Skip to main content
Log in

Polarization imaging by use of optical scanning holography

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Polarization information is useful for various applications such as remote sensing and biomedical imaging. In general, polarization information is obtained using a polarization camera; however, the measured data are two-dimensional (2D) images, which limits its application. In this paper, three-dimensional (3D) polarization imaging by use of optical scanning holography (OSH) is proposed. Polarization-dependent digital holograms are recorded by changing directly the transmission axis of a polarizer in front of a photo detector. In the proof-of-principle experiment, partially Stokes parameters are calculated from the obtained holograms and are compared with the results obtained by a polarization camera. Experimental results show that the proposed method can measure a polarization object although there is the object behind a scattering medium, which opens the door of alternative imaging fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhai, X., Lin, W.T., Chen, H.H., Wang, P.H., Yeh, L.H., Tsai, J.C., Singh, V.R., Luo, Y.: In-line digital holographic imaging in volume holographic microscopy. Optics. Lett. 40(23), 5542 (2015). https://doi.org/10.1364/ol.40.005542

    Article  ADS  Google Scholar 

  2. Quan, X., Matoba, O., Awatsuji, Y.: Image recovery from defocused 2D fluorescent images in multimodal digital holographic microscopy. Optics. Lett. 42(9), 1796 (2017). https://doi.org/10.1364/ol.42.001796

    Article  Google Scholar 

  3. O’Connor, T., Shen, J.B., Liang, B.T., Javidi, B.: Digital holographic deep learning of red blood cells for field-portable, rapid COVID-19 screening. Opt. Lett. 46(10), 2344 (2021). https://doi.org/10.1364/OL.426152. http://ol.osa.org/abstract.cfm?URI=ol-46-10-2344

  4. Javidi, B., Nomura, T.: Securing information by use of digital holography. Opt. Lett. 25(1), 28 (2000). https://doi.org/10.1364/OL.25.000028. http://ol.osa.org/abstract.cfm?URI=ol-25-1-28

  5. Tajahuerce, E., Javidi, B.: Encrypting three-dimensional information with digital holography. Appl. Opt. 39(35), 6595 (2000). https://doi.org/10.1364/AO.39.006595. http://ao.osa.org/abstract.cfm?URI=ao-39-35-6595

  6. Rajput, S.K., Matoba, O.: Optical voice encryption based on digital holography. Opt. Lett. 42(22), 4619 (2017). https://doi.org/10.1364/OL.42.004619. http://ol.osa.org/abstract.cfm?URI=ol-42-22-4619

  7. Yoneda, N., Saita, Y., Komuro, K., Nobukawa, T., Nomura, T.: Transport-of-intensity holographic data storage based on a computer-generated hologram. Appl. Optics. 57(30), 8836 (2018). https://doi.org/10.1364/ao.57.008836

    Article  ADS  Google Scholar 

  8. Yoneda, N., Saita, Y., Nomura, T.: Binary computer-generated-hologram-based holographic data storage. Appl. Opt. 58(12), 3083 (2019). https://doi.org/10.1364/AO.58.003083. http://ao.osa.org/abstract.cfm?URI=ao-58-12-3083

  9. Yoneda, N., Saita, Y., Nomura, T.: Computer-generated-hologram-based holographic data storage using common-path off-axis digital holography. Optics. Lett. 45(10), 2796 (2020). https://doi.org/10.1364/ol.392801

    Article  ADS  Google Scholar 

  10. Saita, Y., Matsumoto, A., Yoneda, N., Nomura, T.: Multiplexed recording based on the reference wave correlation for computer-generated holographic data storage. Opt. Rev. 27(4), 391 (2020). https://doi.org/10.1007/s10043-020-00607-7

    Article  Google Scholar 

  11. Wakunami, K., Hsieh, P.Y., Oi, R., Senoh, T., Sasaki, H., Ichihashi, Y., Okui, M., Huang, Y.P., Yamamoto, K.: Projection-type see-through holographic three-dimensional display. Nat. Commun. 7(1), 12954 (2016). https://doi.org/10.1038/ncomms12954

    Article  ADS  Google Scholar 

  12. Tahara, T., Kozawa, Y., Oi, R.: Single-path single-shot phase-shifting digital holographic microscopy without a laser light source. Opt. Express 30(2), 1182 (2022). https://doi.org/10.1364/OE.442661. http://www.osapublishing.org/oe/abstract.cfm?URI=oe-30-2-1182

  13. Park, Y.K., Depeursinge, C., Popescu, G.: Quantitative phase imaging in biomedicine. Nat. Photonics. 12(10), 578 (2018). https://doi.org/10.1038/s41566-018-0253-x

    Article  ADS  Google Scholar 

  14. Yoneda, N., Onishi, A., Saita, Y., Komuro, K., Nomura, T.: Single-shot higher-order transport-of-intensity quantitative phase imaging based on computer-generated holography. Opt. Express 29(4), 4783 (2021). https://doi.org/10.1364/OE.415598. http://www.opticsexpress.org/abstract.cfm?URI=oe-29-4-4783

