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Abstract Event detection can be defined as the problem

of detecting when a target event has occurred, from a given

data sequence. Such an event detection problem can be

found in many fields in science and engineering, such as

signal processing, pattern recognition, and image process-

ing. In recent years, many data sequences used in these

fields, especially in video data analysis, tend to be high

dimensional. In this paper, we propose a novel event

detection method for high-dimensional data sequences in

soccer video analysis. The proposed method assumes a

Bayesian hidden Markov model with hyperparameter

learning in addition to the parameter leaning. This is in an

attempt to reduce undesired influences from ineffective

components within the high-dimensional data. Implemen-

tion is performed by Markov Chain Monte Carlo. The

proposed method was tested against an event detection

problem with sequences of 40-dimensional feature values

extracted from real professional soccer games. The algo-

rithm appears functional.

Keywords Event detection � Sports video analysis �
Hidden Markov model � Bayesian learning � Metadata

1 Introduction

1.1 Background

Information describing the content of data is often called

‘‘metadata’’. In the context of video data, metadata refers to

data that is used to facilitate content-based retrieval [1]. For

example, in the case of video data for a drama, the meta-

data may include captions (subtitles), bibliographic infor-

mation about the actors, and so on. In the case of video data

for a sports event, the metadata may consist of information

about the players, important event scenes, and so on. In the

past decade, the importance of such metadata has been

increasing in the broadcasting community, because of its

potential applications to various broadcasting services,

program production systems, and so forth, e.g., [2] [3].

Against this backdrop, there has been an increasing

demand for effective metadata creation particularly for

unscripted programs [4, 5].
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A successful approach for creating metadata of

unscripted sports games, is to use a framework with an

event detection-based system [6, 7]. Figure 1 shows an

example of such a system based on Ref. [6].

In such event detection-based systems, the event

detection method is required to predict when the target

event has occurred from given time-series data which is

typically a high-dimensional, probabilistically uncertain

data sequence extracted from videos.

1.2 Purpose

This paper attempts to perform soccer game event detection

for constructing metadata creating system using the hier-

archical Bayesian Hidden Markov Model (HMM) [8, 9]

where performance evaluation was not conducted. ‘‘Hier-

archical’’ in the present context refers to a learning scheme

for hyperparameters behind HMM parameters. Note that

hyperparameters often play an important role in a Bayesian

framework in that HMM parameter distribution at a par-

ticular set of hyperparameter values could be largely dif-

ferent from that with another set of hyperparamter values.

Therefore, such hierarchical structure endowes more flexi-

bilities with an HMM, however, adjusting the hyperpa-

rameters atutomatically from the data becomes non-trivial.

Recall that in a Bayeisan HMM with discrete states, discrete

outputs, the likelihood functions are generally defined

through multinomial distributions so that the prior distri-

butions are often Dirichlet because of the natural conjugacy.

Care needs to be exercised, however, in designing hyper-

parameter distributions behind Dirichlet. This study

assumes a particular form of the hyperparameter prior dis-

tributions in such a way that irrelevant features are auto-

matically suppressed. In this way, the predictive capabilities

could be improved. Training of the HMM and predictions of

event sequences are implemented by MCMC (Markov

Chain Monte Carlo) method. The proposed method will be

tested against 40-dimensional data sequences extracted

from video data sets of professional soccer games. Perfor-

mance will be evaluated with respect to three theoretical

measures.

1.3 Related work

Since sports game data are generally sequential, and since

HMM is a general model for capturing properties of

sequential data, many of the papers on sports event

detection are based on HMM [10–17]. Some of them use

the maximum likelihood method where the Baum–Welch

algorithm [18] is used for parameter estimation [19]. Many

others use Bayesian framework.

There have been a variety of studies on HMMs with

Bayesian learning (Bayesian HMMs), as well as their

implementations. For instance, Ref. [20] describes a max-

imum a posteriori estimation for Bayesian HMMs. In Ref.

[21], a variational Bayesian method is described for HMMs.

A Bayesian HMM with a MCMC method is discussed in

Ref. [22]. These standard Bayesian HMMs (often with

several modifications for observation densities) have been

successfully applied to many applications, including speech

[20] and event detection [23].

The hierarchical Bayesian HMM to be described in the

next section, is a generalized version of such standard

Bayesian HMMs, where hyperparameter learning is per-

formed behind the target HMM parameters.

2 Hierarchical Bayesian HMM for event detection

This section describes the hierarchical Bayesian HMM

designed for the soccer game event detection problem.

There are two points that we would like to address in this

study.

1. The proposed model consists of discrete states and

discrete outputs so that popular prior distributions

within a Bayesian framework are Dirichlet since they

are naturally conjugate with respect to the multinomial

distributions. Recall that there are hyperparameteres

behind Dirichlet distributions which control the prop-

erties of the distributions. Therefore, the prior distribu-

tions consist of a family of distributions parameterized

by hyperparameters instead of a single distribution,

which gives rise to more flexibility in a model. The

proposed method attempts to learn hyperparameteres

in addition to learn the target parameters of HMM. As

such, prediction capabilities of Bayesian methods with

Video data 
with metadata

(i) Player tracking

(iii) Event detection

(iv) Creating metadata

(ii) Feature processing

Automatic metadata generation system

Video database

Video cameras

Video data

Fig. 1 An example of an automatic metadata creating system based

on [6]. In this system, module (i) estimates the players’ positions from

the input video data sets filmed by several cameras. In module (ii), the

feature vector sequence is extracted from the estimated players’

positions. Module (iii) detects target events with the extracted

sequence The metadata is created in module (iv) using the detected

target events
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hyperparameter learning often outperform one without

hyperparameter learning.

2. We will propose in this paper, a particular form of

the hyperparameters for the HMM parameter prior

distributions. More precisely, the hyperparameters

are in a product form of two hyperparameters. One is

the commonality hyperparameter, which describes

the degree of commonality for the output emission

probabilities among different hidden states. Another

is the common shape hyperparameter that charac-

terizes the average shape of the output emission

probabilities among different hidden states. This

prior structure enables us to suppress those output

components that are ineffective for predictions. This

is one of the desired properties when the output

dimension is high. In the experiments to be reported

below, output dimension is 40. Recall that there is an

underlying topology behind HMMs. This paper

assumes ‘‘ergodic‘‘ topology where every hidden

state can go to any other state. Other topologies are

also possible.

