bTR� bÞ: We put

Pattern Anal Applic (2017) 20:383–400 387
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m� ¼ bTm�; S� ¼ bTR� b: ð2Þ

Since, as one can easily compute [6],
Z Nðmþ; SþÞ

kN ðmþ; SþÞk2
� N ðm�; S�Þ
kN ðm�; S�Þk2

¼ Nðmþ � m�; Sþ þ S�Þ½0�
ðN ð0; 2SþÞ½0�N ð0; 2S�Þ½0�Þ1=2

¼ ð2pSþS�Þ1=4

ðSþ þ S�Þ1=2
exp �ðmþ � m�Þ2

2ðSþ þ S�Þ

 !

;

we obtain that

DCSðN ðmþ; SþÞ;Nðm�; S�ÞÞ

¼ � ln

Z Nðmþ; SþÞ
kN ðmþ; SþÞk2

� N ðm�; S�Þ
kN ðm�; S�Þk2

� �

¼ � 1

2
ln
p
2
� ln

1
2
ðSþ þ S�Þ
ffiffiffiffiffiffiffiffiffiffiffi
SþS�

p þ ðmþ � m�Þ2

Sþ þ S�
:

ð3Þ

Observe that in the above equation the first term is constant,

the second is the logarithm of the quotient of arithmetical

and geometrical means and therefore in the typical cases is

bounded and close to zero. However, in some singular

cases, when Sþ and S� are of different order of magnitude

the above term can blow up, and thus more precisely here

we are maximizing a lower bound of DCS. As we will see in

further sections, this simplification leads to the closed-form

solution, which in particular means that learning process is

extremely simple. In general, one could maximize the

whole function using gradient methods, but this would lead

to the need of introducing optimization procedure hyper-

parameters (such as learning rate, momentum, stopping

condition, etc.) which we are trying to avoid.

Consequently, crucial information is given by the last

term. To confirm this claim, we perform experiments on

over 20 datasets used in further evaluation (more details are

located in the Evaluation section). We compute the

Spearman’s rank correlation coefficient between the

DCSðN ðmþ; SþÞ;Nðm�; S�ÞÞ and
ðmþ�m�Þ2
SþþS�

for hundred

random projections to H and hundred random linear

operators b. As one can see in Table 1, in small datasets

(first part of the table) the correlation is generally high,

with some exceptions (like SONAR, SPLICE, LIVER DISORDERS

and DIABETES). However, for bigger datasets (consisting of

thousands examples), this correlation is nearly perfect (up

to the randomization process it is nearly 1.0 for all cases)

which is a very strong empirical confirmation of our claim

that maximization of the
ðmþ�m�Þ2
SþþS�

is generally equivalent to

the maximization of DCSðN ðmþ; SþÞ;Nðm�; S�ÞÞ as cor-

relation coefficient captures if DCS and its lower bound

have similar monotonicity. Number of dimensions of the

Hilbert space does not affect the result in a significant

manner for large datasets, while in the case of small ones it

seems that results vary significantly when it is changed.

This might be the consequence of less reliable covariance

estimations for small datasets, especially with higher

number of dimensions.

This means that, after the above reductions, and appli-

cation of (2) our final problem can be stated as follows:

3.1 Optimization problem: extreme entropy

machine

minimize
b

bTRþbþ bTR�b

subject to bTðmþ �m�Þ ¼ 2

where R� ¼ covyðH� Þ

m� ¼ 1

jH� j
X

h� 2H�

h�

H� ¼ uðX� Þ

Before we continue to the closed-form solution, we outline

two methods of actually transforming our data X� 	 X to

the highly dimensional H� 	 H, given by the u : X ! H.

Table 1 Spearman’s rank correlation coefficient between optimized

term and whole DCS for all datasets used in evaluation

Dataset 1 10 100 200 500

AUSTRALIAN 0.928 �0.022 0.295 0.161 0.235

BREAST-CANCER 0.628 0.809 0.812 0.858 0.788

DIABETES �0.983 �0.976 �0.941 �0.982 �0.952

GERMAN.NUMER 0.916 0.979 0.877 0.873 0.839

HEART 0.964 0.829 0.931 0.91 0.893

IONOSPHERE 0.999 0.988 0.98 0.978 0.984

LIVER DISORDERS 0.232 0.308 0.363 0.33 0.312

SONAR �0.31 �0.542 �0.41 �0.407 �0.381

SPLICE �0.284 �0.036 �0.165 �0.118 �0.101

ABALONE7 1.0 0.999 0.999 0.999 0.998

ARYTHMIA 1.0 1.0 0.999 1.0 1.0

BALANCE 1.0 0.998 0.998 0.999 0.998

CAR EVALUATION 1.0 0.998 0.998 0.997 0.997

ECOLI 0.964 0.994 0.995 0.998 0.995

LIBRAS MOVE 1.0 0.999 0.999 1.0 1.0

OIL SPILL 1.0 1.0 1.0 1.0 1.0

SICK EUTHYROID 1.0 0.999 1.0 1.0 1.0

SOLAR FLARE 1.0 1.0 1.0 1.0 1.0

SPECTROMETER 1.0 1.0 0.999 0.999 0.999

FOREST COVER 0.988 0.997 0.997 0.992 0.988

ISOLET 0.784 1.0 0.997 0.997 0.999

MAMMOGRAPHY 1.0 1.0 1.0 1.0 1.0

PROTEIN HOMOLOGY 1.0 1.0 1.0 1.0 1.0

WEBPAGES 1.0 1.0 1.0 0.999 0.999

Each column represents different dimension of the Hilbert space
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We investigate two approaches which lead to the

Extreme Entropy Machine and Extreme Entropy Kernel

Machine, respectively.

– For Extreme Entropy Machine (EEM), we use the

random projection technique, exactly the same as the

one used in the ELM. In other words, given some

generalized activation function Gðx;w; bÞ : X � X �
R ! R and a constant h denoting number of hidden

neurons:

u : X 3 x ! ½Gðx;w1; b1Þ; . . .;Gðx;wh; bhÞ�T 2 R
h

where wi are random vectors and bi are random biases.

