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Abstract Fundamental open problems, which are fron-

tiers of syntactic pattern recognition are discussed in the

paper. Methodological considerations on crucial issues in

areas of string and graph grammar-based syntactic methods

are made. As a result, recommendations concerning an

enhancement of context-free grammars as well as con-

structing parsable and inducible classes of graph grammars

are formulated.
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1 Introduction

Representing a pattern as a structure of the form of string,

tree or graph and a set of structures as a formal language is

the main idea of syntactic pattern recognition [6, 24, 27, 42,

55], which is one of the main approaches in the area of

machine recognition. A generation of such a language is

made with a formal grammar. An analysis and a recogni-

tion of an unknown structure is performed with a formal

automaton. If patterns are complex, they are defined in a

hierarchical way. Thus, at the bottom of the hierarchy we

use elementary patterns in order to build simple substruc-

tures (These elementary patterns are called primitives and

they are represented with symbols of a language alphabet.).

Then, using such simple substructures we construct more

complex substructures and so on.

Syntactic pattern recognition prevails over ‘‘standard’’

pattern recognition approaches (probabilistic, discriminant

function-based, NN, etc.) when patterns considered can be

characterized better with structural features than vectors of

features. What is more, using this approach not only can we

make a classification (in a sense of ascribing a pattern to a

pre-defined category), but also a (structural) interpretation

of an unknown pattern. Therefore, for structurally-oriented

recognition problems such as: character recognition, speech

recognition, scene analysis, chemical and biological struc-

tures analysis, texture analysis, fingerprint recognition,

geophysics, a syntactic approach has been applied suc-

cessfully since its beginning in the early 1960s for the next

two decades. A rapid development of syntactic methods has

slowed down since 1990s and the experts in this area (see

e.g. [26]) have found this approach stagnating.

Methodological considerations on the issues which have

an impact on further development of syntactic methods are

made in the paper. Firstly, however, key open problems

constituting the frontiers of this research area should be

identified. It can be easily noticed in the literature concerning

syntactic pattern recognition [6, 24, 27, 42, 55] that in the

field of string-based models a lot of efficient methods have

been developed for structural patterns that can be generated

with regular or context-free grammars. On the other hand, if a

set of patterns cannot be represented with context-free lan-

guages, i.e. it is of a context-sensitive nature, then defining an

efficient recognition method is difficult. It results from a non-

polynomial time complexity of automata analyzing context-

sensitive languages. Therefore, defining string grammars

generating languages with a polynomial membership prob-

lem that are stronger than context-free grammars seems to be

still the key open problem in this area.

If a pattern is structurally complex, a linear-like string

description is very often too weak for its representation.
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Then, a graph representation is usually used. It means that

one should use a graph grammar for a generation of a set of

patterns and a graph automaton (parser) for its analysis.

Unfortunately, a problem of parsing of non-trivial graph

languages is PSPACE-complete or NP-complete [4, 51, 56].

Therefore, defining graph grammars generating languages

with a polynomial membership problem is the second cru-

cial open problem in syntactic pattern recognition.

Before we consider two open key problems identified

above in Sects. 3 and 4, respectively, we try to formulate in

Sect. 2 some general methodological recommendations

concerning a research in syntactic pattern recognition. Our

considerations are based on the 20 years research experi-

ence in both string-based and graph-based syntactic pattern

recognition [12–22, 33, 35]. Hopefully, our recommenda-

tions concerning methodological aspects of a research in

syntactic pattern recognition launch a discussion on pros-

pects and limitations of a future development of this field.

2 General remarks on syntactic pattern recognition

model

As we have mentioned it in a previous section, a grammar

(a pattern generator) and an automaton (a pattern recognizer/

analyzer) are basic formalisms of syntactic pattern recog-

nition. For most applications of the theory of formal lan-

guages, including: programming languages, a construction

of compilers, etc., these formalisms are sufficient, since a

grammar is defined by a designer on the basis of a well-

defined syntax of the language.

In case of syntactic pattern recognition, however, a

syntax of the language is not known in an explicit way, and

only a sample of patterns is given. Since usually a number

of sample patterns is big, defining a grammar ‘‘by hand’’ is

impossible. Therefore, one has to construct an algorithm of

a grammatical inference (induction) that generates a

grammar automatically on the basis of the sample. Defining

such an algorithm is much more difficult than defining an

algorithm of generating a control table for an automaton on

the basis of the grammar. On the other hand, a lack of a

grammatical inference algorithm makes the use of a syn-

tactic pattern recognition model impossible in most of real-

world applications [26, 29]. This algorithm, allowing one

to devise a pattern recognition system with a self-learning

mechanism (cf. Fig. 1), need not be as efficient as a parsing

algorithm, since inductive learning of the system is usually

made in the off-line mode. Thus, its (any) polynomial

complexity is enough1. Summing up our considerations, let

us formulate the first methodological recommendation

concerning a syntactic pattern recognition model.

I. A syntactic pattern recognition model should be com-

plete. It means that it should consist of the following three

components: a grammar, an efficient syntax analyzer and a

grammatical inference algorithm of a polynomial complexity.

Before we analyze conditions of an efficient use of

syntactic approach in a visual pattern recognition, we dis-

cuss assumptions that are made for such an application of

grammar-based techniques. An analysis of an image in a

syntactic pattern recognition system begins with an image

processing phase (cf. Fig. 1). Typical operations during this

phase include: noise reduction, smoothing, boundary

sharpening/accentuation, edge detection, segmentation, etc.

These enhancement/restoration operations are performed in

order to improve a quality of an image and to make an

image analysis more effective. A selection of preprocessing

Fig. 1 A general scheme of a

syntactic pattern recognition

system

1 On the other hand, a parsing algorithm should be as efficient as it is

possible especially, if a recognition performed by the system is to be

made in a real-time mode.
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operations mainly depends on a nature of an image and

conditions of image acquisition. For example, an image of

ECG shown in Fig. 2a processed in a syntactic pattern

recognition system has been, firstly, filtered (grid lines

have been removed) and smoothed (cf. Fig. 2b) in order to

make an identification of typical ECG structural compo-

nents more effective. Secondly, in order to identify pre-

defined ECG primitives (elementary patterns), some of

them shown in Fig. 2c, the image has been segmented. The

result of such a segmentation for a fragment of the image is

shown in Fig. 2d. Let us notice that now the image is

represented as a (generalized) structural pattern. A

description of the sub-image shown in Fig. 2d of the form

\qr[\st[\t[\u[, where \qr[, \st[, \t[, \u[ are

symbols representing primitives, is treated as a word of a

formal language consisting of possible patterns of ECG

images.

An abstract/generalized representation of a pattern as a

structure defined with a pre-defined primitives is a good

point of a syntactic approach, since it is a kind of an

analogy to a recognition based on a pre-defined perceptual

concepts made by a human being. On the other hand, such

a generalization of phenomena (images) performed by a

computer system can be too rough, because of a fuzzy/

vague nature of the real-world phenomena. Therefore, a

symbolic representation-based syntactic pattern recognition

scheme has been often ‘‘enhanced’’ in order to handle a

problem of a fuzziness of the real-world phenomena, as

well as a problem of a noise/distortion appearing at a stage

of an image acquisition [24].