2.1 Data and hidden variables

Associated with an HMM, there are two sequential data.

One is the observation data sequence y := (o1, …, oT)

whereas another is the hidden variable (hidden state)

sequence z := (q1, …, qT). Here ot and qt stand for time-

series data and the hidden variable at time t, and T is the

length of the sequence. The hidden variable qt is a one-

dimensional variable that can take a finite number of values

among N states (i.e., qt [ {1, …, N}).

In event detection problems, the data ot can consist of

two types of variables, et and ft. The variable et is a one-

dimensional event variable at time t, and the variable ft :=

(f1,t, …, fL,t) is an L-dimensional feature variable at time

t. Here, Me is the number of target events (et [ {1, …
Me}), and L is the dimension of the feature variable ft. The

variable fl,t represents the lth component of ft, and Mfl is the

number of symbols for fl,t (i.e., fl,t [ {1, …, Mfl}). In

the experiment described later, the event variable et rep-

resents the occurrences of kick offs, corner kicks, and so

on. The feature variable ft consists of extracted values from

players’ positions at time t.

2.2 Observation model

Given the whole parameter set h :¼ ða; b; cÞ of an HMM,

the probability of the data yt can be written as

PðyjhÞ :¼
X

z

Pðyjz; bÞPðzja; cÞ; ð1Þ

Pðyjz; bÞ :¼
YT

t¼1

Pðotjqt; bÞ; ð2Þ

Pðzja; cÞ :¼ Pðq1jcÞ
YT

t¼2

Pðqtjqt�1; aÞ; ð3Þ

where a is a hidden variable transition probability, c is an

initial hidden variable probability, and b is an emission

probability of the data ot. In event detection problems, the

emission probability of the data ot = (et, ft) in (2) is

described by the following equations:

Pðotjqt; bÞ :¼ Pðetjqt; beÞPðftjqt; bf Þ; ð4Þ

Pðftjqt; bf Þ :¼
YL

l¼1

Pðfl;tjqt; bflÞ; ð5Þ

where b := (bf, be) and bf :¼ ðbf1 ; . . .; bfLÞ:
Consider the multinomial distribution for one data

item be defined as Multiðx; pÞ :¼
QK

i¼1 p
Iðx¼iÞ
i ; whereP

i = 1
K pi = 1, pi C 0, and I(�) is an indicator function that

returns 0 for false and 1 for true. Using this equation, the

event emission probability P(et|qt, be) in (4) is written as

Pðetjqt; beÞ :¼Multiðet; be;qt
Þ; ð6Þ

where be := (be,1, …, be,N) and be;i :¼ ðbe;i1; . . .; be;iMe
Þ:

The emission probability of the lth component fl,t in (5) is

Pðfl;tjqt; bflÞ :¼Multiðfl;t; bfl;qt
Þ; ð7Þ

where bfl :¼ ðbfl;1 ; . . .; bfl;NÞ and bfl;i :¼ ðbfl;i1 ; . . .; bfl;iMfl
Þ:

The hidden variable transition probability P(qt|qt-1, a)

and the initial hidden variable probability P(q1|c) in (3) can

be written as

Pðqtjqt�1; aÞ :¼Multiðqt; aqt�1
Þ; ð8Þ

Pðq1jcÞ :¼Multiðq1; cÞ; ð9Þ

where a := (a1, …, aN), ai := (ai1, …, aiN), and c :=

(c1, …, cN).

2.3 Prior distribution for parameter set

Within a Bayesian framework, not only the observation

model, but also the prior distribution of the parameter set is

defined. In Bayesian HMMs, parameter independency in

the prior distribution is assumed for simplicity of the

implementation; that is:

Pðhj/Þ ¼ PðajaÞPðbjbÞPðcjcÞ; ð10Þ
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PðajaÞ :¼
YN

i¼1

PðaijaiÞ; ð11Þ

PðbjbÞ :¼ PðbejbeÞPðbf jbf Þ; ð12Þ

Pðbf jbf Þ :¼
YL

l¼1

YN

i¼1

Pðbfl;ijbfl;iÞ; ð13Þ

PðbejbeÞ :¼
YN

i¼1

Pðbe;ijbe;iÞ; ð14Þ

where / :¼ ða; b; cÞ; a :¼ ða1; . . .; aNÞ; b :¼ ðbf ; beÞ; bf :¼
ðbf1 ; . . .; bfLÞ; bfl :¼ ðbfl;1; . . .; bfl;NÞ; be :¼ ðbe;1; . . .;be;NÞ:
Using the ‘‘naturally conjugate’’ Dirichlet prior

distribution,1 the prior distributions of ai; bfl;i ; be;i; and c

in (10)–(14) are defined as follows:

PðaijaiÞ :¼ Dirðai; aiÞ; ð15Þ
Pðbe;ijbe;iÞ :¼ Dirðbe;i; be;iÞ; ð16Þ

Pðbfl;ijbfl;iÞ :¼ Dirðbfl;i; bfl;iÞ; ð17Þ

PðcjcÞ :¼ Dirðc; cÞ; ð18Þ

where ai :¼ ðai1; . . .; aiNÞ; be;i :¼ ðbe;i1; . . .; be;iNÞ; bfl;i :¼
ðbfl;i1; . . .; bfl;iNÞ; and c :¼ ðc1; . . .; cNÞ:

2.4 Settings for hyperparameter set

In this paper, all components of the hyperparameter vectors

except for bfl;i are fixed at 1.0, like those of several con-

ventional Bayesian HMMs (e.g., [7]).2 On the other hand,

to control negative influences from the components that

have low dependency on the states (redundant compo-

nents), this study considers a reparameterization of the

hyperparameter vectors bfl;i; and the prior distribution of

the reparameterized hyperparameters described below.