– For Extreme Entropy Kernel Machine (EEKM), we use

the randomized kernel approximation technique [9],

which spans our Hilbert space on randomly selected

subset of training vectors. In other words, given valid

kernel Kð�; �Þ : X � X ! Rþ and size of the kernel

space base h:

uK : X 3 x ! ðKðx;X½h�ÞKðX½h�;X½h�Þ�1=2ÞT 2 R
h

where X½h� is a h element random subset of X. It is easy

to verify that such low rank approximation truly

behaves as a kernel, in the sense that for

uKðxiÞ;uKðxjÞ 2 R
h

uKðxiÞTuKðxjÞ
¼ ððKðxi;X½h�ÞKðX½h�;X½h�Þ�1=2ÞTÞT

� ðKðxj;X½h�ÞKðX½h�;X½h�Þ�1=2ÞT

¼ Kðxi;X½h�ÞKðX½h�;X½h�Þ�1=2

� ðKðxj;X½h�ÞKðX½h�;X½h�Þ�1=2ÞT

¼ Kðxi;X½h�ÞKðX½h�;X½h�Þ�1=2

KðX½h�;X½h�Þ�1=2
KTðxj;X½h�Þ

¼ Kðxi;X½h�ÞKðX½h�;X½h�Þ�1
KðX½h�; xjÞ:

Given true kernel projection /K such that

Kðxi; xjÞ ¼ /KðxiÞ
T/KðxjÞ, we have

Kðxi;X½h�ÞKðX½h�;X½h�Þ�1
KðX½h�; xjÞ

¼ /KðxiÞT/KðX½h�Þ
� ð/KðX½h�ÞT/KðX½h�ÞÞ�1

� /KðX½h�ÞT/KðxjÞ
¼ /KðxiÞT/KðX½h�Þ/KðX½h�Þ�1

� ð/KðX½h�ÞTÞ�1/KðX½h�ÞT/KðxjÞ
¼ /KðxiÞT/KðxjÞ
¼ Kðxi; xjÞ:

Thus, for the whole samples’ set, we have

uKðXÞTuKðXÞ ¼ KðX;XÞ;

which is a complete Gram matrix.

So the only difference between Extreme Entropy Machine

and Extreme Entropy Kernel Machine is that in later we

use H� ¼ uKðX� Þ where K is a selected kernel instead of

H� ¼ uðX� Þ. Figure 2 visualizes these two approaches as

neural networks, in particular EEM is a simple SLFN,

while EEKM leads to the network with two hidden layers.

Remark 1 Extreme Entropy Machine optimization prob-

lem is closely related to the SVM optimization, but instead

of maximizing the margin between closest points we are

maximizing the mean margin.

Proof Let us recall that in SVM we try to maximize the

margin 2
kbk under constraints that negative samples are

projected at values at most �1 (bTh� þ b� � 1) and

positive samples on at least 1 (bThþ þ b� 1). In other

words, we are minimizing the b operator norm kbk which

is equivalent to minimizing the square of this norm kbk2,
under constraint

min
hþ2Hþ

fbThþg � max
h�2H�

fbTh�g ¼ 1� ð�1Þ ¼ 2:

On the other hand, EEM tries to minimize

bTRþbþ bTR�b ¼ bTðRþ þ R�Þb
¼ kbk2ðRþþR�Þ�1

under the constraint

1

jHþj

X

hþ2Hþ

bThþ � 1

jH�j

X

h�2H�
bTh� ¼ 2:

So what is happening here is that we are trying to maximize

the mean margin between classes in the Mahalanobis

norm [17] generated by the inverse of the sum of classes’

covariances. h

Similar observation regarding connection between large

margin classification and entropy optimization has been

done in case of the Multithreshold Linear Entropy Classi-

fier [7]. One should also notice important relations to other

methods studying so-called margin distributions [10], such

as Large margin Distribution Machine [29]. Contrary to

Zhang et al. approach, we are minimizing the summarized

variances instead of minimizing the difference between

data variance and cross class variance. As a result, pro-

posed model is much easier to optimize (as shown below).

We are going to show by applying the standard method

of Lagrange multipliers that the above problem has a

closed-form solution (similar to the Fisher Discriminant).

We put
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Lðb; kÞ ¼ 2bTðRþ þ R�Þb� kðbTðmþ �m�Þ � 2Þ:

Then,

rbL ¼ 2ðRþ þ R�Þb� kðmþ �m�Þ and

o

ok
L ¼ bTðmþ �m�Þ � 2;

which means that we need to solve, with respect to b, the

system

2ðRþ þ R�Þb� kðmþ �m�Þ ¼ 0;

bTðmþ �m�Þ ¼ 2:

�

Therefore, b ¼ k
2
ðRþ þ R�Þ�1ðmþ �m�Þ, which yields

x(1)

x(2)

...

x(d)

F( ) cl(x)

G(x,w1, b1)

G(x,w2, b2)

G(x,w3, b3)

...

G(x,wh, bh)

β1

β2

β3

...

βh

Hidden
layer

Input
layer

Output
layer

HX {−,+}

x(1)

x(2)

...

x(d)

F( ) cl(x)

K(x,x[h]
1 )

K(x,x[h]
2 )

K(x,x[h]
3 )

...

K(x,x[h]
h )

Σ

Σ

Σ

...

Σ

β1

β2

β3

...

βh

Hidden
layer

Hidden
layer

Input
layer

Output
layer

H HX {−,+}

Fig. 2 Extreme entropy machine (top) and extreme entropy kernel machine (bottom) as neural networks. In both cases, all weights are either

randomly selected (dashed) or are the result of closed-form optimization (solid)
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k
2
ðmþ �m�ÞTðRþ þ R�Þ�1ðmþ �m�Þ ¼ 2;

and consequently,3 if mþ �m� 6¼ 0, then k ¼ 4=kmþ �
m�k2RþþR� and

b ¼ 2

kmþ �m�k2RþþR�
ðRþ þ R�Þ�1ðmþ �m�Þ

¼ 2ðRþ þ R�Þ�1ðmþ �m�Þ
kmþ �m�k2RþþR�

:
ð4Þ

The final decision of the class of the point h is therefore

given by the comparison of the values

NðbTmþ; bTRþbÞ½bTh� and NðbTm�; bTR�bÞ½bTh�:

We distinguish two cases based on number of resulting

classifier’s thresholds (points r such that NðbTmþ;

bTRþbÞ½r� ¼ N ðbTm�; bTR�bÞ½r�):

1. S� ¼ Sþ, then there is one threshold

r0 ¼ m� þ 1;

which results in a traditional (one-threshold) linear

classifier,

2. S� 6¼ Sþ, then there are two thresholds

r� ¼ m� þ 2S� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S�SþðlnðS�=SþÞðS� � SþÞ þ 4Þ
p

S� � Sþ
;

which makes the resulting classifier a member of two-

thresholds linear classifiers family [1].

Obviously, in the degenerated case, when m ¼
0 () m� ¼ mþ there is no solution, as the constraint

bTðm� �mþÞ ¼ 2 is not fulfilled for any b. In such a case,

EEM returns a trivial classifier constantly equal to any

class (we put b ¼ 0).