In the first approach we define transformations corre-

sponding to distortions of strings representing patterns.

There are three kinds of such distortions. A substitution

error consists in an occurrence of a terminal symbol

a instead of b in a string, which usually is a result of a

misrecognition of a primitive. Deletion or insertion errors

appear when there is a lack of some terminal symbol in a

phrase or a certain symbol occurs, whereas it should not,

respectively. These two errors result usually from seg-

mentation errors. Having all the possible errors determined,

we should expand a grammar generating ‘‘ideal’’ patterns

by adding productions corresponding to error transforma-

tions. Now, we can use a parser, which computes a distance

between an analyzed string x and a proper string y (i.e. a

string belonging to an underlying language). Such a parser

is called a minimum-distance error-correcting parser,

MDECP [2]. This distance can be computed simply as the

smallest number of error transformations required to obtain

a string x from a string y. If we ascribe various costs

(weights) to various error transformations, a weighted

distance can be calculated.

If errors resulted from preprocessing phases are more

‘‘subtle’’ than differences between symbolic (category-

based) primitives, attributed grammars are applied [36]. In

such an approach, attributes which characterize features of

primitives in detail (e.g. numeric features) are used. Pro-

ductions of an attributed grammar contain a syntactic part

(corresponding to ‘‘standard’’ productions of non-attributed

grammars) and a ‘‘semantic’’ part, called a semantic rule.

Such a rule allows one to evaluate attributes of certain

symbols appearing in the production in terms of attributes

of other symbols. A distance between an analyzed pattern

and the language consisting of model (‘‘ideal’’) patterns

can be computed during parsing not only on the basis of

structural distortions, but also with the help of vectors of

attributes.

Fig. 2 Phases of image

processing in a syntactic pattern

recognition system (ECG):

a an input image, b an image

after an image processing phase,

c examples of ECG primitives

(elementary patterns),

d a structural representation

after a segmentation
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The third approach to a syntax analysis of noisy patterns

can be used, if one is able to observe that some patterns

occur more frequently than others. Such a phenomenon can

be noticed, for example, during a process of a grammatical

inference performed on the basis of a sample of patterns. In

such a case occurrences of patterns can be used for eval-

uating their probabilities. As a result a stochastic grammar

can be defined [23]. In such a grammar, probabilities are

assigned to productions, so during a derivation a probability

of a generated pattern can be computed. A corresponding

parser, called a maximum-likelihood error-correcting

parser, MLECP, evaluates additionally a probability with

which an unknown pattern belongs to an underlying

language.

After a brief presentation of the main approaches to a

problem of a fuzzy/vague nature of real-world phenomena,

we can formulate the second methodological remark con-

cerning a pattern recognition model.

II. If a syntactic pattern recognition model is to be used

for a classification/interpretation of real-world objects or

phenomena2, it should be enhanced with a mechanism

allowing one to handle a problem of their fuzzy/vague

nature. Error-correcting parsing, attributed grammars and

stochastic grammars are typical enhancement mechanisms

applied in such a case.

Decision-theoretic classification methods make use of a

generic pattern representation of the form of a feature

vector. In consequence they are all-purpose in a sense they

can be applied for various application areas. On the con-

trary, developing a syntactic model, we define a represen-

tation, which is adequate (so, specific) for a given

application area, i.e. a nature of patterns occurring in this

area [6, 24, 27, 42, 55]. A form of a structural represen-

tation determines, in turn, a form (type) of a formal

grammar which is a basis for a construction of a model. A

generative power of a formal grammar is its fundamental

characterization. In order to define it formally, we intro-

duce firstly basic notions. We will make it in a general way,

i.e. we do not determine a grammar structure (like a qua-

druple-structure for standard Chomsky’s grammars), since

the structure varies for grammars considered in this paper.

If R is a set of any symbols, then R� (Kleene star)

denotes a set of all strings that can be constructed by cat-

enating symbols of R; including the empty string (empty

word), denoted with k. A language L is a subset of R�.
Let G be a grammar. Let components of G are denoted

in the following way. V is a set of symbols (alphabet).

R � V is a set of terminal symbols, i.e. symbols that occur

in words of a language generated with G. P is a set of

productions (rules) used to generate a language. A pro-

duction is denoted by: c �! d; c; d 2 V�; which means

that a substring c can be replaced by a substring d. N ¼
V n R is a set of nonterminal symbols. Nonterminal sym-

bols are auxiliary symbols and they are used in a process of

deriving language words with the help of productions.

(They play a role similar to variable symbols in mathe-

matics.) They do not occur in words of a language gener-

ated with G. (The language contains only terminal

symbols.) S 2 N is the starting symbol.

An application of a production to a string a 2 V� that

results in obtaining a string b 2 V� is called a derivation

step, denoted a ¼) b: Thus, for defining a production

(rule) we use a symbol �!; whereas for denoting its

application a symbol ¼) is used. A sequence of derivation

steps (including the empty sequence) is denoted with )� .

A language generated with G is a set LðGÞ ¼
fajS)� a; a 2 R�g.

Let X denotes a type of formal grammars. A class X

of languages is a set LðXÞ ¼ fLj9G of the type X : L ¼
LðGÞg, i.e. it is a set containing all the languages L that can

be generated with any grammar G of the type X. We say

that grammars of a type X are of a bigger generative power

than grammars of a type Y, if LðYÞ(LðXÞ.
In general, the bigger generative power of a grammar is,

the bigger computational complexity of the corresponding

automaton is. Moreover, in case of a growth of a generative

power of a grammar, constructing an efficient inference

algorithm is even more difficult than defining an efficient

automaton. Summing up our considerations, we can pro-

pose the following methodological principle.

III. Any syntactic pattern recognition method should be

constructed for a specific problem of a strictly-defined appli-

cation area, and with the use of the Ockham Razor principle

with respect to generative power of an underlying grammar.

That is, a grammar should be of the smallest generative power

yet sufficient to generate all the possible patterns.

3 Enhanced string context-free grammars

In an introduction we have identified an issue of an

enhancement of a generative power of context-free gram-

mars as the one of most important key open problems in

syntactic pattern recognition. In this section we discuss it in

a more detailed way.

3.1 Survey of models

In this section we present and discuss certain types of

enhanced context-free grammars. Such grammars are

2 Sometimes a syntactic pattern recognition scheme is used for

analyzing objects or systems being artefacts, like for example a

particle physics detector system (see e.g. [19]). Then, an enhancement

of a syntactic model can be unnecessary.
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required to generate all the context-free languages and

also certain context-sensitive languages3. There are a lot

of taxonomies and characterizations of enhanced CFGs. In

the theory of formal languages Dassow and Păun [8, 9]

have defined a taxonomy for enhanced CFGS, called here

regulated rewriting (controlled) grammars that is of a

great importance for studying formal properties of such

grammars. In the field of Natural Language Processing

(NLP) various types of enhanced CFGs, which are con-

venient for solving crucial problems in this area, have

been defined within a class of the so-called mildly con-

text-sensitive grammars, MCSGs [57]. We will try to

analyze important types of grammars from the point of

view of syntactic pattern recognition. Especially, we will

have in mind the first methodological recommendation

formulated in a previous section, that is a possibility of

constructing an efficient parser and a polynomial infer-

ence algorithm.