2.4.1 Reparameterization of bfl;i

In the hierarchical Bayesian HMM [8, 9], the reparame-

terization of the hyperparameter vector bfl;i is described by

the following equation:

bfl;1 ¼ bfl;2 ¼ � � � ¼ bfl;N :¼ kflgfl : ð19Þ

The non-negative variable kfl 2 R is the commonality

hyperparameter, which describes the degree of commonality

for the emission probabilities Pðfl;ijqt; bflÞ among different

hidden states. The hyperparameter gfl :¼ ðgfl;1; . . .; gfl;Mfl
Þ 2

RMfl is the common shape hyperparameter that defines the

average shape of the emission probabilities Pðfl;tjqt; bflÞ for

different hidden states, where gfl;i [ 0; and
PMfl

i¼1 gfl;i ¼ 1:

Here, let us take a closer look at how the commonality

hyperparameter kfl influences the emission probability bfl;i :

Figure 2 describes the shapes of the prior distribution (13)

with several settings of kfl : First, consider a case where the

commonality hyperparameter kfl is large so that the prob-

ability mass is concentrated around a relatively narrow

region, as shown in Fig. 2c, d. This amounts to the fact that

there is a relatively small amount of diversity among the

parameter vectors bfl;1 ; . . .; bfl;N ; i.e., bfl;1 � bfl;2 � � � � �
bfl;Mfl

� gfl : Therefore, low dependency of fl,i on the states

is expected. If a component of the given data has little

effect on the states, then that particular component may not

carry useful information for prediction purposes, so that

one wants to suppress such a component. On the other

hand, when the commonality hyperparameter kfl is not so

large (as shown in Fig. 2a, b), there would be more

diversity of bfl,i among states, and hence, the dependency

of fl,i on the states is expected.3 By learning such repa-

rameterized hyperparameters, the proposed hierarchical

Bayesian HMM enables us to reduce negative influences

from the redundant components.

2.4.2 Prior distribution for kfl and gfl

This section describes the prior distributions of the

hyperparameters kfl and gfl, for learning these hyperparam-

eters in a Bayesian framework to be described later. There

is no well-known ‘‘naturally conjugate’’ prior distribution

for the commonality hyperparameter kfl. Assuming that kfl

[ (0, ?), there are several possible prior distribution for kfl.

Among them, we assume the gamma distribution:

PðkflÞ :¼ Gammaðkfl ; j;xÞ; ð20Þ

where Gammað�; j;xÞ stands for the gamma distribution

with the non-negative shape parameter j and the non-

negative scale parameter x.4 In the experiments of Sect. 4,

these hyperparameters are set to j = 0.5 and x = 100,

which enables kfl to be distributed widely in its range.

Naturally conjugate prior distribution for gfl is not

known either. However, because of the constraints of

1 The Dirichlet distribution is described as Dirðx; dÞ :¼ Cð
PK

i¼1
diÞ

QK
i¼1 CðdiÞ

QK
i¼1 xdi�1

i ; where x :¼ ðx1; . . .; xKÞ;
PK

i¼1 xi ¼
1; xi [ 0; d :¼ ðd1; . . .; dKÞ; and di [ 0. The function Cð�Þ stands for

the gamma function.
2 This setting is one of the basic settings of the Dirichlet prior

distribution, making it the same as a (non-informative) uniform prior

distribution.

3 Note that the emission probability Pðfl;tjqt; bfl Þ is defined through

bfl, as described in (7). Therefore, the diversity of P(fl,t |qt, bfl) among

the states corresponds to that of {bfl,i}i=1
N .

4 The gamma distribution is defined as Gammaðx; j;xÞ :¼
xj�1 expð�x�1xÞ

xjCðjÞ ; where Cð�Þ denotes the gamma function.
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gfl, the Dirichlet distribution is assumed in this paper as the

prior distribution for gfl, i.e.,

PðgflÞ :¼ Dirðgfl ; g0Þ; ð21Þ

where g0 denotes the hyperparameter vector. In the

experiments described in later sections, the vector g0 is set

to g0 = (1.0, …, 1.0) by considering a non-informative

setting for gfl.

The model specifications described in this section can be

summarized graphically as shown in Fig. 3.

3 Implementation of event prediction

The target problem of this paper can be formulated as

follows.

(a)

(c) (d)

(b)

Fig. 2 The Dirichlet prior distribution for bfl,i with several settings of

the commonality hyperparameter kfl. In this figure, the parameters bfl,i

are three-dimensional variables, bfl,i = (bfl,i1, bfl,i2, bfl,i3), and the

common shape hyperparameter gfl is fixed at gfl = (0.3, 0.3, 0.4).

Since the component bfl,i3 can be determined automatically using

bfl,i3 = 1 - bfl,i1 - bfl,i2, the variable bfl,i3 is omitted in this figure. It

should be observed that the parameter bfl,i concentrates more around

the average gfl when the commonality hyperparameter kfl is larger
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Problem: Predict an event et
new in test data, when the

feature variable sequence f new
1:t :¼ ðf new

1 ; . . .; f new
t Þ in the

test data and a training data set Y are given.

In this problem, the training data set Y is considered as

the set of time-series data sequences {yd}d=1
D , where D is

the number of sequences, and d is the index of the

sequence. Another data sequence ynew := (o1
new, …, oT

new) is

considered as test data, which is not included in the training

data set Y. The test data ynew consists of two sequences: the

event sequence e1:T
new and the feature variable sequence f1:T

new,

i.e., ynew ¼ ðenew
1:T ; f

new
1:T Þ:

3.1 Bayesian predictive probability for target event

Within the Bayesian framework with the model described

in Sect. 2, a reasonable approach for the target problem is

to evaluate the predictive probability for the target event

under the condition that the training data Y and the feature

variable sequence fnew are available. Such predictive

probability for the target event variable at time t is repre-

sented by

Pðenew
t jf new

1:t ; YÞ ¼
Z Z

Pðenew
t jf new

1:t ; hÞPðh;/jYÞ dh d/;

ð22Þ

via the evaluation of the joint posterior distribution:

Pðh;/jYÞ ¼
X

Z

Pðh;/; ZjYÞ; ð23Þ

where

Pðh;/; ZjYÞ ¼ PðYjZ; hÞPðZjhÞPðhj/ÞPð/ÞP
Z

R R
PðY jZ; hÞPðZjhÞPðhj/ÞPð/Þ dh d/

;

ð24Þ

and Z stands for the set of hidden variable sequences

{zd}d=1
D corresponding to the data set Y.