From the neural network perspective, we simply

construct a custom activation function Fð�Þ in the out-

put neuron depending on one of the two described

cases:

1. FðxÞ ¼ þ1; if x� r0
�1; if x\r0

�

¼ signðx� r0Þ;

2. FðxÞ ¼ þ1; if x 2 ½r�; rþ�
�1; if x 62 ½r�; rþ�

�

¼ �signðx� r�Þsignðx� rþÞ;

if r�\rþ
and

FðxÞ ¼ �1; if x 2 ½rþ; r��
þ1; if x 62 ½rþ; r��

�

¼ signðx� r�Þsignðx� rþÞ;
otherwise.

4 Theory: density estimation in the kernel case

To illustrate our reasoning, we consider a typical basic

problem concerning the density estimation.

Problem 3 Assume that we are given a finite dataset H in

a Hilbert space H generated by the unknown density f, and

the goal consists in estimating f.

Since the problem in itself is infinite dimensional, typ-

ically the data would be linearly independent [20]. More-

over, one usually cannot obtain reliable density

estimation—the most we can hope is that after transfor-

mation by a linear functional into R, the resulting density

will be well estimated.

To simplify the problem assume therefore that we want

to find the desired density in the class of normal densities—

or equivalently that we are interested only in the estimation

of the mean and covariance of f.

The generalization of the above problem is given by the

following problem:

Problem 4 Assume that we are given a finite dataset h�

in a Hilbert space H generated by the unknown densities

f� , and the goal consists in estimating the unknown

densities.

In general, dimðHÞ 
 Nwhich means that we have very

sparse data in terms of Hilbert space. As a result, classical

kernel density estimation (KDE) is not reliable source of

information [18]. In the absence of different tools, we can

however use KDE with very big kernel width to cover at

least some general shape of the whole density.

Remark 2 Assume that we are given a finite dataset h�

with means m� and covariances R� in a Hilbert space H.

If we conduct kernel density estimation using a Gaussian

kernel then, in a limiting case, each class becomes a normal

distribution. Strictly speaking

lim
r!1

k½½H� ��r �Nðm� ; r2R� Þk2 ¼ 0;

where

½½A��r ¼
1

jAj

X

a2A
Nða; r2 � covðAÞÞ:

Proof of this remark is given by Czarnecki and

Tabor [7] and means that if we perform a Gaussian kernel

density estimation of our data with big kernel width (which

is reasonable for small amount of data in highly dimen-

sional space) then for big enough r̂ EEM is nearly optimal

linear classifier in terms of estimated densities

f̂� ¼ Nðm� ; r̂2R� Þ � ½½H� ��r̂:3 Where kmþ �m�k2RþþR� ¼ ðmþ �m�ÞTðRþ þ R�Þ�1ðmþ �
m�Þ denotes the squared Mahalanobis norm of mþ �m�.
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Let us now investigate the probabilistic interpretation of

EEM. Under the assumption that H� �N ðm� ;R� Þ, we
have the conditional probabilities

pðhj� Þ ¼ N ðm� ;R� Þ½h�;

so from Bayes rule we conclude that

pð� jhÞ ¼ pðhj� Þpð� Þ
pðhÞ

/ N ðm� ;R� Þ½h�pð� Þ;

where pð� Þ is a prior classes’ distribution. In our case, due

to the balanced nature (meaning that despite classes

imbalance we maximize the balanced quality measure such

as Balanced Accuracy), we have pð� Þ ¼ 1=2.

But

pðhÞ ¼
X

t2fþ;�g
pðhjtÞ;

so

pð� jhÞ ¼ N ðm� ;R� Þ½h�
P

t2fþ;�g N ðmt;RtÞ½h� :

Furthermore, it is easy to show that under the normality

assumption, the resulting classifier is optimal in the

Bayesian sense.

Remark 3 If data in feature space come from Normal

distributions Nðm� ;R� Þ then b given by EEM minimizes

probability of misclassification. More strictly speaking, if

we draw hþ with probability 1 / 2 from Nðmþ;RþÞ and

h� with 1/2 from Nðm�;R�Þ then for any a 2 R
h

pð
jbTh� Þ� pð
jaTh� Þ:

5 Theory: learning capabilities

First, we show that under some simplifying assumptions,

proposed method behaves as Extreme Learning Machine

(or Weighted Extreme Learning Machine [30]).

Before proceeding further, we would like to remark that

there are two popular notations for projecting data onto

hyperplanes. One, used in ELM model, assume that H is a

row matrix and b is a column vector, which results in the

projection’s equation Hb. Second one, used in SVM and in

our paper, assumes that both H and b are column oriented,

which results in the bTH projection. In the following the-

orem, we will show some duality between b found by ELM

and by EEM. To do so, we will need to change the notation

during the proof, which will be indicated.

Theorem 1 Let us assume that we are given an arbitrary,

balanced binary dataset which can be perfectly learned by

ELM with N hidden neurons. If this dataset points’ image

through random neurons H ¼ uðXÞ is centered (points’

images have 0 mean) and classes have homogeneous

covariances (we assume that there exist real aþ and a�
such that covðHÞ ¼ aþcovðHþÞ ¼ a�covðH�Þ) then EEM

with the same hidden layer will also learn this dataset

perfectly (with 0 error).

Proof In the first part of the proof, we use the ELM

notation. Projected data are centered, so covðHÞ ¼ HTH.

ELM is able to learn this dataset perfectly, consequently H

is invertible, thus also HTH is invertible, as a result

covyðHÞ ¼ covðHÞ ¼ HTH. We will now show that

9a2RþbELM ¼ a � bEEM: First, let us recall that bELM ¼
Hyt ¼ H�1t and bEEM ¼ 2ðRþþR�Þ�1ðmþ�m�Þ

kmþ�m�k2R�þRþ
where

R� ¼ covyðH� Þ. Due to the assumption of geometric

homogeneity bEEM ¼ 2

kmþ�m�k2R
ðaþþa�
aþa�

RÞ�1ðmþ �m�Þ,
where R ¼ covyðHÞ. Therefore,

bELM ¼ H�1t

¼ ðHTHÞ�1HTt

¼ covy
�1ðHÞHTt:

From now, we change the notation back to the one used in

this paper and obtain

bELM ¼ R�1
X

hþ2Hþ

ðþ1 � hþÞ þ
X

h�2H�
ð�1 � h�Þ

 !

¼ R�1
X

hþ2Hþ

hþ �
X

h�2H�
h�

 !