In order to enhance a context-free grammar, we should

devise it with an ability of controlling a derivation process.

In a standard (Chomskyan) paradigm it can be made either

by including certain derivation control operators in gram-

mar productions or by defining a separated (w.r.t. produc-

tions) derivation control mechanism. We begin with the

first approach. An indexed grammar [1] introduced by Aho

in 1968 was the first type of grammars developed within

this approach. Let us define it formally.

Definition 1 An indexed grammar is a quintuple G ¼
ðV;R; I;P; SÞ; where: V, R � V ; S [ N are defined as in a

previous section, I is a set of indices, P is a finite set of

productions of one of the three forms:

ð1Þ A �! a or ð2Þ A½::� �! B½i::� or

ð3Þ A½i::� �! ½::�a;

where A and B 2 N; i [ I, [..] represents a stack of indi-

ces, a string in I*, a [ V*.

Indices may follow any nonterminal and they are

introduced in order to model a context for a derivation. Let

us propose the following notation:

• [..] represents a stack of indices, a string in I*,

• [i..] represents a stack of indices where i [ I is the top

element of the stack.

Let A [ N, B [ N, Xj [ V, b [ V*, c [ V*, i [ I, dj [ I*.

A derivation in indexed grammars is defined in the fol-

lowing way.

1. If A �! X1; . . .;Xk is a production of type (1), then

bAdc ) bX1d1 , …, Xkdkc , where dj = d if Xj [ N

and dj = k if Xj 2 R:
2. If A½::� �! B½i::� is a production of type (2), then

bAdc ) bBidc.

3. If A½i::� �! ½::�X1; . . .;Xk is a production of type (3),

then bAidc ) bX1d1, …, Xkdkc, where dj = d if

Xj [ N and dj = k if Xj 2 R:

Firstly, in order to show how such a derivation is per-

formed, we define a simple indexed grammar G generating

a context-sensitive language LðGÞ ¼ fa2n

; n [ 0g: Let

G = ({S, A, a}, {a}, {i}, P, S), where P is:

1: S½::� ! S½i::� ða production of a type 2Þ
2: S! AA ða production of a type 1Þ
3: A½i::� ! ½::�AA ða production of a type 3Þ
4: A! a ða production of a type 1Þ

Now, e.g. a string a8 is derived in the following way.

S½�)
1

S½i�)
1

S½ii�)
2

A½ii�A½ii�)
3

A½i�A½i�A½ii�)
3

A½i�A½i�A½i�A½i�

)
3

A½�A½�A½i�A½i�A½i�)
3
� � �)

3
A½�A½�A½�A½�A½�A½�A½�A½�

)
4

aA½�A½�A½�A½�A½�A½�A½�)
4
� � �)

4
aaaaaaaa

A symbol )
k

denotes an application of the kth

production.

In spite of a concise form of indexed grammars, they

are of a big descriptive power, which is enough to

generate such complex structural patterns like e.g. frac-

tals. For example, let us define an indexed grammar

G used for generating the Sierpinski Triangle (see

Fig. 3a) as an image called the Sierpinski tiling arrow-

head (the grammar generates the basic structure of the

image).

Let G = ({S, A, B, d, l, r}, {d, l, r}, {i}, P, S), where

P is:

1: S½::� ! S½i::� ða production of a type 2Þ
2: S! A ða production of a type 1Þ
3: A½i::� ! ½::�BrArB ða production of a type 3Þ
4: B½i::� ! ½::�AlBlA ða production of a type 3Þ
5: A! d ða production of a type 1Þ
6: B! d ða production of a type 1Þ

The primitives d, l, r are defined in the following way

(cf. Fig. 3b):

• d is a straight line segment,

• l is left 60� ‘‘turn’’,

• r is right 60� ‘‘turn’’.

Let us derive one of basic forms of the Sierpinski tiling

arrowhead (see Fig. 3f) as follows.

3 One can enhance other classes of grammars than CFGs with

mechanisms discussed in the paper. Nevertheless, in syntactic pattern

recognition we are interested primarily in enhancing CFGs.
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S½�)
1

S½i�)
1

S½ii�)
2

A½ii�)
3

B½i�rA½i�rB½i�)
4

A½�lB½�lA½�rA½i�rB½i�

)
5

dlB½�lA½�rA½i�rB½i�)
6

dldlA½�rA½i�rB½i�)
5

dldldrA½i�rB½i�

)
3

dldldrB½�rA½�rB½�rB½i�)
6

dldldrdrA½�rB½�rB½i�

)
5

dldldrdrdrB½�rB½i�)
6

dldldrdrdrdrB½i�

)
4

dldldrdrdrdrA½�lB½�lA½� � � �)
5
� � �)

6
� � �

dldldrdrdrdrdldld

Let us describe the derivation in an intuitive way. We

begin with putting an index i on the stack with the help of

the first production. The more indices i we put on the stack

the more complex structure we receive. We start a proper

generation of a structure by applying the second

production. Productions: 3 and 4 generate primitives: r

and l (at the same time they remove indices i from the

stacks). The effect of the first application of a production 3

is shown in Fig. 3c. The effect of the first application of a

production 4 is shown in Fig. 3d. Productions: 5 and 6

generate a primitive d (cf. Fig. 3e). The final effect of the

derivation is shown in Fig. 3f.

To obtain a more complex structure than the one shown

in Fig. 3f, the first production should be applied three times

(cf. Fig. 3g). If we apply the first production four times a

successive more complex structure is received (cf. Fig. 3h),

etc.

As one can see, additional stacks of indices assigned to

nonterminals are used in indexed grammars. If a production

is applied to a nonterminal with a stack, then all nonter-

minals of the right-hand side of the production receive

copies of this stack. Such a mechanism allows us to reflect

contextual dependencies during a derivation. Neither a

polynomial parser nor a polynomial grammatical inference

algorithm have been defined for indexed grammars.

Let us notice that some additional syntactic constructs

(brackets: [ ], indices) occur in both grammar productions

and non-final phrases of a derivation, apart from terminal

and nonterminal symbols. These constructs do not occur in

words of a language generated and they play a role of

operators controlling a derivation. An occurrence of such

operators is typical for mildly context-sensitive grammars

(MCSGs) [57] used in NLP and mentioned above. Mildly

context-sensitive languages (MCSLs) fulfill the following

properties. MCSLs contain context-free languages and

certain languages with context dependencies (L1 ¼
fanbncnjn� 0g; L2 ¼ fanbmcndmjn;m� 0g; L3 ¼ fwwjw 2
fa; bg�g). Their membership problem is solvable in a

deterministic polynomial time. MCSLs have the linear

growth property (if strings of a language are ordered in a

sequence according to their length, then two successive

lengths do not differ in arbitrary large amounts). The best

known MCSGs include: linear indexed grammars, head

grammars, and combinatory categorial grammars4.

Now, we briefly characterize MCSGs mentioned above.