3.2 Calculation of predictive probability

Because of their complexity, there is no closed-form ana-

lytical solution for the integrations in (22). Therefore, we

use MCMC methods [22, 24, 25] to generate samples from

the posterior distribution (23) of the hierarchical Bayesian

HMM. Once the samples fðhðrÞ;/ðrÞÞgR
r¼1 are generated by

the Monte Carlo method, the predictive probabilities (22)

can be easily approximated as

Pðenew
t jf new

1:t ; YÞ �
1

R

XR

r¼1

Pðenew
t jf new

1:t ; h
ðrÞÞ; ð25Þ

using only parameter samples {h(r)}r=1
R . Here, r stands for

the index of the sample, and R is the number of samples.

The conditional predictive probability Pðenew
t jf new

1:t ; h
ðrÞÞ in

(25) can be calculated analytically by

Pðenew
t jf new

1:t ; h
ðrÞÞ ¼

X

qnew
t

Pðenew
t jqnew

t ; bðrÞe ÞPðqnew
t jf new

1:t ; h
ðrÞÞ;

ð26Þ

where qt
new is the hidden state at time t, be

(r) stands for the

parameter be in the rth parameter sample h(r), and

Pðqnew
t jf new

1:t ;h
ðrÞÞ¼

Pðf new
t jqnew

t ;b
ðrÞ
f ÞPðf new

1:t�1;q
new
t jhðrÞÞ

P
qnew

t
Pðf new

t jqnew
t ;b

ðrÞ
f ÞPðf new

1:t�1;q
new
t jhðrÞÞ

:

ð27Þ

By considering only the feature variable sequence fnew, it is

easy to compute the forward probability Pðf new
1:t�1;q

new
t jhðrÞÞ in

(27) with the well-known forward procedure for HMMs, as

follows:

Pðf new
1:t�1;q

new
t jh

ðrÞÞ¼
X

qnew
t�1

Pðf new
t�1 jqnew

t�1 ;b
ðrÞ
f ÞPðqnew

t jqnew
t�1 ;a

ðrÞÞ

Pðf new
1:t�2;q

new
t�1 jh

ðrÞÞ: ð28Þ

The implementation described in this section is summa-

rized in Fig. 4.5

11 ,f Tf ,121,f

1L,f TLf ,2L,f

2q Tq

y
T

o1
o

2
o

c

a

z

eb 2e Te

Lfb

1f
b

Lf

Lf

1f

1f

1e

1q

e

Fig. 3 Graphical representation of the proposed model. In this figure,

the double circles denote observable probabilistic variables, whereas

the single circles are unobservable probabilistic variables. The

squares denote the fixed variables, the arrows indicate probabilistic

dependencies between variables, and the dashed lines show the

groups of variables. For clarity, the hyperparameters and their

dependencies are omitted here

5 In the actual implementation, the Metropolis–Hastings method is

applied separately to each hyperparameter kfl and hyperparameter

vector gfl , which is a known basic strategy to improve the acceptance

rates of the Metropolis–Hastings method. Since well-designed proposal

distributions based on the information of the model also improve the

efficiency of the Metropolis–Hastings method in many cases, this study

uses proposal distributions designed from such information. The details

of the designed proposal distributions are described in Appendix A.
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4 Event detection experiment for soccer games

To evaluate the metadata generation system in Fig. 1 in

real situations, the proposed method was tested for the

problem of event detection in soccer games. The details are

described below.

4.1 Target data sequences

In this subsection, we explain the target data sequences of

the event detection problem. Following Ref. [7], the target

events are defined as Kick Off (KO), Corner Kick (CK),

Free Kick (FK), Throw In (TI), and Goal Kick (GK). The

event occurrence period is defined as a 9 s range centered

on the time corresponding to the referee’s instruction.

4.1.1 Target soccer games

For the data set in this experiment, we used videos of five

half games in J-league (professional soccer league in

Japan): the first four half games were used for training, and

the last half game was used for testing. Table 1 shows basic

information of the five target games and Fig. 5 shows

example scenes of the video data set.

4.1.2 Players’ positions

For all five half games, the players’ position sequences

were estimated from the corresponding video data set using

the player tracking method in [26]. Figure 6 shows an

example of the estimated players’ position. By considering

symmetries in the soccer games, reversed position

sequences were also generated for the first four half games.

More specifically, for each players’ position sequence, we

generated a non-reversed sequence, a long-side axis

reversed sequence, a short-side axis reversed sequence, and

a long-and-short-side axis reversed sequence for training.

Thus, we used 16 players’ position sequences for training,

and 1 player’s position sequence for testing.

4.1.3 Feature variables

Feature variable sequences, consisting of 40 components,

were extracted from the players’ position sequences.

These 40 components were preliminarily selected from

about five thousand candidates by applying a simple

screening method with information-based criteria to the

training data sets. The selected components included

the average players’ positions on the long-side axis (the

X-coordinate) and the variance of the players’ positions

on the long-side axis. The features also included geo-

metric information about the soccer field. The soccer field

was divided into a kv 9 kh grid, and some of the features

carry information about the grid square where that par-

ticular feature is located. Figure 7 schematically illustrates

the case with kv = 3 and kh = 5. All components were

quantized to 10 levels for HMM modeling. The details of

the candidates and the screening method are described in

Appendix B.

4.2 Settings

The proposed event detection method was evaluated using

the feature variable sequences described above. The unit

time for the HMM was 1 s, and the number of hidden

states, N was, set at N = 30. For the computation described

in Fig. 4, we generated 1,000 samples in the MCMC step

(b) (G = 1,000), and we used the last 500 samples for the

Monte Carlo approximation (R = 500) in this experiment.

Fig. 4 Procedure for event prediction

Table 1 Basic information of target half games

# Length [s] Number of events Training/

testing
KO CK FK TI GK

1 2,390 2 1 14 27 9 For training

2 2,389 2 4 22 25 11

3 2,454 1 3 4 24 20

4 2,479 4 10 7 15 14

5 2,460 3 1 10 19 10 For testing
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The approximated predictive probability (25) was averaged

over five independent trials to obtain a more accurate

approximation.