¼ R�1 N

2
ðmþ �m�Þ

¼ N

2

kmþ �m�k2R
2

aþ þ a�
aþa�

bEEM

¼ a � bEEM;

for a ¼ N
2

kmþ�m�k2R
2

aþþa�
aþa�

2 Rþ. Again from homogeneity

we obtain just one equilibrium point, located in the

bTEEMðmþ �m�Þ=2which results in the exact same classi-

fier as the one given by ELM. This completes the proof. h

Similar result holds for EEKM and Least Squares Sup-

port Vector Machine.

Theorem 2 Let us assume that we are given arbitrary,

balanced binary dataset which can be perfectly learned by

LS-SVM. If dataset points’ images through Kernel-induced
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projection uK have homogeneous classes’ covariances (we

assume that there exist real aþ and a� such that

covðuKðXÞÞ ¼ aþcovðuKðXþÞÞ ¼ a�covðuKðX�ÞÞ) then

EEKM with the same kernel and N hidden neurons will

also learn this dataset perfectly (with 0 error).

Proof It is a direct consequence of the fact that with N

hidden neurons and homogeneous classes projections

covariances, EEKM degenerates to the kernelized Fisher

Discriminant which, as Gestel et al. showed [28], is

equivalent to the solution of the Least Squares SVM. h

Both theorems can be extended to non-balanced datasets

if we consider a Weighted ELM and Balanced LS-SVM.

Proposed method has a balanced nature, so it internally

assumes that classes priors are equal to 1/2. In the proofs,

we show that when this is a true assumption, ELM and LS-

SVM lead (under some assumptions) to the same solution.

If one includes the same assumption in these two methods

(through Weighted ELM and Balanced LS-SVM), then

they again will solve the same problem despite true classes

priors. We omit the exact proof as they are analogous to the

above.

6 Practical considerations

In previous sections, we investigated the limiting case

when dimðHÞ ¼ 1. However, in practice, we choose

h random nonlinear projections which embed data in a

high-dimensional space (with dimension at least h, but we

can still consider it as an image in higher dimensional

space, analogously to how Gaussian kernel actually maps

to infinitely dimensional space by projecting through just

N functions). As we show in further evaluation, it is suf-

ficient to use h which is much smaller than N, so resulting

computational complexities, cubic in h, are acceptable.

We can formulate the whole EEM training as a very

simple algorithm (see Algorithms 1, 2).

Resulting model consists of three elements:

– feature projection function u,
– linear operator b,

– classification rule F.

As described before, F can be further compressed to just

one or two thresholds t� using equations from previous

sections. Either way, complexity of the resulting model is

linear in terms of hidden units and classification of the new

point takes OðdhÞ time.

During EEM training, the most expensive part of the

algorithm is the computation of the covariance estimators

and inversion of the sum of covariances. Even computation

of the empirical covariance takes OðNh2Þ time so the total

complexity of training, equal to Oðh3 þ Nh2Þ ¼ OðNh2Þ, is
acceptable. It is worth noting that training of the ELM also

takes exactly OðNh2Þ time as it requires computation of

HTH for H 2 R
N�h. Training of EEMK requires additional

computation of the square root of the sampled kernel

matrix inverse KðX½h�;X½h�Þ�1=2
but as KðX½h�;X½h�Þ 2 R

h�h

can be computed in Oðdh2Þ and both inverting and square

rooting can be done in Oðh3Þ we obtain exact same

asymptotical computational complexity as the one of EEM.

Procedure of square rooting and inverting are both always

possible as assuming that K is a valid kernel in the Mer-

cer’s sense yields that KðX½h�;X½h�Þ is strictly positive

definite and thus invertible. Further comparison of EEM,

ELM and SVM is summarized in Table 2.

Next aspect we would like to discuss is the cost-sensi-

tive learning. EEMs are balanced models in the sense that

they are trying to maximize the balanced quality measures

(like Balanced Accuracy or GMean). However, in practical

applications, it might be the case that we are actually more

interested in the positive class than the negative one (like in

the medical applications). Proposed model gives a direct

probability estimates of pðbThjtÞ, which we can easily

convert to the cost-sensitive classifier by introducing the

prior probabilities of each class. Directly from Bayes

Algorithm 1 Extreme Entropy (Kernel) Machine

train(X+,X−)
build ϕ using Algorithm 2
H± ← ϕ(X±)
m± ← 1/|H±| ∑h±∈H± h±

Σ± ← cov†(H±)
β ← 2 Σ+ + Σ−)−1 (m+ − m−)/‖m+ − m−‖Σ++Σ−
F(x) = argmaxt∈{+,−} N (βTmt, βTΣtβ)[x]
return β, ϕ,F

predict(X)
return F(βT ϕ(X))
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Theorem, given pðþÞ and pð�Þ, we can label our new

sample h according to

pðtjbThÞ / pðtÞpðbThjtÞ;

so if we are given costs Cþ;C� 2 Rþ we can use them as

weighting of priors

clðxÞ ¼ argmax
t2f�;þg

Ct

C� þ Cþ
pðbThjtÞ:

Let us now investigate the possible efficiency bottleneck.

In EEKM, the classification of the new point h is based on

clðxÞ ¼ FðbTuKðxÞÞ
¼ FðbTðKðx;X½h�ÞK½h�ÞTÞ
¼ FðbTðK½h�ÞTKðx;X½h�ÞTÞ
¼ FððK½h�bÞTKðX½h�; xÞÞ:

One can convert EEKM to the SLFN by putting:

ûKðxÞ ¼ KðX½h�; xÞ
b̂ ¼ K½h�b;

so the classification rule becomes

Algorithm 2 ϕ building

Extreme Entropy Machine(G, h)
select randomly wi, bi for i ∈ {1, ..., h}
ϕ(x) = [G(x,w1, b1), ...,G(x,wh, bh)]T

return ϕ

Extreme Entropy Kernel Machine(K, h,X)
select randomly X[h] ⊂ X, |X[h]| = h
K[h] ← K(X[h],X[h])−1/2

ϕK(x) = K[h]K(X[h],x)
return ϕK

Table 2 Comparison of considered classifiers

ELM SVM LS-SVM EE(K)M

Optimization method Linear regression Quadratic

programming

Linear system Fisher discriminant

Nonlinearity Random projection Kernel Kernel Random (kernel)

projection

Closed-form Yes No Yes Yes

Balanced Noa Noa Noa Yes

Regression Yes Noa Yes No

Criterion Mean squared error Hinge loss Mean squared error Entropy optimization

Learning theory Huang et al. [11] Vapnik et al. [4] Suykens et al. [23] This paper

No. of thresholds 1 1 1 1 or 2

Problem type Regression Classification Regression Classification

Model learning Discriminative Discriminative Discriminative Generative

Direct probability

estimates

No No No Yes

Training complexity OðNh2Þ OðN3Þ OðN2:34Þ OðNh2Þ
Resulting model

complexity

hd |SV|d, jSV j � N Nd þ 1 hd þ 4

Memory requirements OðNdÞ OðNdÞ OðN2Þ OðNdÞ
Source of regularization Moore–Penrose

pseudoinverse

Margin maximization Quadratic loss penalty

term

Ledoit–Wolf estimator

Hyperparameters h, G C, K C, K h, G or h, K

Number of classes Any 2 2 2

By |SV| we denote number of support vectors
a Features which can be added to a particular model by some minor modifications
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clðxÞ ¼ Fðb̂TûKðxÞÞ:

This way complexity of the new point’s classification is

exactly the same as in the case of EEM and ELM (or any

other SLFN).

