
Vol.:(0123456789)1 3

Optical Review (2021) 28:449–461 
https://doi.org/10.1007/s10043-021-00679-z

REGULAR PAPER

Prediction of the layered ink layout for 3D printers considering 
a desired skin color and line spread function

Kazuki Nagasawa1   · Junki Yoshii1 · Shoji Yamamoto2 · Wataru Arai3 · Satoshi Kaneko3 · Keita Hirai1 · 
Norimichi Tsumura1

Received: 11 April 2021 / Accepted: 4 July 2021 / Published online: 8 July 2021 
© The Author(s) 2021

Abstract
We propose a layout estimation method for multi-layered ink using a measurement of the line spread function (LSF) and 
machine learning. The three-dimensional printing market for general consumers focuses on the reproduction of realistic 
appearance. In particular, for the reproduction of human skin, it is important to control translucency by adopting a multilayer 
structure. Traditionally, layer design has depended on the experience of designers. We, therefore, developed an efficient 
layout estimation to provide arbitrary skin color and translucency. In our method, we create multi-layered color patches 
of human skin and measure the LSF as a metric of translucency, and we employ a neural network trained with the data to 
estimate the layout. As an evaluation, we measured the LSF from the computer-graphics-created skin and fabricate skin 
using the estimated layout; evaluation with root-mean-square error showed that we can obtain color and translucency that 
are close to the target.
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1  Introduction

Three-dimensional (3D) printers have been widely used in 
recent years for design assessment and rapid prototyping 
in industrial fields. There are various modeling methods 
for 3D printers, such as fused filament, stereolithography, 
selective laser sintering, and inkjet methods [1]. The most 
accurate type is stereolithography modeling, which is used 
in the medical [2] and dental [3] fields, although there are 
limitations in terms of printing material. Parts of automo-
biles [4] and consumer concept models have recently been 
made using inkjet-type 3D printers with fine jetting. This 

inkjet type has the unique and superior feature of creating a 
colored product [5]. Furthermore, by combining with vari-
ous surface fabrication techniques, other applications, such 
as welfare devices and architectural models, are expected to 
be realized in the foreseeable future.

Many studies have aimed to improve the reproducibility 
of 3D printers. Error-diffusion halftoning is a technique that 
allows smooth tonal representation in two-dimensional (2D) 
printing, and one study applied this technique to 3D printing 
[6]. This method allows the detailed representation of color 
in 3D printing, which is limited to 3D materials and inks. 
Other studies have investigated material appearance, with 
most focusing on the control of translucency. One study pro-
posed a method of reproducing complex scattering proper-
ties [7], where the scattering properties of several materials 
are measured and the radial reflection and scattering profiles 
are generated. This allows the proper arrangement of mate-
rial in the depth direction and reproduces complex scattering 
properties. In a study [8] that reproduced complex light scat-
tering using the BSSRDF (bidirectional scattering surface 
reflectance distribution function), a function that represents 
surface subsurface scattering, materials with different scat-
tering effects were stacked with varying spatial thicknesses 
to represent inhomogeneous scattering. When modeling 
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with translucent materials, it is difficult to have a texture 
that contains detailed information because of lateral light 
scattering in a highly translucent material, which blurs the 
surface texture. A study solved this problem [9] adopting an 
inverse Monte Carlo simulation-based method to optimize 
the material arrangement under the surface. Another study 
adopted the alternative approach of mixing translucent mate-
rials [10]. In that study, the concentration of the mixture of 
several translucent materials was estimated for the reproduc-
tion of the desired appearance and scattering properties. Fur-
thermore, a recent study [11] proposed a method of perform-
ing full-color modeling with spatially varying translucency 
using RGBA signals instead of the BSSRDF, which has high 
measurement and processing costs. Here, A denotes the 
signal for translucency while RGB denotes the red, green, 
and blue signals. The accuracy of this method was further 
enhanced in a study [12] that optimized the signal A to link 
to both optical material properties and human perceptual 
uniformity, independent of hardware and software.