4.3 Experimental results

The third column of Table 2 summarizes the Area Over

ROC Curve (AOC) of each event, which is a detection

error index defined with ROC curves drawn using the

predictive probabilities for a specific event. Figure 8 shows

(a)

(b)

Fig. 5 Example scene of the

video data set. Two-directional

cameras are used in this

example. a Example scene of

the video data set captured by

the left video camera.

b Example scene of the video

data set captured by the right

video camera

Fig. 6 Example of the estimated players’ positions

Fig. 7 Soccer field is divided into grid. This particular case is with

3 9 5 grid
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three examples of predictive probabilities estimated by the

proposed method: (a) CK, (b) GK, and (c) FK.

One of the reasons for the low predictive capability of FK

may be attributed to the fact that FK can take place without

a game interruption. One of the possible improvement

strategies could be taking into account the ball position

which is not associated with the player positions.

Let us show how the hyperparameters were learned in

our experimental results. As was alluded to earlier, the

hyperparameter learning is one of the main points of this

study. Figure 10 demonstrates box plots of some of the

commonality hyperparameter posteriors, associated with

features 17, 4, 6, 36, 37, 27, 1, 2 and 3. Since the hyper-

parameter associated with feature 17 is relatively large,

feature 17 could be less relevant to the prediction problem

in question. Features 1, 2, and 3 could be more relevant

than the others because the associated commonality

hyperparameters are smaller. Features 4, 6, 36, 37 and 27

are of intermediate relevance for the target prediction

problem. Figure 10 shows posterior trajectories of the

commonality hyperparameters associated with features 17,

36 and 2, where the horizontal axis is the MCMC iteration

number. The vertical axis is in log scale.

The features which appeared in Fig. 9 are described by the

following list, where ’’Player occlusion weight’’ is defined as

the parameter which places weight proportional to the

number of occluded players. ’’Grid-based feature’’ has been

defined in Sect. 4.1. In addition to a target feature quantity,

each feature carries two descriptors: whether it is a statistical

or a grid-based quantity, and whether or not a player occlu-

sion weight is applied. The following list includes such

information together with the meaning of each feature.

a. feature 17

1. minimum velocity among all the players

2. statistical feature

3. no player occlusion weight

4. indicates if the players move

b. feature 4

1. variance of the X-coordinates among all the players

2. statistical feature

3. no player occlusion weight

4. indicates the player density

Table 2 Event AOC with test sequence

Event Method Difference

without

hyperparameter

learning

with

hyperparameter

learning

KO 6.539 9 10-2 6.313 9 10-2 2.261 9 10-3

CK 8.659 9 10-3 7.661 9 10-3 9.973 9 10-4

FK 5.121 9 10-1 4.884 9 10-1 2.374 9 10-2

TI 2.028 9 10-1 2.024 9 10-1 4.484 9 10-4

GK 1.639 9 10-1 1.626 9 10-1 1.336 9 10-3

(a)

(b)

(c)

Fig. 8 Examples of event

predictive probabilities

estimated by the proposed

method. A ground truth is

superimposed as a gray
rectangle. The horizontal axis is

over a 500-s interval around

typical event occurrences. The

ranges of the vertical axes are

adjusted to show the maximum

and minimum values of the

predictive probabilities. a CK,

b FK, c GK
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c. feature 6

1. variance of the X-coordinates among all the players

2. statistical feature

3. with player occlusion weight

4. indicates the player density

d. feature 37

1. number of players in a grid

2. grid-based feature

3. no player occlusion weight

4. indicates the number of players in the center

foreground area

e. feature 36

1. number of players in the center background area

2. grid-based feature

3. no player occlusion weight

4. indicates the number of players in the center back-

ground area

f. feature 27

1. sum of the players’ velocities in the center field

2. grid-based feature

3. with player occlusion weight

4. indicates the total momentum of players in the center

background area

g. feature 3

1. number of players in the center background area

2. grid-based feature

3. with player occlusion weight

4. indicates the number of players in the center back-

ground area

h. feature 1

1. number of players in the center field convolved with

Gaussian kernels

2. grid-based feature

3. no player occlusion weight

4. indicates the density of players in the center field area

i. feature 2

1. mean of the X-coordinates among all the players

2. statistical feature

3. with player occlusion weight

4. indicates the players’ average position

The number of players in the center field and the play-

ers’ mean X-coordinate appears important, whereas the

minimum velocity of the players appears less relevant for

the event perdiction in question.

Average computational time for each time step is

5.019 9 10-3s/sample with the following environment:

CPU: Intel(R) Xeon(TM) (3.00GHz), memory:

3.00 GB, OS: Microsoft Windows Server 2003 Enterprise

Edition Service Pack 2, language: C??. Compiler:

Microsoft(R) 32-bit C/C?? Optimizing Compiler Version.

With parallel processors each handling certain number

of samples, real time computations are feasible.

The order of complexity for event detection is

OðRN2 þ RNLÞ;where R ¼ #samples;N ¼ #states;

L ¼ #output values (dimension of feature variable):

4.4 Performance comparison

Of the many papers on sports event detection methods

listed in the references, many of them use EM algorithms

for parameter estimation, whereas references [16, 17] use

MCMC. The advantages and disadvantages of MCMC and

EM are relatively well understood. EM algorithms are

simpler to implement, but they sometimes suffer from the

local maxima problem, giving rise to sensitivity to the

initial conditions. MCMC needs more work than EM to

implement; however, it is relatively robust.

As was alluded already, there are two novelties, we

believe, in the present study: (a) the hyperparameter

17 4 6 37 36 27 3 1 2

5
10

15
20

25
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  λ
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Fig. 9 Box plots of some of the commonality hyperparameter

posteriors. The larger the posterior value of the hyperparameter, the

less its relevance on the predictions. Feature 17 appears relatively

irrelevant whereas features 3, 1, and 2 appear more relevant
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Fig. 10 Trajectories of the posterior samples of some of the

commonality hyperparameters associated with features 17 (top), 36

(middle), and 2 (bottom), where the horizontal axis is the MCMC

iteration number. The vertical axis is in log scale
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learning, and (b) the particular hyperparameter prior dis-

tributions. Recall that hyperparameters are one of the

important ingredients of Bayesian learning in that they

control the properties of the target prior distributions so

that the shape of the target distribution at a certain set of

hyperparameter values can be largely different from that

with another set of hyperparameter values. Thus, if

hyperparameters are learned automatically from the data,

the prediction capability could be improved. This is what

we attempt to demonstrate in our paper. Therefore, the

point of performance comparison boils down to a com-

parison of cases with or without hyperparameter learning in

HMM for soccer game event detection. Of the references

[10–17, 19] on Bayesian HMM-based sports event detec-

tion methods, none appears to perform hyperparameter

learning if we understood them correctly.