7 Evaluation

For the evaluation purposes, we implemented five methods,

namely: Weighted Extreme Learning Machine

(WELM [30]), Extreme Entropy Machine (EEM), Extreme

Entropy Kernel Machine (EEKM), Least Squares Support

Vector Machines (LS-SVM [23]) and Support Vector

Machines (SVM [4]). All experiments were performed

using machine with Intel Xeon 2.8Ghz processors with

enough RAM to fit any required computations.

All methods with the exception of SVM were imple-

mented using Python with use of NUMPY [27] and SCIPY [14]

libraries included in ANACONDA
4 for fair comparison. For

SVM, we used highly efficient LIBSVM [3] library with

bindings available in SCIKIT-LEARN [19]. Random projec-

tion-based methods (WELM, EEM) were tested using

following three generalized activation functions Gðx;w; bÞ

– sigmoid (SIG): 1
1þexpð�hw;xiþbÞ,

– normalized sigmoid (NSIG): 1
1þexpð�hw;xi=dþbÞ,

– radial basis function (RBF): expð�bkw� xk2Þ.
Random parameters (weights and biases) were selected

from uniform distributions on [0, 1]. Training of WELM

was performed using Moore–Penrose pseudoinverse and of

EEM using Ledoit–Wolf covariance estimator, as both are

parameterless, closed-form estimators of required objects.

For kernel methods (EEKM, LS-SVM, SVM), we used the

Gaussian kernel (RBF) Kcðxi; xjÞ ¼ expð�ckxi � xjk2Þ. In
all methods requiring class balancing schemes (WELM,

LS-SVM, SVM), we used balance weights wi equal to the

ratio of bigger class and current class (so
PN

i¼1 witi ¼ 0,

which is equivalent to having wi ¼ ðmaxt2f�;þg NtÞ=Nti).

Hyperparameters of each model were fitted, performed

grid search included: hidden layer size h ¼
50; 100; 250; 500; 1000 (WELM, EEM, EEKM), Gaussian

Kernel width c ¼ 10�10; . . .; 100 (EEKM, LS-SVM, SVM),

SVM regularization parameter C ¼ 10�1; . . .; 1010 (LS-

SVM, SVM).

Datasets’ features were linearly scaled (per feature) to

have each feature in the interval [0, 1]. No other data

whitening/filtering was performed. All experiments were

conducted in repeated tenfold stratified cross-validation.

We use following evaluation metric

GMeanðTP; FP;TN; FNÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP

TPþ FN
� TN

TNþ FP

r

;

where TP represents true positives, TN true negatives, FP

false positives, FN false negatives. We choose it due to the

balanced nature and usage in previous works regarding

Weighted Extreme Learning Machines [30], however very

similar results can be obtained for Balanced Accuracy

(which is an arithmetic mean of accuracies over each

class).

7.1 Basic UCI datasets

We start our experiments with nine datasets coming from

UCI REPOSITORY [2], namely AUSTRALIAN, BREAST-CANCER,

DIABETES, GERMAN.NUMER, HEART, IONOSPHERE, LIVER DISOR-

DERS, SONAR and SPLICE, summarized in Table 3. This

dataset includes rather balanced, low-dimensional

problems.

On such data, EEM seems to perform noticeably better

than ELM when using RBF activation function (see

Table 3 Characteristics of used datasets

Dataset d jX�j jXþj

AUSTRALIAN 14 383 307

BREAST CANCER 9 444 239

DIABETES 8 268 500

GERMAN NUMER 24 700 300

HEART 13 150 120

LIVER DISORDERS 6 145 200

SONAR 60 111 97

SPLICE 60 483 517

ABALONE7 10 3786 391

ARYTHMIA 261 427 25

CAR EVALUATION 21 1594 134

ECOLI 7 301 35

LIBRAS MOVE 90 336 24

OIL SPILL 48 896 41

SICK EUTHYROID 42 2870 293

SOLAR FLARE 32 1321 68

SPECTROMETER 93 486 45

FOREST COVER 54 571519 9493

ISOLET 617 7197 600

MAMMOGRAPHY 6 10923 260

PROTEIN HOMOLOGY 74 144455 1296

WEBPAGES 300 33799 981

4 https://store.continuum.io/cshop/anaconda/.
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Table 4), and rather similar when using sigmoid one—in

such a scenario, for some datasets, ELM achieves better

results while for other EEM wins. Results obtained for

EEKM are comparable with those obtained by LS-SVM

and SVM, in both cases proposed method achieves better

results on about third of problems, on the third it draws and

on a third it loses. This experiment can be seen as a proof

of concept of the whole methodology, showing that it can

be truly a reasonable alternative for existing models in

some problems. It appears that contrary to ELM, proposed

methods (EEM and EEKM) achieve best scores across all

considered models in some of the datasets regardless of the

used activation function/kernel (only Support Vector

Machines and their least squares counterpart are competi-

tive in this sense).

7.2 Highly unbalanced datasets

In the second part, we considered the nine highly unbal-

anced datasets, summarized in the second part of Table 3.

Ratio between bigger and smaller class varies from 10:1 to

even 20:1 which makes them really hard for unbalanced

models. Obtained results (see Table 4) resemble those

obtained on UCI repository. We can see better results in

about half of experiments if we fix a particular activation

function/kernel (so we compare ELMx with EEMx and LS-

SVMx with EEKMx).