The ability to express appearance, including the color, 
surface reflectance, and translucency, is important to 
faithful reproduction as an industrial application. Taking 
advantage of a polisher and clear-coat layer, the inkjet 3D 
printer can reproduce various properties of surface reflec-
tion with glossiness. In addition, it is possible to reproduce 
the expression of translucency using a stack of thin layers. 
As an application of 3D printing, the market for character 
figures for general consumers is expanding, and these figures 
are required to have a realistic appearance of human skin. 
As an example, the skin of a Japanese humanoid doll has 
been realized by combining beige and red layers for the real 
shading of a muscled body. This attempt at translucency for 
stomach muscles provides a dynamic volume and vivacious 
appearance for a realistic human body. The application of 
translucency is essential to the formation of a natural-look-
ing object, although the disadvantage is a long manufactur-
ing time by reason of the thin layers. In addition, there are 
other difficulties in choosing the colors of many layers and 
deciding their order for the realization of translucency. In 
general, the translucency and scattering property depend on 
the materials of the inkjet 3D printer. In the case of a few 
layers, it is possible to estimate the result of reproduction. 

A professional designer may be able to decide an appropri-
ate combination of color layers on the basis of experience. 
However, it is difficult to determine the combination of lay-
ers that achieve the desired color and degree of dispersion 
in the case of many layers.

In the present work, therefore, we propose a method of 
estimating an appropriate combination of multiple layers 
that realizes the modeling with desired color and translu-
cency. Figure 1 outlines the proposed method. The target 
color and translucency are first derived from the rendering 
engine on the basis of the designer’s concept. In the esti-
mation process, we employ machine learning with a neural 
network. This network calculates the best selection of the 
layer structure relative to the desired color and translucency. 
The results of our research can be applied not only to char-
acter figures but also to paintings and cosmetic surgery. We 
note that the present research is limited in that the target 
object comprises only human skin with multiple layers and 
the characteristic of translucency is prioritized against other 
aspects of appearance, such as color and surface reflectance.

2 � Related works

Color reproduction using a 3D inkjet printer has been devel-
oped adopting approaches different from those adopted for a 
2D inkjet printer. The use of 2D approaches for 3D printing, 
such as in the case of the halftone technique, often gener-
ates artifacts because the dot generated by the 3D printer is 
larger than that generated by the 2D printer. Brunton et al. 
proposed a novel traversal algorithm for voxel surfaces to 
reduce the presence of these artifacts [6]. They accom-
plished faithful color reproduction, color gradients, and fine-
scale details. However, their algorithm loses image contrast 
owing to overpainting.

Instead of halftoning, Babael et al. adopted contoning 
to realize a wide color gamut [13]. The use of this method 
should consider the combination of inks with various thick-
nesses inside the object’s volume. Babael et al., therefore, 
proposed a color prediction model based on Kubelka–Munk 
absorption. Although it was difficult to reproduce perfect 
color matching with only a few layers of CMYK inks, there 

Fig. 1   Outline of our proposed 
method
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is the possibility of realizing fine reproduction using the 3D 
inkjet printer by adopting contoning with multiple ink lay-
ers. Moreover, the contribution of this research highlights 
the importance of controlling the line spread function (LSF) 
and the color relating to layer overlap.

As a measurement-based method, Shi et al. attempted 
faithful color matching using multi-spectral imaging and 
machine-learning techniques as shown in Fig. 2 [14]. In 
their work, they used two neural networks to learn the color 
reproduction with a combination of layers and the gamut 
range with multiple layers in an adversarial manner. They 
first obtained spectral reflectance for 20,878 patches and 
learned a network (F) to associate them with their layout. 
F is a model that predicts the spectral reflectance from the 
layout. Using this model, the layout prediction model (B) 
was trained to minimize the errors of loss functions with 
respect to the output spectrum. Here, E_spec is a loss func-
tion that minimizes the difference between the spectrum of 
the sample (painting) and F. E_LAB is a loss function that 
expresses the LAB color space between the spectrum of the 
sample and the spectrum from F. Finally, E_thick is a loss 
function that minimizes the thickness of the color layer. This 
function is necessary for inhabitation of the thickness in the 
color layer and increasing dot gains. They took the sum of 
the above three loss functions as the total loss function of 
model B.