  15. Kishiwaki, D., Nisaka, K., Nomura, T.: High temporal and spatial resolution single-shot digital holography with Fresnel domain filtering using witch’s hat illumination. Appl. Opt. 59(3), 694 (2020). https://doi.org/10.1364/AO.59.000694. http://ao.osa.org/abstract.cfm?URI=ao-59-3-694

  16. Sakamaki, S., Yoneda, N., Nomura, T.: Single-shot in-line Fresnel incoherent holography using a dual-focus checkerboard lens. Appl. Optics. 59(22), 6612 (2020). https://doi.org/10.1364/ao.393176

    Article  ADS  Google Scholar 

  17. Kumar, M., Quan, X., Awatsuji, Y., Tamada, Y., Matoba, O.: Digital holographic multimodal cross-sectional fluorescence and quantitative phase imaging system. Sci. Rep. 10(1), 7580 (2020). https://doi.org/10.1038/s41598-020-64028-x

    Article  ADS  Google Scholar 

  18. Pratt, W.K., Kane, J., Andrews, H.C.: Hadamard transform image coding. Proc. IEEE. 57(1), 58 (1969). https://doi.org/10.1109/PROC.1969.6869

    Article  Google Scholar 

  19. Shapiro, J.H.: Computational ghost imaging. Phys. Rev. A 78, 061802 (2008). https://doi.org/10.1103/PhysRevA.78.061802

    Article  ADS  Google Scholar 

  20. Zhang, Z., Ma, X., Zhong, J.: Single-pixel imaging by means of Fourier spectrum acquisition. Nat. Commun. 6, 6225 (2015). https://doi.org/10.1038/ncomms7225

    Article  ADS  Google Scholar 

  21. Gong, W., Han, S.: Correlated imaging in scattering media. Opt. Lett. 36(3), 394 (2011). https://doi.org/10.1364/OL.36.000394. http://ol.osa.org/abstract.cfm?URI=ol-36-3-394

  22. Tajahuerce, E., Durán, V., Clemente, P., Irles, E., Soldevila, F., Andrés, P., Lancis, J.: Image transmission through dynamic scattering media by single-pixel photodetection. Opt. Express 22(14), 16945 (2014). https://doi.org/10.1364/OE.22.016945. http://www.opticsexpress.org/abstract.cfm?URI=oe-22-14-16945

  23. Clemente, P., Durán, V., Tajahuerce, E., Torres-Company, Victor, Lancis, J.: Single-pixel digital ghost holography,Phys. Rev. A 86, 041803 (2012). https://doi.org/10.1103/PhysRevA.86.041803

  24. Martínez-León, L., Clemente, P., Mori, Y., Climent, V., Lancis, J., Tajahuerce, E.: Single-pixel digital holography with phase-encoded illumination. Opt. Express 25(5), 4975 (2017). https://doi.org/10.1364/OE.25.004975. http://www.opticsexpress.org/abstract.cfm?URI=oe-25-5-4975

  25. González, H., Martínez-León, L., Soldevila, F., Araiza-Esquivel, M., Lancis, J., Tajahuerce, E.: High sampling rate single-pixel digital holography system employing a DMD and phase-encoded patterns. Opt. Express 26(16), 20342 (2018). https://doi.org/10.1364/OE.26.020342. http://www.osapublishing.org/oe/abstract.cfm?URI=oe-26-16-20342

  26. Endo, Y., Tahara, T., Okamoto, R.: Color single-pixel digital holography with a phase-encoded reference wave. Appl. Opt. 58(34), G149 (2019). https://doi.org/10.1364/AO.58.00G149. http://ao.osa.org/abstract.cfm?URI=ao-58-34-G149

  27. Wu, D., Luo, J., Huang, G., Feng, Y., Feng, X., Zhang, R., Shen, Y., Li, Z.: Imaging biological tissue with high-throughput single-pixel compressive holography. Nat. Commun. 12(1), 4712 (2021). https://doi.org/10.1038/s41467-021-24990-0

    Article  ADS  Google Scholar 

  28. Shin, S., Lee, K., Baek, Y., Park, Y.: Reference-Free Single-Point Holographic Imaging and Realization of an Optical Bidirectional Transducer. Phys. Rev. Applied 9, 044042 (2018). https://doi.org/10.1103/PhysRevApplied.9.044042

    Article  ADS  Google Scholar 

  29. Shin, S., Lee, K., Yaqoob, Z., So, P.T.C., Park, Y.: Reference-free polarization-sensitive quantitative phase imaging using single-point optical phase conjugation. Opt. Express 26(21), 26858 (2018). https://doi.org/10.1364/OE.26.026858. http://www.osapublishing.org/oe/abstract.cfm?URI=oe-26-21-26858

  30. Poon, T.C., Korpel, A.: Optical transfer function of an acousto-optic heterodyning image processor. Opt. Lett. 4(10), 317 (1979). https://doi.org/10.1364/OL.4.000317. http://ol.osa.org/abstract.cfm?URI=ol-4-10-317