Table 5 shows that training time of Extreme Entropy

Machines is comparable with the ones obtained by Extreme

Learning Machines (differences on the level of 0.1–0.2 are

not significant on such datasets’ sizes). We have a robust

method which learns in below two seconds a model for

hundreds/thousands of examples. For larger datasets (like

ABALONE7 or SICK EUTHYROID) proposed methods not only

outperform SVM and LS-SVM in terms of robustness but

there is also noticeable difference between their training

times and ELMs. This suggests that even though ELM and

EEM are quite similar and on small datasets are equally

fast, EEM can better scale up to truly big datasets. Obvi-

ously obtained training times do not resemble the full

training time as it strongly depends on the technique used

for hyperparameters selection and resolution of grid search

(or other parameters tuning technique). In such full sce-

nario, training times of SVM-related models are

Table 4 GMean on all considered datasets

WELMsig EEMsig WELMnsig EEMnsig WELMrbf EEMrbf LS-SVMrbf EEKMrbf SVMrbf

AUSTRALIAN 86.3 � 4:5 87.0 � 4:0 85.9 � 4:4 86.5 � 3:2 85.8 � 4:9 86.9 � 4:4 86.9 � 4:1 86.8 � 3:8 86.8 � 3:7

BREAST-CANCER 96.9 � 1:7 97.3 � 1:2 97.6 � 1:5 97.4 � 1:2 96.6 � 1:8 97.3 � 1:1 97.6 � 1:3 97.8 � 1:1 96.8 � 1:7

DIABETES 74.2 � 4:6 74.5 � 4:6 74.1 � 5:5 74.9 � 5:0 73.2 � 5:6 74.9 � 5:9 75.5 � 5:6 75.7 � 5:6 74.8 � 3:5

GERMAN 68.8 � 6:9 71.3 � 4:1 70.7 � 6:1 72.4 � 5:4 71.1 � 6:1 72.2 � 5:7 73.2 � 4:5 72.9 � 5:3 73.4 � 5:4

HEART 78.8 � 6:3 82.5 � 7:4 78.1 � 7:0 83.7 � 7:2 80.2 � 8:9 81.9 � 6:9 83.7 � 8:5 83.6 � 7:5 84.6 � 7:0

IONOSPHERE 71.5 � 9:5 77.0 � 12:8 82.7 � 7:8 84.6 � 9:1 85.6 � 8:4 90.8 � 5:2 91.2 � 5:5 93.4 � 4:3 94.7 � 3:9

LIVER DISORDERS 68.1 � 8:0 68.6 � 8:9 66.3 � 8:2 62.1 � 8:1 67.2 � 5:9 71.4 � 7:0 71.1 � 8:3 70.2 � 6:9 72.3 � 6:2

SONAR 66.7 � 10:1 70.1 � 11:5 80.2 � 7:4 78.3 � 11:2 83.2 � 6:9 82.8 � 5:2 86.5 � 5:4 87.0 � 7:5 83.0 � 7:1

SPLICE 64.7 � 2:8 49.4 � 5:5 81.8 � 3:2 80.9 � 2:7 75.5 � 3:9 82.2 � 3:5 89.9 � 3:0 88.0 � 4:0 88.0 � 2:2

ABALONE7 79.7 � 2:3 79.8 � 3:5 80.0 � 2:8 76.1 � 3:7 80.1 � 3:2 79.7 � 3:6 80.2 � 3:4 79.9 � 3:4 79.7 � 2:7

ARYTHMIA 28.3 � 35:4 40.3 � 20:9 64.2 � 24:6 85.6 � 10:3 66.9 � 25:8 79.4 � 12:5 84.4 � 10:0 85.2 � 10:6 80.9 � 11:8

CAR EVALUATION 99.1 � 0:3 98.9 � 0:4 99.0 � 0:3 97.9 � 0:6 99.0 � 0:3 98.5 � 0:3 99.5 � 0:2 99.2 � 0:3 100.0 � 0:0

ECOLI 86.9 � 6:5 88.3 � 7:1 86.9 � 6:8 88.6 � 6:9 86.4 � 7:0 88.8 � 7:2 89.2 � 6:3 89.4 � 6:9 88.5 � 6:2

LIBRAS MOVE 65.5 � 10:7 19.3 � 8:1 82.5 � 12:0 93.0 � 11:8 89.6 � 11:9 93.9 � 11:9 96.5 � 8:6 96.6 � 8:7 91.6 � 11:9

OIL SPILL 86.0 � 6:9 88.8 � 6:5 83.8 � 7:6 84.7 � 8:7 85.8 � 9:3 88.1 � 6:1 86.7 � 8:4 87.2 � 4:9 85.7 � 11:4

SICK EUTHYROID 88.1 � 1:7 87.9 � 2:4 88.5 � 2:1 81.7 � 2:7 89.1 � 1:9 88.2 � 2:4 89.5 � 1:7 89.3 � 1:9 90.9 � 2:0

SOLAR FLARE 60.4 � 16:8 63.7 � 12:9 61.3 � 10:8 67.4 � 9:0 60.3 � 14:8 68.9 � 9:3 67.3 � 8:8 67.3 � 9:0 70.9 � 8:5

SPECTROMETER 82.9 � 13:0 87.3 � 7:8 88.0 � 10:8 90.2 � 8:6 86.6 � 8:2 93.0 � 14:6 94.6 � 8:4 93.5 � 14:7 95.4 � 5:1

FOREST COVER 90.8 � 0:3 90.5 � 0:3 90.7 � 0:3 85.1 � 0:4 90.9 � 0:3 87.1 � 0:0 – 91.8 � 0:3 –

ISOLET 0.0 � 0:0 0.0 � 0:0 96.3 � 0:7 95.6 � 1:1 93.0 � 0:9 91.4 � 1:0 98.0 � 0:7 97.4 � 0:6 97.6 � 0:6

MAMMOGRAPHY 90.4 � 2:8 89.0 � 3:2 90.7 � 3:3 87.2 � 3:0 89.9 � 3:8 89.5 � 3:1 91.0 � 3:1 89.5 � 3:1 89.8 � 3:8

PROTEIN HOMOLOGY 95.3 � 0:8 94.9 � 0:8 95.1 � 0:9 94.2 � 1:3 95.0 � 1:0 95.1 � 1:1 – 95.7 � 0:9 –

WEBPAGES 72.0 � 0:0 73.1 � 2:0 93.0 � 1:8 93.1 � 1:7 86.7 � 0:0 84.4 � 1:6 – 93.1 � 1:7 93.1 � 1:7
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significantly bigger due to the requirement of exact tuning

of both C and c in real domains.

7.3 Extremely unbalanced datasets

Third part of experiments involves analysis of extremely

unbalanced datasets (with class imbalance up to 100:1)

containing tens and hundreds thousands of examples. Five

analyzed datasets span from NLP tasks (WEBPAGES) through

medical applications (MAMMOGRAPHY) to bioinformatics

(PROTEIN HOMOLOGY). This type of dataset often occurs in

the true data mining which makes these results much more

practical than the one obtained on small/balanced data.