Here, we will describe performance comparisons of the

HMM event detection method with and without hyperpa-

rameter learning. Both methods were trained and tested

with the same feature variable sequences under the same

settings. Our comparison was in terms of three theoretical

measures. One is the paired Wilcoxon test on the differ-

ences of AOC values given in the second and third columns

of Table 2. The result of this test is summarized by the

following:

Paired Wilcoxon test

1. significance level: 0.05

2. one-sided alternative hypothesis: median of AOC

differences [0

3. p-value: 0.03125.

The second and the third measures are information

based. One is the cross entropy (negative averaged log

likelihood):

HtestðqÞ :¼ �1=T
XT

t¼1

log2 qðenew
t Þ;

whereas the other is the perplexity:

2HtestðqÞ; ð29Þ

where q(et
new) stands for the approximated predictive

probability. Table 3 shows these information-based

indexes for the predictive probabilities estimated by both

methods.

These comparisons appear to indicate that the proposed

method outperformed the method without hyperparameter

learning.

5 Conclusion

In this paper, we have proposed a method for soccer game

event detection with an HMM in a hierarchical Bayesian

framework. The method was hierarchical in the sense that

hyperparameter learning was performed in addition to the

target HMM parameter learning. Furthermore, we have

proposed particular hyperparameter prior distributions

which are in a product form consisting of commonality

hyperparameters and scale hyperparameters. One of the

main reasons for using such prior distributions is their ability

to automatically control ineffective features. The method

was implemented by MCMC instead of the popular EM.

The proposed method was applied to 40-dimensional

data sequences extracted from real professional soccer

games. The performance was compared with a method

without hyperparameter learning. The comparison was

performed with respect to three information criteria: AOC,

cross entropy, and perplexity. The proposed method

appeared functional.

The following is a list of possible future research pro-

jects that are planned in our laboratory:

• Model extensions: In many cases of sequential data

modeling, model extensions with generalized HMMs,

also known as hidden semi-Markov Models, can

improve the modeling performance, and they have

been successfully applied to several problems (e.g., [27,

28]). Model extensions, including such a generalized

HMM-based approach, are expected to be effective for

event detection problems.

• Incomplete information: There are cases where some of

the data is missing. Such a situation is called incom-

plete information‘‘ and is common in Bayesian HMM

learning framework and is solvable. We would like to

deal with this as the subject of a future research project.

• Problems with wider scope: In this paper, we focused

on the event detection problem based on a small

number of professional soccer game data. Currently we

are in a process of obtaining a larger data set of soccer

game videos of a professional league. Applications of

the proposed method, with modifications, to problems

other than event detection problems, such as sports

strategy/situation analysis, may be interesting.

• Other sports: Although we applied the proposed method

only to soccer games in this paper, the proposed

Table 3 Information-based error indexes with test sequence

Index Method Reduction

(%)
without

hyperparameter

learning

with

hyperparameter

learning

Cross entropy 7.891 9 10-1 7.866 9 10-1 0.32

Perplexity 1.728 9 10-1 1.725 9 10-1 0.18
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method is not limited to soccer games. Applications to

other sports can be considered, e.g., rugby football, ice

hockey, and basketball, among others.
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Appendix A: Designed proposal distributions

of hyperparamters

The proposal distribution can be any probability distribu-

tion so long as certain conditions are satisfied. The design of

the proposal distribution, however, strongly affects the

efficiency. When applying the Metropolis–Hastings method

to each variable separately, a promising approach is to

employ the full conditional (posterior) distribution as the

proposal distribution Q(�).6 However, it is difficult to use the

full conditional distributions of kfl and gfl as their proposal

distributions in the model, because these distributions do

not belong to any standard families of probability density

functions having known direct sampling methods. There-

fore, we use proposal distributions designed based on

information from the full conditional distributions.7

Proposal distribution of kfl

The full conditional distribution of kfl is

Pðkfl jY; Z; h; fgfl0
g; fkfl0 gl0 6¼lÞ ¼ Pðkfl jbfl ; gflÞ: ð30Þ

Applying the log-normal distribution LNð�Þ; the full

conditional distribution (30) can be approximated by

Pðkfl jbk; gflÞ � LN ðkfl ; lðk
ðg�1Þ
fl
Þ; vðkðg�1Þ

fl
ÞÞ; ð31Þ

where the logarithmic mean l(�) is approximated by lðkflÞ ¼
log kfl þrrLflðkflÞ

�1rLflðkflÞ; and the logarithmic vari-

ance v(�) can be calculated as vðkflÞ ¼ rrLflðkÞ
�1:The

function LflðkflÞ stands for LflðkflÞ :¼ log Pðlog kfl jbk; gflÞ ¼

log Pðkfl jbk; gflÞ þ log kfl ; the function rLfl (�) is the first-

order derivative of Lfl (�), and the functionrrLfl (�) stands for

its second-order derivative.

However, the approximation (31) is not valid when the

second-order derivative rrLfl (�) is small and/or log kðg�1Þ
fl

is far from the peak of LðkflÞ. Therefore, here we consider

(1) a simple modification for small values of rrLfl (�) , and

(2) a combination with a simple proposal distribution based

on the logarithmic random walk. More specifically, the

distribution described by

Qðkfl ; �Þ :¼ wkQappðkfl ; �Þ þ ð1� wkÞQsimðkfl ; �Þ; ð32Þ

is used for the proposal distribution of kfl . Here, the

variable wk stands for the mixing rate of the two proposal

distributions. The first proposal distribution Qapp(�) is

defined using the approximation (31) with the modification

for small rrLfl (�) as follows:

Qappðkfl ; �Þ :¼ LNðkfl ; l
�ðkðg�1Þ

fl
Þ; v�ðkðg�1Þ

fl
ÞÞ; ð33Þ

where the logarithmic mean and the logarithmic variance

are modified by l�ðkflÞ ¼ log kfl þrrL�flðkflÞ
�1rLflðkflÞ

and v�ðkflÞ ¼ rrL�flðkflÞ
�1

with the modification of

rrLfl (�) as rrL�flð�Þ ¼ minðrrLflð�Þ; sÞ: The positive

variable s controls the minimum value of rrL�flð�Þ: On the

other hand, the second proposal distribution Qsim(�) in (32)

is based on the logarithmic random walk, as follows:

Qsimðkfl ; �Þ :¼ LNðkfl ; log kðg�1Þ
fl

; vsimÞ; ð34Þ

where vsim stands for the logarithmic variance of this pro-

posal distribution.