Let us start with linear indexed grammars (LIGs) intro-

duced by Gazdar [25]. LIG differs from an indexed

grammar in the form of productions. In LIG at most one

nonterminal in each production receives the stack of

Fig. 3 a The Sierpinski Triangle, b primitives used for a generation

of the Sierpinski tiling arrowhead, c–e an image interpretation of

chosen derivation steps, f the basic generator of the Sierpinski tiling

arrowhead, g a successive structure when the first production is

applied three times, h a successive structure when the first production

is applied four times

4 Tree adjoining grammars are the fourth well-known MCSGs, but,

in fact, they are tree (not string) grammars.
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indices. (In indexed grammars all nonterminals receive

copies of the stack.) Let us introduce the following

definition.

Definition 2 A linear indexed grammar, LIG, is a quin-

tuple G ¼ ðV; R; I; P; SÞ; where V, R � V; S 2 N are

defined as in a previous section, I is a set of indices, P is a

finite set of productions of one of the three forms:

ð1Þ A½::� �! aB½::�c or ð2Þ A½i::� �! aB½::�c or

ð3Þ A½::� �! aB½i::�c;

where: A and B 2 N; i 2 I; ½::� represents a stack of indi-

ces, a string in I*, a and c 2 V�:

For example, let us define a linear indexed grammar G

such that L(G) = {anbncndn, n [ 0}. Let G = ({S, B, a,

b, c, d}, {a, b, c, d}, {i}, P, S), where P is:

1: S½::� ! aS½i::�d ða production of a type 3Þ
2: S½::� ! B½::� ða production of a type 1Þ
3: B½i::� ! bB½::�c ða production of a type 2Þ
4: B½� ! k ða production of a type 1Þ

A derivation of a string aabbccdd is made in the

following way.

S½�)
1

aS½i�d)
1

aaS½ii�dd)
2

aaB½ii�dd)
3

aabB½i�cdd

)
3

aabbB½�ccdd)
4

aabbccdd

A polynomial parsability of LIGs is their main advantage.

On the other hand, the grammars are of the less descriptive

power than (common) indexed grammars as one can easily

see in the example above. The other models based on

indexed grammars include: distributed index grammars

[52], global index grammars [7], and sequentially indexed

grammars [10]. Last two types of grammars have been

constructed in order to preserve as much as possible of a

generative power of indexed grammars, being still parsable

in a polynomial time.

The head grammars (HGs) were introduced by Pollard

in 1984 [46]. They are defined in the following way.

Definition 3 A head grammar, HG, is a quadruple G ¼
ðV;R;P; SÞ; where V; R � V ; S 2 N are defined as in a

previous section, P is a set of productions of the form:

A! f ða1; . . .; anÞ or A! a1 where:

A 2 N; ai is either a nonterminal or a headed string, f is

either a concatenation or a head wrapping operation.

Head grammars differ from context-free grammar in

containing a distinguished symbol ‘‘"’’ in each string. This

symbol corresponds to the head of the string. The non-

terminals of a head grammar derive headed strings or pairs

of terminal strings (u, v) that we denote ðu " vÞ: There are

two types of operations that can be performed using the

head. The first is a concatenation Ci,n. It joins n head-

divided words in order and inserts a new head in the string

Ci;nðu1 " v1; . . .; ui " vi; . . .; un " vnÞ ¼ u1v1; . . .; ui " vi; . . .;

unvn: The second operation is wrapping W which inserts

one word into another based on the head position

Wðu1 " v1; u2 " v2Þ ¼ u1u2 " v2v1.

For example, let us define a head grammar G such that

L(G) = {anbncndn, n [ 0}. Let G = ({S, T, a, b, c, d},

{a, b, c, d}, P, S), where P is:

1: S! C1;1ðk " kÞ 2: S! C2;3ða " k; T ; d " kÞ
3: T ! WðS; b " cÞ

A derivation of a string aabbccdd is made as follows.

S)
1

C1;1ðk " kÞ ¼ k " k

T)
3

Wðk " k; b " cÞ ¼ b " c

S)
2

C2;3ða " k; b " c; d " kÞ ¼ ab " cd

T)
3

Wðab " cd; b " cÞ ¼ abb " ccd

S)
2

C2;3ða " k; abb " ccd; d " kÞ ¼ aabb " ccdd

Combinatory categorial grammars (CCGs) were

introduced by Steedman in 1987 [53]. Let us introduce

their definition.

Definition 4 A combinatory categorial grammar, CCG, is

a quintuple G ¼ ðV;R; f ;R; SÞ; where V is a finite, non-

empty alphabet, R � V is a finite, nonempty set of terminal

symbols—lexical items (with N we denote a set of non-

terminal symbols N ¼ V n R—such symbols are also

called ‘‘atomic categories’’ which can be combined into

more complex functional categories by using the backward

operator\or the forward operator =), S 2 N is the starting

symbol, f is the terminal function that maps terminal

symbols to finite subsets of C(N), the set of categories,

where NjCðNÞ and if c1; c2 2 CðNÞ then ðc1=c2Þ 2 CðNÞ
and ðc1nc2Þ 2 CðNÞ; R is a set of combinatory rules of one

of the four forms, that involve variables x, y, z over

C(N), and each ji 2 fn; =g :

1. forward application: ðx=yÞ y! x

2. backward application: y (x\y) ? x

3. generalized forward composition for some n� 1 :

ðx=yÞ ð. . .ðyj1z1Þj2. . .jnznÞ ! ð. . .ðxj1z1Þj2. . .jnznÞ
4. generalized backward composition for some n C 1:

(…(y|1z1) |2… |nzn) (x\y) ? (… (x|1z1) |2…|nzn)

Derivations in a CCG involve the use of the combinatory

rules in R (instead of productions in a ‘‘common’’ formal

grammar). Let the ‘‘derives’’ relation be defined as: acb)
ac1c2b if R contains a combinatory rule that has c1c2 ? c as

an instance, and a and b are string of categories. Then

the string languages generated by a CCG is defined as:
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LðGÞ ¼ fa1; . . .; anjS ) � � � ) c1; . . .; cn; ci 2 f ðaiÞ; ai 2
R [ fkg; 1� i� ng:

For example, let us define a combinatory categorial

grammar G such that L(G) = {anbncndn, n [ 0}. Let

G = ({S, T, A, B, D, a, b, c, d}, {a, b, c, d}, f, R, S),

where R is:

rule r1: ðxS=TÞðTnA=TnBÞ ! ðxSnA=TnBÞ
rule r2: ðA=DÞðxSnAÞ ! ðxS=DÞ
rule r3: ðxS=yÞy! xS

rule r4: y(xS\y) ? xS

and f is:

f1: f ðaÞ ¼ fðA=DÞg
f2: f(b) = { B }

f3: f(d) = {D}

f4: f ðcÞ ¼ fðTnA=TnBÞg
f5: f(k) = { (S/T), T }

A derivation of a string abcd is performed in the fol-

lowing way.