Hyperparameters of each method are carefully fitted as

described in the previous section.

Scores obtained on ISOLET dataset (see Table 4) for

sigmoid-based random projections are a result of very high

values (�200) of hx;wi for all x, which results in

Gðx;w; bÞ ¼ 1, so the whole dataset is reduced to the

singleton f½1; . . .; 1�Tg 	 R
h 	 Hwhich obviously is not

separable by any classifier, neither ELM nor EEM.

For other activation functions, we see that EEM

achieves slightly worse results than ELM. On the other

hand, scores of EEKM generally outperform the ones

obtained by ELM and are very close to the ones obtained

by well-tuned SVM and LS-SVM. In the same time, EEM

and EEKM were trained significantly faster, as Table 5

shows, it was order of magnitude faster than SVM-related

models and even 1:5� 2� faster than ELM. It seems that

the Ledoit–Wolf covariance estimation computation with

this matrices inversion is simply a faster operation (scales

better) than computation of the Moore–Penrose

pseudoinverse of the HTH. Obviously, one can alternate

ELM training routine to the regularized one where instead

of ðHTHÞy one computes

ðHTHþ I=CÞ�1; ð5Þ

but we are analyzing here approach without parametrized

regularization, while the analog could be used for EEM in

the form of

ðcovðX�Þ þ covðXþÞ þ I=CÞ�1 ð6Þ

instead of computing Ledoit–Wolf estimator. In other

words, in the regularization parameterless training scenar-

io, as described in this paper, EEMs seem to scale better

than ELMs while still obtaining similar classification

results. In the same time, EEKM obtains SVM-level results

with orders of magnitude faster training. Both ELM and

EEM could be transformed into regularization parameter-

based learning [see Eqs. (5), (6)], but this is beyond the

scope of this work.

7.4 Entropy-based hyperparameters optimization

Now, we proceed to entropy-based evaluation. Given par-

ticular set of linear hypotheses M in H, we want to select

optimal set of hyperparameters h (such as number of hid-

den neurons or regularization parameter) which identify a

particular model bh 2 M 	 H. Instead of using expensive

internal cross-validation (or other generalization error

estimation technique like Err0:632), we select such hwhich
maximizes our entropic measure. In particular, we consider

a simplified Cauchy–Schwarz Divergence-based strategy

where we select h maximizing

Table 5 Highly unbalanced datasets times in seconds using machine with Intel Xeon 2.8 GHz processors

WELMsig EEMsig WELMnsig EEMnsig WELMrbf EEMrbf LS-SVMrbf EEKMrbf SVMrbf

ABALONE7 1.9 1.2 2.5 1.6 1.8 1.2 20.8 1.9 4.7

ARYTHMIA 0.2 0.7 0.3 0.9 0.3 0.7 0.1 0.3 0.1

CAR EVALUATION 1.3 0.9 1.5 1.0 1.1 0.9 2.0 1.4 0.1

ECOLI 0.2 0.8 0.2 0.8 0.1 0.7 0.0 0.1 0.2

LIBRAS MOVE 0.2 0.9 0.2 0.8 0.1 0.7 0.0 0.1 0.0

OIL SPILL 0.7 0.8 0.6 0.8 0.6 0.8 0.4 0.9 0.1

SICK EUTHYROID 1.5 1.1 1.4 1.1 1.5 1.1 9.6 1.7 21.0

SOLAR FLARE 0.7 0.8 0.7 0.8 0.8 0.8 1.1 1.3 16.1

SPECTROMETER 0.2 0.7 0.3 0.7 0.2 0.7 0.1 0.3 0.0

FOREST COVER 110.7 104.6 144.9 45.6 111.3 38.2 [ 600 107.4 [ 600

ISOLET 9.7 4.5 4.9 3.0 3.4 2.1 126.9 3.2 53.5

MAMMOGRAPHY 4.0 2.2 6.1 3.0 4.0 2.2 327.3 3.3 9.5

PROTEIN HOMOLOGY 27.6 21.6 86.3 27.9 62.5 22.0 [ 600 30.7 [ 600

WEBPAGES 16.0 6.2 14.5 8.5 7.1 6.4 [ 600 9.0 217.0
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DCSðN ðbThmþ; varðbThHþÞÞ;NðbThm�; varðbThH�ÞÞÞ;

and kernel density-based entropic strategy [7] selecting h
maximizing

DCSð½½bThHþ��; ½½bThH���Þ;

where ½½A�� ¼ ½½A��rðAÞ is a Gaussian KDE using Silverman’s

rule of the window width [22]

rðAÞ ¼ 4

3jAj

� �1=5

stdðAÞ � 1:06
ffiffiffiffiffiffi

jAj5
p stdðAÞ:

This way we can use whole given set for training and do

not need to repeat the process, as DCS is computed on the

training set instead of the hold-out set.

First, one can notice on Table 6 that such entropic cri-

terion works well for EEM, EEKM and Support Vector

Machines. On the other hand, it is not very well suited for

ELM models. This confirms conclusions from Czarnecki

and Tabor work on classification using DCS [7] where

SVMs were claimed to be conceptually similar in terms of

optimization objective, as well as widens it to the new class

of models (EEMs). Second, Table 6 shows that EEM and

EEKM can truly select their hyperparameters using very

simple technique requiring no model retraining. Compu-

tation of

DCSðN ðbThmþ; varðbThHþÞÞ;NðbThm�; varðbThH�ÞÞÞ

is linear in terms of training set and constant time if per-

formed using precomputed projections of required objects

(which are either way computed during EEM training).

This makes this very fast model even more robust.

7.5 EEM stability

It was previously reported [12] that ELMs have very stable

results in the wide range of the number of hidden neurons.