In the experiments described in this paper, we used the

proposal distribution (32) with wk = 0.5, s = 1.0, and

vsim = 0.01. These gave reasonable and stable performance

in our preliminary experiments.

Proposal distribution of gk

The full conditional distribution of gfl can be written as

PðgkjY ; Z; h; fgk0 gk0 6¼k; fkk0 gÞ ¼ Pðgkjbfl ; kflÞ: ð35Þ

It is difficult to approximate the distribution (35) itself with

basic methods. Therefore, we consider only a rough approx-

imation of the center of the distribution (35) in this study.

When the parameter bk is given, one of the simplest

estimators for the common (average) shape of {bk,i} is

�gkðbkÞ ¼ 1
N

PN
i¼1 bk;i: We assume that the center of the

distribution (35) can be roughly approximated by this

estimator �gkðbkÞ: In view of this assumption and the sim-

plicity of the implementation, we consider the Dirichlet

proposal distribution centered on �gkðb
ðgÞ
fl
Þ:

6 In this condition, the Metropolis–Hastings algorithm is completely

‘‘rejection-less’’; i.e., it is identical to Gibbs sampling.
7 In this paper, we use a modified version of the proposal

distributions described in [8, 9] for more efficient implementation.
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Qappðgfl ; �Þ :¼ Dirðgfl ; mapp�gkðb
ðgÞ
fl
ÞÞ; ð36Þ

where the user-settable positive variable mapp controls the

concentrate level of the distribution.

Since this approximation is often not valid, the combi-

nation with a simple proposal distribution is also consid-

ered here. The actual proposal distribution for gfl in our

implementation is described as

Qðgfl ; �Þ :¼ wgQappðgfl ; �Þ þ ð1� wgÞQsimðgfl ; �Þ; ð37Þ

where wg is the mixing rate of the two proposal

distributions. The first proposal distribution Qapp(�) is

described as (36). The second one, Qsim(�), is defined using

the previous sample gðg�1Þ
fl

, as follows:

Qsimðgfl ; �Þ :¼ Dirðgfl ; msimgðg�1Þ
fl
Þ; ð38Þ

where the positive variable msim controls the concentrate

level of this distribution.

In the actual implementation for the experiment

described in this paper, we set wg = 0.5 and mapp =

msim = 100, which showed reasonable performance in our

preliminary experiments.

Appendix B: Candidate components and screening

method

This part describes the screening method and candidate

components used in Sect. 4.

Candidate components

As described in Sect. 4, we considered 5,063 candidates for

feature variables. These candidates are categorized into

two groups: statistics-based variables and grid-based vari-

ables. Statistics-based variables are statistical information

of players’ positions, e.g., average, median, maximum,

minimum, and variance of players’ positions. On the other

hand, grid-based variables are based on information of a

specific zone, which is derived from dividing the soccer

field. For instance, a grid-based variable is the number of

players in a specific zone. Table 4 shows a summary of all

candidate components. Although most of these components

are continuous variables, all of the components are quan-

tized into ten levels.

Screening method

Let us consider two information-based criteria:

1. Information gain given specific event: To consider the

dependency of the specific candidate on a specific

event, we use information gain given the specific event

e, described as

IGði; eÞ :¼
X

fc;i

qðfc;i; eÞ log2

qðfc;i; eÞ
qðfc;iÞ

: ð39Þ

Here, the variable fc,i denotes the ith candidate, and

the function q(fc,i) stands for the empirical proba-

bility distribution of fc,i, i.e., the relative frequency of

fc,i in the training data set. The function q(fc,i;e)

represents the empirical conditional probability dis-

tribution of fc,i given specific event e, which is esti-

mated using the training data set.

2. Mutual information between two candidates: For

evaluation of the independency between two candi-

dates, we consider mutual information between the

two candidates, as follows:

Table 4 Summary of candidate components

Category Sub-category Description

Statistics-based

variables

All players’

information

Statistics of all players’

positions

Left team

information

Statistics of left team players’

positions

Right team

information

Statistics of right team players’

positions

Goalkeeper

information

Positions of goalkeepers

Grid-based

variables

Number

information

The number of players in

specific zone

Velocity

information

Velocity information of players

in specific zone

Fig. 11 Screening procedure for candidates
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MIði; jÞ :¼
X

fc;i

X

fc;j

qðfc;i; fc;jÞ log2

qðfc;i; fc;jÞ
qðfc;iÞqðfc;jÞ

: ð40Þ

Here, the function q(fc,i, fc,j) denotes the empirical

joint probability distribution of fc,i and fc,j, which is

estimated from the training data set.

Using these two cirteria, the screening method selects

feature variables from the candidates. The concrete proce-

dure can be summarized as shown in Fig. 11. In the

experiment described in Sect. 4, the threshold value Ithred is

set at MIthred = 0.75, and the number of selected candi-

dates NS is NS ¼ 40:

References

1. Jain R, Hampapur A (1994) Metadata in video databases. ACM

SIGMOD Rec 23(4):27–33

2. Messina A, Boch L, Dimino G, Bailer W, Schallauer P, Allasia

W, Groppo M, Vigilante M, Basili R (2006) Creating rich

metadata in the TV broadcast archives environment: the Presto-

Space project. In: Proceedings of 2nd international conference on

automated production of cross media content for multi-channel

distribution (AXMEDIS 2006), pp 193–200.