S ¼) ðSnDÞD ¼) ðA=DÞðSnDÞD ¼) ðA=DÞðSnD=TÞTD

¼) ðA=DÞBðS=TÞðSnD=TnBÞTD ¼) ðA=DÞBðSnD=TnBÞD
¼) aBðSnD=TnBÞD ¼) abðSnD=TnBÞD ¼) abcD ¼) abcd

The derivation is made by applying rules: 3, 2, 4, and 1,

and then f(k), f(a), f(b), f(c), f(d).

Similarly as in the case of mildly context-sensitive gram-

mars applied in the field of NLP and presented above, deri-

vation control operators included in productions have been

recently used in two types of enhanced context-free grammars

introduced by Okhotin in the theory of formal languages.

These grammars allow one to specify such theoretical oper-

ations over sets of languages as their intersection, negation,

etc. Let us consider the following definition [40].

Definition 5 A conjunctive grammar is a quadruple G ¼
ðV;R;P; SÞ; where V; R � V ; S 2 N are defined as in a

previous section, P is a finite set of rules, each of the form:

A! a1&. . .&am;

where A 2 N; m C 1 and a1, …, am [ V*. Each string ai is

called a conjunct.

Intuitively speaking, a rule in a conjunctive grammar

specifies that every string which satisfies each of the con-

ditions ai is generated by A.

For example, let us define a conjunctive grammar G

such that L(G) = {anbncn, n [ 0}. Let G = ({S, A, C,

F, G, a, b, c}, {a, b, c}, P, S), where P is:

S! AF & GC A! Aa j k C ! Cc j k
F ! bFc jk G! aGb j k

In the grammar G non-terminal A generates any number

of a symbols, while F generates strings with equal numbers

of b symbols and c symbols (bn cn). On the other hand, G

generates strings with equal numbers of a symbols and b

symbols (anbn) while C generates strings with any number

of c symbols. By taking the conjunction of the languages

associated with AF and GC (since S ? AF & GC), grammar

G generates the language L(G) = {anbncn, n [ 0}.

Boolean grammars defined by Okhotin in 2004 [41] are

more general than conjunctive grammars. Additionally, a

negation operator can be used in productions that results in

a possibility of expressing every Boolean operation over

sets of languages. Both conjunctive and Boolean grammars

generate all context-free languages and a subset of context-

sensitive languages. Polynomial parsers have been defined

for both classes. An investigation in grammatical inference

has not been led, because of theoretical objectives of the

research (enhancing generative power of CFGs allowing to

express logical operations over sets of underlying context-

free languages).

After presenting types of grammars with derivation

control operators included in productions, let us introduce

grammars with a separated control mechanism, i.e. the

mechanism that is not ‘‘hidden’’ in left- or right-hand sides

of a production. Such a methodology is used in programmed

grammars introduced by Rosenkrantz in 1969 [48].

Definition 6 A programmed grammar is a quintuple G ¼
ðV;R; J;P; SÞ; where: V;R � V ; S 2 N are defined as in a

previous section, J is a set of production labels, P is a finite

set of productions of the form:

ðrÞ a �! b SðUÞFðWÞ; in which

a �! b; a 2 V�NV�; b 2 V�; is called the core, (r) is the

production label, r 2 J; U � J is the success field and W �
J is the failure field.

A derivation is defined as follows. A production labelled

with (1) is applied firstly. If it is possible to apply a pro-

duction (r), then after its application the next production is

chosen from its success field U. Otherwise, we choose the

next production from the failure field W.

Let us define a programmed grammar G such that

L(G) = {an bn cn, n [ 0}. Let G ¼ ðfS;A;B;C; a;
b; cg; fa; b; cg; f1; . . .; 7g;P; SÞ; where P is:

1: S! ABC Sðf2;5gÞ Fð;Þ 5: A! a Sðf6gÞ Fð;Þ
2: A! aA Sðf3gÞ Fð;Þ 6: B! b Sðf7gÞ Fð;Þ
3: B! bB Sðf4gÞ Fð;Þ 7: C! c Sðf;gÞ Fð;Þ
4: C! cC Sðf2;5gÞ Fð;Þ

For example, a derivation of a string aabbcc is made as

follows.
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S)
1

ABC)
2

aABC)
3

aAbBC)
4

aAbBcC

)
5

aabBcC)
6

aabbcC)
7

aabbcc

Now, we use once more an example of the Sierpinski

Triangle (see Fig. 3a) for showing a big descriptive power

of a programmed grammar. Let us define a programmed

grammar G, which generates the Sierpinski tiling arrow-

head (it has been generated with an indexed grammar at the

beginning of this section).

Let G = ðfS;An;Bn;Ao;Bo; r; l; dg; fr; l; dg; f1; . . .; 7g;
P; SÞ; where primitives r, l and d are defined as in Fig. 3b,

and the set of productions P is:

1: S! BnrAnrBn Sðf2; 6gÞ Fð;Þ
2: An ! Ao Sðf2gÞ Fðf3gÞ
3: Bn ! Bo Sðf3gÞ Fðf4gÞ
4: Ao ! BnrAnrBn Sðf4gÞ Fðf5gÞ
5: Bo ! AnlBnlAn Sðf5gÞ Fðf2; 6gÞ
6: An ! d Sðf6gÞ Fðf7gÞ
7: Bn ! d Sðf7gÞ Fð;Þ

Let us derive the basic generator of the Sierpinski tiling

arrowhead (see Fig. 4f) as follows.

S)
1

BnrAnrBn)
2

BnrAorBn)
3

BorAorBn)
3

BorAorBo

)
4

BorBnrAnrBnrBo)
5

AnlBnlAnrBnrAnrBnrBo

)
5

AnlBnlAnrBnrAnrBnrAnlBnlAn)
6

dlBnlAnrBnrAnrBnrAnlBnlAn

)
6
� � �)

6
dlBnldrBnrdrBnrdlBnld)

7
� � �)

7
dldldrdrdrdrdldld

Let us describe the derivation in an intuitive way. The

successive iterations of a development of subsequent

structures are ‘‘programmed’’ in the grammar G. We start

with applying the first production (see Fig. 4a). Secondly,

all the nonterminals indexed with n (i.e. An and Bn) are

replaced with nonterminals indexed with o (i.e. Ao and Bo)

with the help of productions: 2 and 3 (see Fig. 4b). Then,

each nonterminal indexed with o is developed into a sub-

structure BnrAnrBn or AnlBnlAn with the help of produc-

tions: 4 or 5, respectively (see Fig. 4c, d). At this moment,

we can replace all the nonterminals with terminals d with

the help of productions: 6 and 7 (cf. Fig. 4e, f) finishing the

generation or we can begin the next iteration starting from

a form shown in Fig. 4d.

A static control mechanism of programmed grammars

(success and failure fields include fixed indices of pro-

ductions) has been extended in DPLL(k) grammars

(Dynamically Programmed LL(k) grammars) [19]. Instead

of success and failure fields, every production is devised

with a control tape. A head of a tape can write/read indices

of productions and it can move. A derivation is made

according to a content of a tape. We introduce the fol-

lowing definition.