Table 6 UCI datasets GMean with parameters tuning based on selecting a model according to (a) DCSðN ðbTmþ;bTRþbÞ;NðbTm�;bTR�bÞÞ
and (b) DCSð½½bThþ��; ½½bTh���Þwhere b is a linear operator found by a particular optimization procedure instead of internal cross-validation

WELMsig EEMsig WELMnsig EEMnsig WELMrbf EEMrbf LS-SVMrbf EEKMrbf SVMrbf

(a) DCSðN ðbTmþ;bTRþbÞ;NðbTm�; bTR�bÞÞ
AUSTRALIAN 51.2 � 7:5 86.3 � 4:8 50.3 � 6:4 86.5 � 3:2 50.3 � 8:5 86.2 � 5:3 58.5 � 7:9 85.2 � 5:6 85.7 � 4:7

BREAST-CANCER 83.0 � 4:3 97.0 � 1:6 72.0 � 6:6 97.1 � 1:9 77.3 � 5:3 97.3 � 1:1 79.2 � 7:7 96.9 � 1:4 97.5 � 1:2

DIABETES 52.3 � 4:7 74.4 � 4:0 51.7 � 4:0 74.7 � 5:2 52.1 � 3:7 73.5 � 5:9 60.1 � 4:2 72.2 � 5:4 73.2 � 5:9

GERMAN 57.1 � 4:0 69.3 � 5:0 51.7 � 3:0 72.4 � 5:4 52.8 � 6:3 70.9 � 6:9 55.0 � 4:3 67.8 � 5:7 60.5 � 4:5

HEART 68.6 � 5:8 79.4 � 6:9 65.6 � 5:9 82.9 � 7:4 60.3 � 9:4 77.4 � 7:2 66.2 � 4:2 77.7 � 7:0 76.5 � 6:6

IONOSPHERE 62:7� 10:6 77:0� 12:8 68.5 � 5:1 84.6 � 9:1 69.5 � 9:6 90.8 � 5:2 72.8 � 6:1 93.4 � 4:2 94.7 � 3:9

LIVER DISORDERS 53.2 � 7:0 68.5 � 6:7 52.2 � 11:8 62.1 � 8:1 53.9 � 8:0 71.4 � 7:0 62.9 � 7:8 69.6 � 8:2 66.9 � 8:0

SONAR 66.3 � 6:1 66.1 � 15:0 80.2 � 7:4 76.9 � 5:2 83.2 � 6:9 82.8 � 5:2 85.9 � 4:9 87.7 � 6:1 86.6 � 3:3

SPLICE 51.8 � 4:3 49.4 � 5:5 64.9 � 3:1 80.2 � 2:6 60.8 � 3:5 82.2 � 3:5 89.7 � 3:3 88.0 � 4:0 89.5 � 2:9

(b) DCSð½½bThþ��; ½½bTh���Þ
AUSTRALIAN 51.2 � 7:5 86.3 � 4:8 50.3 � 6:4 86.5 � 3:2 50.3 � 8:5 86.2 � 5:3 58.5 � 7:9 85.2 � 5:6 84.2 � 4:1

BREAST-CANCER 83.0 � 4:3 97.0 � 1:6 72.0 � 6:6 97.4 � 1:2 77.3 � 5:3 97.3 � 1:1 79.3 � 7:1 96.9 � 1:4 96.3 � 2:4

DIABETES 52.3 � 4:7 74.4 � 4:0 51.7 � 4:0 74.7 � 5:2 52.1 � 3:7 73.5 � 5:9 60.1 � 4:2 72.2 � 5:4 71.9 � 5:4

GERMAN 57.1 � 4:0 69.3 � 5:0 51.7 � 3:0 71.7 � 5:9 52.8 � 6:3 70.9 � 6:9 54.4 � 5:7 67.8 � 5:7 59.5 � 4:2

HEART 60.0 � 9:2 79.4 � 6:9 65.6 � 5:9 82.9 � 7:4 52:6� 9:0 77.4 � 7:2 61.9 � 5:8 77.7 � 7:0 76.3 � 7:7

IONOSPHERE 62.4 � 8:1 77:0� 12:8 68.5 � 5:1 84.6 � 9:1 67:6� 9:8 90.8 � 5:2 67.0 � 10:7 93.4 � 4:2 92.3 � 4:6

LIVER DISORDERS 50.9 � 11:5 68.5 � 6:7 50.4 � 9:2 62.1 � 8:1 53.9 � 8:0 71.4 � 7:0 62.9 � 7:8 69.6 � 8:2 66.9 � 8:0

SONAR 66.3 � 6:1 66.1 � 15:0 80.2 � 7:4 76.9 � 5:2 62.9 � 9:4 82.8 � 5:2 83.6 � 4:5 87.7 � 6:1 86.6 � 3:3

SPLICE 51.8 � 4:3 33.1 � 6:5 64.9 � 3:1 80.2 � 2:6 60.8 � 3:5 82.2 � 3:5 85.4 � 4:1 88.0 � 4:0 89.5 � 2:9

Fig. 3 Plot of the EEM’s (with RBF activation function) GMean

scores from cross-validation experiments for increasing sizes of

hidden layer. Error bars denote standard deviation
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We performed analogous experiments with EEM on UCI

datasets. We trained models for 100 increasing hidden

layers sizes (h ¼ 5; 10; . . .; 500) and plotted resulting

GMean scores on Fig. 3.

One can notice that, similar to ELM, proposed methods

are very stable. Once machine gets enough neurons (around

100 in case of tested datasets), further increasing of the

feature space dimension has minor effect on the general-

ization capabilities of the model. It is also important that

some of these datasets (like sonar) do not even have 500

points, so there are more dimensions in the Hilbert space

than we have points to build our covariance estimates, and

even though we still do not observe any rapid overfitting.

8 Conclusions

In this paper, we have presented Extreme Entropy

Machines, models derived from the information theoretic

measures and applied to the classification problems. Pro-

posed methods are strongly related to the concepts of

Extreme Learning Machines (in terms of general workflow,

rapid training and randomization) as well as Support

Vector Machines (in terms of margin maximization inter-

pretation as well as LS-SVM duality).

Main characteristics of EEMs are:

– information theoretic background based on differential

and Renyi’s quadratic entropies,

– closed-form solution of the optimization problem,

– generative training, leading to direct probability

estimates,

– small number of hyperparameters,

– good classification results,

– rapid training that scales well to hundreds of thousands

of examples and beyond,

– theoretical and practical similarities to the large margin

classifiers and Fisher Discriminant.

Performed evaluation showed that, similar to ELM, pro-

posed EEM is a very stable model in terms of the size of

the hidden layer and achieves comparable classification

results to the ones obtained by SVMs and ELMs. Fur-

thermore, we showed that our method scales better to truly

big datasets (consisting of hundreds of thousands of

examples) without sacrificing results quality.

During our considerations, we pointed out some open

problems and issues, which are worth investigation:

– Can one construct a closed-form entropy-based classi-

fier with different distribution families than Gaus-

sians? It remains an open problem whether it is

possible even for a convex combination of two

Gaussians.

– Is there a theoretical justification of the stability of the

extreme learning techniques? In particular, can one

show whether performing random projection is equiv-

alent to some prior on the decision function space like

in the case of kernels?

– Is it possible to further increase achieved results by

performing unsupervised entropy-based optimization in

the hidden layer? For Gaussian nodes one could use

some GMM clustering techniques, but is there an

efficient way of selecting nodes with different activa-

tion functions, such as ReLU?
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