3. Lugmayr A, Niiranen S, Kalli S (2004) Digital interactive TV and

metadata: future broadcast multimedia. Springer, Berlin

4. Sano M, Sumiyoshi H, Shhibata M, Yagi N (2005) Generating

metadata from acoustic and speech data in live broadcasting. In:

Proceedings of 2005 IEEE international conference on acoustics,

speech, and signal processing (ICASSP 2005), vol 2, pp 1145–1148

5. Miyamori H, Nakamura S, Tanaka K (2005) Automatic indexing

of broadcast content using its live chat on the Web. In: Pro-

ceedings of 2005 IEEE international conference on image pro-

cessing (ICIP 2005), pp 1248–1251

6. Misu T, Takahashi M, Tadenuma M, Yagi N (2005) Real-time

event detection based on formation analysis of soccer scenes. Inf

Tech Lett 4(LI-003):141–144

7. Motoi S, Misu T, Nakada Y, Matsumoto T, Yagi N (2007)

Bayesian hidden Markov model approach for events detection in

sports movie. IPSJ SIG Notes 2007(1):133–139

8. Motoi S, Nakada Y, Misu T, Matsumoto T, Yagi N (2008) A

novel hierarchical Bayesian HMM for multi-dimensional discrete

data. In: Proceedings of 8th IASTED conference on artificial

intelligence and applications (AIA 2008), pp 52–57

9. Motoi S, Nakada Y, Misu T, Matsumoto T, Yagi N (2008) A

hierarchical Bayesian hidden Markov model for multi-dimen-

sional discrete data. In: Frontiers in robotics, automation and

control. In-Tech Publications, pp 357–374

10. Xu G, Ma Y-F, Zhang H-J, Yang S (2003) A HMM based

semantic analysis framework for sports game event detection. In:

International conference on image processing (ICIP 2003),vol 1,

pp 25–28

11. Sadlier DA, O Connor NE (2005) Event detection in field sports

video using audio visual features and a support vector machine.

IEEE Trans Circuits Syst Video Technol 15(10):1225–1233

12. Kang Y-L, Lim J-H, Kankanhalli MS, Xu C-S, Tian Q(2004)

Goal detection in soccer video using audio/visual keywords. In:

International conference on image processing (ICIP2004), pp 1629–

1632

13. Bashir FI, Khokhar AA, Schonfeld D (2007) Object trajectory-

based activity classification and recognition using hidden markov

models. IEEE Trans Image Process 16(7):1912–1919

14. Assfalg J, Bertini M, Del Bimbo A, Nunziati W, Pala P (2002)

Soccer highlights detection and recognition using HMMs. In:

ICME 2002, vol 1, pp 825–828

15. Wang J, Xu C, Chng E, Tian Q (2004) Sports highlight detection

from keyword sequences using HMM. In: ICME 2004, vol 1,

pp 599–602

16. Xie L, Xu P, Chang S-F, Divakaran A, Sun H (2004) Structure

analysis of soccer video with domain knowledge and hidden

Markov models. Pattern Recogn Lett 25:767–775

17. Xie L, Chang S-F, Divakaran A, Sun H (2003) Unsupervised

discovery of multilevel statistical video structures using hierar-

chical hidden Markov models. In: ICME 2003, vol 3, pp 29–32

18. Baum LE, Petrie T, Soules G, Weiss N (1970) A maximization

technique occurring in the statistical analysis of probabilistic

functions of Markov chains. Ann Math Stat 41(1):164–171

19. Li B, Sezan MI (2001) Event detection and summarization in

sport video. In: Proceedings of IEEE workshop on content-based

access of image and video libraries (CBAIVL 2001), pp 132–138.

20. Huo Q, Chan C, Lee CH (1995) Bayesian adaptive learning of the

parameters of hidden Markov model for speech recognition.

IEEE Trans Speech Audio Process 3(5):334–345

21. MacKay DJC (1997) Ensemble learning for hidden Markov mod-

els. Cavendish laboratory, University of Cambridge. http://wol.

ra.phy.cam.ac.uk/mackay/.

22. Scott SL (2002) Bayesian methods for hidden Markov models:

recursive computing in the 21st century. J Am Stat Assoc

97(457):337–351

23. Rezek I, Roberts S (2005) Ensemble hidden Markov models with

extended observation densities for biosignal analysis. In: Proba-

bilistic modeling in bioinformatics and medical informatics,

pp 419–450

24. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distri-

butions, and the Bayesian restoration of images. IEEE Trans

Pattern Anal Mach Intell 6(6):721–741

25. Hastings W (1970) Monte Carlo sampling methods using Markov

chains and their applications. Biometrika 57(1):97–109

26. Misu T, Naemura M, Zheng W, Izumi Y, Fukui K (2002) Robust

tracking of soccer players based on data fusion. In: Proceedings

of 16th international conference on pattern recognition (ICPR

2002), vol 1, pp 556–561

27. Juang BH, Rabiner LR (1991) Hidden Markov models for speech

recognition. Technometrics 33(3):251–272

28. Russell M, Moore R (1985) Explicit modelling of state occu-

pancy in hidden Markov models for automatic speech recogni-

tion. In: Proceedings of 1985 IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP 1985), vol 10,

pp 5–8

72 Pattern Anal Applic (2012) 15:59–72

123

http://wol.ra.phy.cam.ac.uk/mackay/
http://wol.ra.phy.cam.ac.uk/mackay/

	Bayesian event detection for sport games with hidden Markov model
	Abstract
	Introduction
	Background
	Purpose
	Related work

	Hierarchical Bayesian HMM for event detection
	Data and hidden variables
	Observation model
	Prior distribution for parameter set
	Settings for hyperparameter set
	Reparameterization of \beta_{f_{l},i}
	Prior distribution for lambda fl and eta fl


	Implementation of event prediction
	Bayesian predictive probability for target event
	Calculation of predictive probability

	Event detection experiment for soccer games
	Target data sequences
	Target soccer games
	Players’ positions
	Feature variables

	Settings
	Experimental results
	Performance comparison

	Conclusion
	Acknowledgements
	Appendix A: Designed proposal distributions of hyperparamters
	Proposal distribution of \lambda_{f_l}
	Proposal distribution of eta k

	Appendix B: Candidate components and screening method
	Candidate components
	Screening method

	References