  31. Poon, T.C.: Optical scanning holography with MATLAB® (Springer, 2007). https://doi.org/10.1007/978-0-387-68851-0

  32. Schilling, B.W., Poon, T.C., Indebetouw, G., Storrie, B., Shinoda, K., Suzuki, Y., Wu, M.H.: Three-dimensional holographic fluorescence microscopy. Opt. Lett. 22(19), 1506 (1997). https://doi.org/10.1364/OL.22.001506. http://ol.osa.org/abstract.cfm?URI=ol-22-19-1506

  33. Indebetouw, G., Zhong, W.: Scanning holographic microscopy of three-dimensional fluorescent specimens. J. Opt. Soc. Am. A 23(7), 1699 (2006). https://doi.org/10.1364/JOSAA.23.001699. http://josaa.osa.org/abstract.cfm?URI=josaa-23-7-1699

  34. Chang, X., Yan, A., Zhang, H.: Ciphertext-only attack on optical scanning cryptography. Opt. Lasers. Eng. 126, 105901 (2020). https://doi.org/10.1016/j.optlaseng.2019.105901. http://www.sciencedirect.com/science/article/pii/S0143816619312369

  35. Kim, H., Kim, Y.S., Kim, T.: Full-color optical scanning holography with common red, green, and blue channels [Invited]. Appl. Opt. 55(3), A17 (2016). https://doi.org/10.1364/AO.55.000A17. http://ao.osa.org/abstract.cfm?URI=ao-55-3-A17

  36. Liu, J.P., Chen, W.T., Wen, H.H., Poon, T.C.: Recording of a curved digital hologram for orthoscopic real image reconstruction. Opt. Lett. 45(15), 4353 (2020).https://doi.org/10.1364/OL.398920. http://ol.osa.org/abstract.cfm?URI=ol-45-15-4353

  37. Liu, J.P., Wang, S.Y.: Stereo-lighting reconstruction of optical scanning holography. IEEE Trans. Ind. Inform. 12(5), 1664 (2016). https://doi.org/10.1109/TII.2016.2587884

    Article  Google Scholar 

  38. Mehta, S.B., McQuilken, M., La Riviere, P.J., Occhipinti, P., Verma, A., Oldenbourg, R., Gladfelter, A.S., Tani, T.: Dissection of molecular assembly dynamics by tracking orientation and position of single molecules in live cells. Proc. Natl Aca. Sci. 113(42), E6352 (2016).https://doi.org/10.1073/pnas.1607674113. http://www.pnas.org/content/113/42/E6352

  39. Yoneda, N., Saita, Y., Nomura, T.: Motionless optical scanning holography. Opt. Lett. 45(12), 3184 (2020). https://doi.org/10.1364/OL.393534. http://ol.osa.org/abstract.cfm?URI=ol-45-12-3184

  40. Yoneda, N., Saita, Y., Nomura, T.: Spatially-divided phase-shifting motionless optical scanning holography. OSA Contin. 3(12), 3523 (2020). https://doi.org/10.1364/osac.410300

    Article  Google Scholar 

  41. Yoneda, N., Saita, Y., Nomura, T.: Three-dimensional fluorescence imaging through dynamic scattering media by motionless optical scanning holography. Appl. Phys. Lett. 119(16), 161101 (2021). https://doi.org/10.1063/5.0066358

    Article  ADS  Google Scholar 

  42. Rosen, J., Indebetouw, G., Brooker, G.: Homodyne scanning holography. Opt. Express 14(10), 4280 (2006). https://doi.org/10.1364/OE.14.004280. http://www.osapublishing.org/oe/abstract.cfm?URI=oe-14-10-4280

  43. Xin, Z., Dobson, K., Shinoda, Y., Poon, T.C.: Sectional image reconstruction in optical scanning holography using a random-phase pupil. Opt. Lett. 35(17), 2934 (2010). https://doi.org/10.1364/OL.35.002934. http://www.osapublishing.org/ol/abstract.cfm?URI=ol-35-17-2934

  44. Chen, N., Ren, Z., Ou, H., Lam, E.Y.: Resolution enhancement of optical scanning holography with a spiral modulated point spread function. Photon. Res. 4(1), 1 (2016). https://doi.org/10.1364/PRJ.4.000001. http://www.osapublishing.org/prj/abstract.cfm?URI=prj-4-1-1

  45. Kupinski, M.K., Bradley, C.L., Diner, D.J., Xu, F., Chipman, R.A.: Angle of linear polarization images of outdoor scenes. Opt. Eng. 58(8), 1 (2019). https://doi.org/10.1117/1.OE.58.8.082419

    Article  Google Scholar 

  46. Feynman, R., Leighton, R., Sands, M., Hafner, E.: The Feynman Lectures on Physics I, 33 (AAPT, 1965)

  47. Seow, K.L.C., Török, P., Foreman, M.R.: Single pixel polarimetric imaging through scattering media. Opt. Lett. 45(20), 5740 (2020). https://doi.org/10.1364/OL.399554. http://www.osapublishing.org/ol/abstract.cfm?URI=ol-45-20-5740

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naru Yoneda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoneda, N., Saita, Y. & Nomura, T. Polarization imaging by use of optical scanning holography. Opt Rev 30, 26–32 (2023). https://doi.org/10.1007/s10043-022-00778-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-022-00778-5

Keywords

Navigation