Definition 7 A dynamically programmed context-free

grammar, a DP grammar, is a quintuple G ¼
ðV;R;O;P; SÞ; where V, R � V; S 2 N are defined as in a

previous section, O is a set of operations on a tape: add,

read, move, P is a finite set of productions of the form:

pi ¼ ðli; Li;Ri;Ai;DCLiÞ; in which

li :
S

DCLk �! fTRUE;FALSEg is the predicate of

applicability of the production pi; Li 2 N and Ri 2 V� are

left- and right-hand sides of pi, respectively, a pair (Li, Ri)

will be called a core of pi (we assume that for each two

various productions pi, pj from P, the core of pi is different

from the core of pj, i.e. either Li = Lj or Ri = Rj), Ai is the

sequence of actions of a type add, move 2 O performed

over
S

DCLk;DCLi is a derivation control tape for pi.

A derivation for dynamically programmed grammars is

defined in the following way. Apart from testing whether Li

occurs in a sentential form derived, the predicate of

applicability of a production pi is checked. If it is true, then

Li is replaced with Ri, and actions over derivation control

Fig. 4 A generation of the Sierpinski tiling arrowhead with the help

of a programmed grammar: a a structure after an application of the

first production, b a structure after applying productions: 2 and 3,

c–e structures after applying productions: 4, 5 and 6, f the final form

of the first iteration (the basic generator)
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tapes for certain productions are performed. A derivation

control tape for a production corresponds to a success field

of programmed grammars. The difference is that, whereas

in common programmed grammars this field is fixed at the

moment of defining a grammar, in dynamically pro-

grammed grammars this ‘‘field’’ is dynamically filled with

labels of productions during a derivation with the help of

the set of actions Ai.

In order to construct a polynomial syntax analyzer for

dynamically programmed grammars, restriction forcing a

deterministic derivation and limiting ‘‘recursive steps’’

have been imposed in the following way.

Definition 8 Let G ¼ ðV ;R;O;P; SÞ be a dynamically

programmed context-free grammar, Firstk(x) denotes a set

of all the k-length terminal prefixes of strings derivable

from x in a grammar G5, )
�

core
denotes a sequence of deri-

vation steps consisting in applying only production cores.

The grammar G is called a Dynamically Programmed

LL(k) grammar, DPLL(k), if the following two conditions

are fulfilled.

(1) Let w 2 R�;A 2 N ¼ V n R; x; y; a;b; c 2 V�: Then,

for every two left-hand side derivations in G:

S)� wAa) wba)
�

core
wx

S)
�

wAa) wca)
�

core
wy

such that: Firstk(x) = Firstk(y) the following condition

holds: b = c.

(2) For a grammar G there exists a certain number n

such that for any left-hand side derivation S)� wAa)
p

wba
(where w 2 R�;A 2 N; a; b 2 V�; p is a string of indices of

productions applied) fulfilling a condition: |p| C n, the first

symbol of ba is the terminal one.

The first condition is analogical to a constraint put on a

context-free grammar by a definition of well-known LL(k)

grammar [49] in order to make a derivation deterministic

by checking the first k symbols of the right-hand sides of

productions. However, in a DPLL(k) grammar there can be

more than one productions generating wx from wAa, but

only for one the predicate of applicability is fulfilled at this

derivational step. With such a definition, a left-hand

recursion can occur. Therefore, a number of ‘‘recursive’’

steps is limited with the second condition.

Although DPLL(k) grammars are weaker than DP

grammars, they still can generate a large subclass of con-

text-sensitive languages. For example let us define a

DPLL(k) grammar G such that L(G) = {an bn cn, n [ 0}.

Let G = ({S, A, B, C, a, b, c}, {a, b, c}, {add, move, read},

P, S), where P is:

Label l Core Actions

1 TRUE S ! aAbBcC [

2 TRUE A ! aA add(4,4); add(6,6);

3 TRUE A ! k add(4,5); add(6,7);

4 read(4) = 4 B ! bB move(4);

5 read(4) = 5 B ! k move(4);

6 read(6) = 6 C ! cC move(6);

7 read(6) = 7 C ! k move(6);

A derivation of a string aaabbbccc is made in the fol-

lowing way.

Production Sentence derived DCL4 DCL6

S

1 aAbBcC

2 aaAbBcC 4 6

2 aaaAbBcC 44 66

3 aaabBcC 445 667

4 aaabbBcC #45 667

4 aaabbbBcC ##5 667

5 aaabbbcC ###_ 667

6 aaabbbccC ###_ #67

6 aaabbbcccC ###_ ##7

7 aaabbbccc ###_ ###_

A descriptive power of a DPLL(k) grammar has been

increased in its generalized version, called GDPLL(k),

allowing one to generate such ‘‘complex’’ languages as e.g.

LðGÞ ¼ fa2n

; n [ 0g [35]. A parsing algorithm for both

DPLL(k) and GDPLL(k) grammars is of the O(n) compu-

tational complexity, and a grammatical inference algorithm

is also of a polynomial complexity, Oðm3 � n3Þ; where m is

a sample size, n is the maximum length of a string in a

sample [34].

All the formalisms discussed above can be characterized

as string grammars belonging to the Chomskyan paradigm,

i.e. they are ‘‘enhanced’’ versions of the Chomsky’s con-

text-free grammars generating certain context-sensitive

languages. Below we present some models going beyond

this paradigm, which are also, in our opinion, worth con-

sidering in a context of syntactic pattern recognition.

A hybrid syntactic-structural model based on an aug-

mented regular expression, ARE was introduced in 1997

by Alquezar and Sanfeliu [3]. Intuitively speaking,

ARE = (R, V, T, L) is defined by a regular expression

R, in which the stars are replaced by natural-valued

5 Firstk(x) was introduced for the LL(k)-subclass of CFGs by

Rosenkrantz and Stearns [49].
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variables, called star variables V, and these variables are

related through a finite number of linear equations

L. Additionally, with a star tree T a structure of the

parentheses’ embedment in the expression is determined.

An analysis of a string s in order to verify its belonging to

a language L(ARE) is performed in two steps. Firstly, with

parsing of s, which is performed by a finite state-autom-

aton corresponding to R, a verification of a general

structure of s is made. Secondly, if a verification is

positive, testing a fulfillment of constraints L that result

from the parsing (i.e. an evaluation of a finite linear

relations between star variables) is made. With augmented

regular expressions, a considerable subclass of context-

sensitive languages can be represented. A syntactic-

structural analysis performed according to this scheme is

of a polynomial complexity. A learning method has been

defined in this model, as well.

In the field of Natural Language Processing Joshi, Levy

and Takahashi defined in 1975 [31, 32] a tree adjoining

grammar, TAG belonging to a class of mildly context-

sensitive grammars (MCSGs). A TAG generates labelled

trees by an application of operations of two kinds over

initial trees and auxiliary trees. These operations include:

substitution that attaches a tree to a substitution node (a

nonterminal leaf node marked with a special symbol) of a

tree derived from an initial tree, and adjunction that inserts

an auxiliary tree into an internal node of a tree. A string

language generated with a TAG is defined as a set of

frontiers of trees generated. Thus, a tree adjoining grammar

generates a kind of derivation trees of strings belonging to

a mildly context-sensitive langauge. In fact, it is a tree-

rewriting system, not a string-rewriting system. Parsing for

TAGs is of a polynomial complexity.

Contextual grammars, CGs, used also in the NLP area,

were introduced by Marcus in 1969 [37]. CGs go beyond

the Chomskyan paradigm of string rewriting. An opera-

tion of inserting words into derived phrases according

to contextual dependencies is used here instead of

Chomskyan productions involving nonterminal symbols

for generating phrases. An insertion operation is per-

formed with contexts being pairs of words connected with

sets of words called selectors. During a derivation, ele-

ments of contexts are ‘‘wrapped around’’ associated ele-

ments of selectors, called selector elements. Contextual

grammars of various types are incomparable with gram-

mars of the Chomsky hierarchy, which are a ‘‘standard’’

formal model in syntactic pattern recognition. Neverthe-

less, some context-sensitive languages can be generated

by CGs. They are also worth considering in a context of

syntactic pattern recognition, since for some classes of

CGs a polynomial parsing algorithms have been defined

(e.g. [28]), as well as a polynomial algorithm of gram-

matical inference [38].

3.2 Methodological remarks on string-based syntactic

pattern recognition

Let us begin with summarizing properties of models pre-

sented in Sect. 3.1 with respect to their completeness in a

sense of the first methodological recommendation intro-

duced in Sect. 2, i.e. a possibility of defining algorithms of:

syntax analysis and grammatical inference.

General

characteristics

Type of

grammars

Parsing Inference

Chomskyan string

grammars with

derivation control

operators included

in productions

Indexed [1] Non-polyn. Undefined

Linear indexed

[25]

Polynomial Undefined

Head [46] Polynomial Undefined

Combinatory

categorial [53]

Polynomial Undefined

Conjunctive [40] Polynomial Undefined

Boolean [41] Polynomial Undefined

Chomskyan string

grammars with a

separated

derivation control

mechanism

Programmed

[48]

Non-polyn. Undefined

DPLL(k) [19] Polynomial Polynomial

Other approaches ARE [3] Polynomial Non-polyn.

Tree adjoining

[31, 32]

Polynomial Undefined

Marcus CG [37] Polynomial Polynomial

As one can see, a definition of a grammatical inference

algorithm is the main problem here. In most enhanced

models, such as indexed grammars, head grammars, com-

binatory grammars and conjunctive/Boolean grammars, a

derivation control mechanism is ‘‘hidden’’ (cleverly) in

grammar productions. It is made with the use of some

syntax constructs like stacks, heads, operators that do not

occur in the words of a language. Let us notice that the

main idea of standard inference methods (i.e. used for

regular and context-free languages) consists in looking for

similarities among sample strings. An alphabet of a

grammar inferred contains only terminal symbols that

occur in the language sample and nonterminals that are

entered in a (relatively) simple way as ‘‘classes of

abstractions’’ for certain substrings. The only ‘‘operator’’

used is a simple catenation operator. In a way, this oper-

ator is ‘‘visible’’ in a derived word. However, if grammar

productions contain operators that disappear during a der-

ivation and do not occur in a derived word, a grammatical

inference problem becomes very difficult. The reason is the

fact that a syntax of sample words does not deliver any

information related to a history of obtaining these words

with such operators. It is hardly likely that algorithms
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reconstructing such a history can be of a polynomial

complexity. On the other hand, for Chomskyan string

grammars with a separated derivation control mechanism

(DPLL(k)) a polynomial grammatical inference algorithm

has been defined [34].

At the same time, for some mathematical linguistics

models, which goes beyond a ‘‘standard’’ Chomsky’s string

grammars approach, inference algorithms have been

defined. Thus, such ‘‘unconventional’’ approaches are

worth considering as candidates for theoretical basis of

syntactic pattern recognition methods.

Let us summarize our considerations on enhanced

string-based syntactic pattern recognition models and

parsing/inference issues with the following methodological

recommendation.

IV. A possibility of defining an algorithm of grammat-

ical inference is a key issue for constructing an effective

syntactic pattern recognition system. Defining a control

mechanism enhancing a grammar as a separate element

makes a development of an efficient grammatical inference

algorithm easier than ‘‘hiding’’ this mechanism in left- or

right-hand sides of productions with the help of additional

syntactic operators. At the same time, a possibility of

applying models going beyond a standard Chomskyan

string grammar paradigm in the field of syntactic pattern

recognition is worth studying.

Now, we sum up the second methodological recom-

mendation introduced in Sect. 2, i.e. a possibility of an

enhancement of a syntactic pattern recognition model with:

error-correcting parsing, adding attributes to a grammar or

adding probability information to a grammar. Theoretical

considerations verified by a practical application experience

[5, 24] show that such an enhancement does not cause any

problems in case of constructing a parsing algorithm for a

syntactic pattern recognition. The use of attributed or sto-

chastic grammars does not make a construction of an inference

algorithm more difficult than in case of ‘‘pure’’ grammars

either [5, 24]. However, in case of using an error-correcting

parsing scheme, an expanded grammar is to be defined, as we

have discussed it in Sect. 2 Usually, it is a human being who

decides, which structures are ‘‘proper’’ and which structures

are distortions of ‘‘proper’’ structures. Therefore, using such a

scheme would hinder solving a grammatical inference prob-

lem. In fact, this problem belongs to Artificial Intelligence

rather than to a pattern recognition area.

4 Parsable graph languages in syntactic pattern

recognition

In spite of the fact that graph grammars have been widely

used for image representation and synthesis since the late

1960s and the early 1970s (e.g. [44, 45]), when they were

firstly proposed for this purpose, their application in an area

of syntactic pattern recognition has been relatively rare. A

possibility of their use in this area depends strongly on a

balance between a generative power sufficient for repre-

senting a class of complex ‘‘multidimensional’’ patterns

and a parsing efficiency. In this section we consider this

problem and try to formulate certain recommendations

concerning its possible solutions.

4.1 Survey of research into graph-based syntactic

pattern recognition

Although the first graph automata were proposed in the late

1960s, only a few graph grammar-based syntactic pattern

recognition models have been presented for last 40 years6.

Web automata were proposed by Rosenfeld and Milgram

in 1972 [47]. An efficient parser for expansive graph

grammars was constructed by Fu and Shi in 1983 [50]. In

1990 two parsing algorithms for plex grammars were

defined independently by Bunke and Haller [5], and Peng,

Yamamoto and Aoki [43]. In the early 1990s two parsing

methods for relational grammars were proposed indepen-

dently by: Wittenburg [58], and Ferruci, Tortora, Tucci

and Vitiello [11]. An efficient, O(n2), parser for the

ETPL(k) subclass of the well-known edNLC [30] graph

grammars was constructed in 1993 [17, 18]. A parsing

method for reserved graph grammars was proposed by

Zhang, Zhang and Cao in 2001 [59].

4.2 Methodological remarks on graph-based syntactic

pattern recognition

Constructing parsing algorithm for graph languages is much

more difficult task than for string languages. There are two

reasons of such a difficulty. First of all, a graph structure is

unordered by its nature, whereas a linear order is defined by a

string structure7. During parsing, however, succeeding pie-

ces of an analyzed structure (sub-words in case of strings,

subgraphs in case of graphs), called here handles, are teared

off repetitively in order to be matched with predefined

structures (predefined on the basis of right-hand sides of

grammar productions) that are stored in a parser memory. An

answer to a question: what a succeeding piece is? is easy

when there is any kind of ordering determined for an ana-

lyzed structure. In case of the lack of any order in a graph

structure, this question resolves itself into the problem of

subgraph isomorphism, which is the NP-complete one.

There is, however, the second reason causing con-

structing graph parser very difficult. In case of string

6 In the survey, we present those parsing models that have been

applied in the area of syntactic pattern recognition.
7 In case of tree structure we have at least the partial ordering.
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grammars we know how (or rather where) to glue/embed

a right hand-side of a production in a structure trans-

formed during a derivational step. It results from a uni-

form rigid structure of strings. However, in case of graph

grammars we have to specify how to embed the right-

hand side graph in the rest-graph in an explicit way. Such

a specification is made with the help of the third com-

ponent of a production, i.e. the embedding transformation.

The embedding transformation allows one to modify a

derived graph structure. On the other hand, it acts at the

border between the left- (right-) hand sides of the pro-

duction and their context, i.e. its behaviour is ‘‘context

sensitive’’-like.

These two ‘‘features’’ of graph grammars cause their big

generating power. On the other hand, they result in a hard

(i.e. PSPACE-complete or NP-complete) membership

problem for classes of graph grammars interesting from the

application point of view, which has been shown at the

beginning of 1980s independently by: Brandenburg [4],

Slisenko [51] and Turan [56]. Therefore, in case of a

construction of a graph parser, either a generative power of

a class of grammars is usually decreased with imposing

certain restrictions or one defines a specific class of graph

languages with a polynomial membership problem (like

e.g. in case of expansive grammars [50]). Summing up, we

can define the following methodological recommendation.

V. Constructing a syntactic pattern recognition model

based on a class of graph grammar defined, one should

focus primarily on a polynomial complexity of a mem-

bership problem for languages generated by this class.

xαδ        x a1 a2 ... ak ak+1 ... an

xAδ

*

L

L L

*

*

xβδ        x b1 b2 ... bk bk+1 ... bm
L

*

 

terminal words

If  a1 a2 ... ak = b1 b2 ... bk,  then  α = β
(a)

S

a
(i)

α

δ

x

b
(i)

β

δ

x

A
(i)

δ

x

*

L

L

*

(i)

x

a1

a

ak

... ...

(i)

x

b1

b

bk

... ...

*
L

*
L

 terminal graphs

(i)

a1

a

ak

... ...

(i)

b1

b

bk

... ... b β

(b)

If = , then =

 

*
L

S *
L

a α

 

Fig. 5 An analogy between

restrictions imposed on:

a LL(k) string grammars and

b ETPL(k) graph grammars
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Now, let us consider the second issue relating to con-

structing effective syntactic pattern recognition model, i.e.

an inference algorithm. In case of graph grammars applied

for syntactic pattern recognition, an efficient (polynomial)

algorithm has been defined only for the parsable

ETPL(k) [17, 18] grammars [21]. As we have mentioned it

previously, a grammatical inference problem is much

more complex and difficult than a parsing problem. Ana-

lyzing both the parsing algorithm and the inference algo-

rithm for ETPL(k) grammars, one could easily see that the

model has been constructed with the help of analogies to

string grammars. Particularly, deterministic properties of a

derivation of ETPL(k) graph languages have been

obtained on the analogy of the well-known string deter-

ministic LL(k) grammars [49]. Let us, now, consider this

analogy.

A basic idea of LL(k) grammars is shown in Fig. 5a. A

condition imposed on CFG causing its deterministic deri-

vation (that results in a polynomial parsing complexity) can

be formulated in the following way. For any derivational

step, we should be able to choose a production in an

unambiguous way on the basis of an analysis of a corre-

sponding piece of this word (i.e. a handle mentioned

above) that is of the length k. We can call such a property

of an LL(k) grammar: a property of an unambiguous

choice of a production with respect to the k-length prefix in

a (leftmost) derivation.

Now, let us look at Fig. 5b illustrating a basic idea of

ETPL(k) graph grammars. In this case imposing a condi-

tion on edNLC graph grammars causing their deterministic

derivation has been the main objective, as well. Thus, we

have demanded an unambiguity of a production choice

during a (leftmost) derivation. For a string LL(k) grammar

such an unambiguity has concerned the k-length prefix of a

word (i.e. the k-length handle). In case of graphs it should

concern a subgraph of a terminal graph. Such a subgraph

contains a node a having an index (i) determining a place

of a production application and its k successors: a1; . . .; ak:

Such a subgraph is called the k-successors handle. If for

every derivational step in a grammar we can choose a

production in an unambiguous way on the basis of an

analysis of the k-successors handle, then we say that the

grammar has a property of an unambiguous choice of a

production with respect to the k-successors handle in a

(leftmost) derivation.

Similarly, defining a general scheme of an inference of

an ETPL(k) grammar, the author has made use of anal-

ogies of the well-known scheme of a formal derivatives

method used for inferencing string grammars [24]. Sum-

ming up, looking for analogies in the area of string lan-

guages seems to be a good methodological technique

while we make a research in the area of graph languages.

Thus, let us formulate the following methodological

recommendation.

VI. During a process of constructing a graph parser and

an algorithm of a graph grammar inference one should look

for analogical constructs and mechanisms in an area of the

theory of string languages.

5 Conclusions

The theory of formal languages (mathematical linguistics)

constitutes a formal basis for various research areas in

computer science. A specificity of an area determines

methodological principles that should be followed during a

research. In other words, for various areas various princi-

ples are valid. The general principles concerning an

application of mathematical linguistics formalisms in a

syntactic pattern recognition area have been formulated in

the paper.

These principles can be summarized as follows. A

syntactic pattern recognition model should include not only

an efficient syntax analyzer, but also a grammatical infer-

ence algorithm of a polynomial complexity. If the model is

to be used for a recognition of real-world objects or phe-

nomena, then it should be enhanced with such techniques

as: error-correcting parsing, attributed grammars or sto-

chastic grammars. In order to ensure a computational

efficiency of the model, a type of a grammar should be of

the smallest generative power yet sufficient to generate all

the possible patterns. For context-free grammars enhanced

with the help of additional syntactic operators, a con-

struction of a grammatical inference algorithm is easier

than for grammars with a control mechanism ‘‘hidden’’ in

productions. A polynomial complexity of a membership

problem is a key issue for a graph grammar-based pattern

recognition. In order to define algorithms of: syntax anal-

ysis and grammatical inference for graph grammar-based

methods one should look for analogical algorithms for

string grammars.

Let us remember that they are not necessarily valid in

other research areas that make use of formalisms of

mathematical linguistics such, as e.g. Natural Language

Processing, compiler design.

A syntactic pattern recognition paradigm is primarily

an approach in a machine recognition area. However, it

relates also strongly to other fields of computer science,

like: Artificial Intelligence (a problem of pattern under-

standing, see e.g. [54]), a construction of secret sharing

techniques (see e.g. [39]), etc. Therefore, a set of meth-

odological principles presented in the paper will be

extended in the future with new ones connected with the

AI paradigms.
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