The method proposed by Shi et al. achieves state-of-art 
color matching even if more colored layers are needed. How-
ever, we think that it is necessary to consider the translu-
cency if the characteristic of dispersion is different for each 
color layer. In particular, in the reproduction of human skin, 
it is important to control translucency in the stack of layers. 
Therefore, in our research, we use LSF as a metric of trans-
lucency, which represents the spread of light due to lateral 
light scattering. In the field of computer graphics, Jensen 
et al. have shown that the translucency of human skin is 
caused by subsurface scattering of light [15], and they used 
the point spread function to express the translucency of skin. 
In addition, we focus on the control of translucency using 
measurements and a machine-learning method.

3 � Overview of the methodology

We present an overview of our methodology. We first create 
many multi-layered 3D-printed samples that imitate human 
skin as shown in Sect. 4. We next obtain the LSF of each cre-
ated sample through actual measurement using the method 
shown in Sect. 5. The dataset obtained in this way (i.e., the 
relationship between the multi-layered ink layout and LSF) 
is used to train a neural network and thus estimate the lay-
out. This process is explained in Sect. 6. Finally, in Sect. 7, 
we compare the LSF of the skin in the computer graphics 
(CG) simulation with the LSF of the actual print using the 
root-mean-square error (RMSE) and discuss the results of 
evaluating the accuracy of the network.

4 � Definition of a color patch for human skin

In reproducing human skin with a 3D printer, we define 
a skin model based on the biological skin structure. The 
human skin has a layered structure and can be roughly 
divided into the epidermis, dermis, and subcutaneous tis-
sue. Such a biological model of skin is often used in the 
field of measurement and simulation [16–18]. The epider-
mis contains melanin pigment and below the epidermis, 
there is a layer called the dermis, which contains blood. 
The color of the dermis is determined by the color of oxi-
dized hemoglobin and deoxidized hemoglobin present in 
the blood. Since Donner et al. and Tsumura et al. have 
shown that the major factors that determine skin color 
are melanin in the epidermal layer and hemoglobin in the 
dermal layer [17, 18], we also consider that the two-layer 
structure is sufficient for color reproduction in 3D print-
ings. Therefore, in this study, the translucency is simply 
controlled by the layout of the flat layers, the more com-
plex structure in the skin was ignored from the limita-
tion of experimental resources. Here, the total number 
of layers should be fixed in consideration of the number 
of combinations and the convenience of patch creation. 

Fig. 2   The network structure by 
L. Shi et al. [14]
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Therefore, we use clear ink which has almost no scattering 
or absorption effect. If the number of color layers is less 
than the total number of layers, fill the upper layer with a 
clear layer.

We next selected a color for each of the three types of 
approximate layer. Each epidermal layer (epidermis) is a 
brown layer acting as the cover of the skin while each der-
mal layer (dermis) is a red layer in which blood flows. The 
colors applied to each layer are defined by CMYK values 
because CMYK values are required when each layer is fab-
ricated with a 3D printer. In addition to CMYK ink, clear 
ink can also be used. The clear layer is fabricated with 
100% clear ink. For the epidermal layer, three colors were 
completely selected empirically by the authors to represent 
various type of skin color, assuming typical Asian skin. 
For the dermis layer, 10 different red colors were selected 
to represent blood. In total, 14 different layer colors were 
combined to create the skin with multi-layered ink. The 
reason for limiting the number of layer colors to 14 is that 
the cost of creating patches on a 3D printer is high and 
the number of combinations thus needs to be limited. As 
outlined in Fig. 3, these layers are combined to create a 
number of multilayer layouts. In this study, the number of 
patch layers is set to 10, because printing experiments have 
shown that the color became almost black if the number of 
coloring layers exceeded 10. Therefore, we considered that 
the LSF and color range could be appropriately controlled 
by changing the layout within the 10 layers. The order of 
the layers is fixed as clear, epidermis, and dermis from top 
to bottom to imitate the original skin structure. Further-
more, as mentioned above, we need to limit the number of 
combinations and we thus restrict ourselves to selecting at 
most one clear layer, one epidermis layer, and one dermis 
layer. This implies that no or one type of clear, epidermal, 
or dermal layer is selected. (However, it is not possible to 
select no layers in total.) Under these conditions, the total 
number of combinations is 1412. In addition, the machine 
we use is capable of molding 625 patches at once, which 
means that we need to model at least three times. There-
fore, we redundantly set the maximum number of patches 
that can be formed in three times to 1875.

As the final step, we made test color patches for the simu-
lation of skin color and translucency. Each color patch size 
was 1 cm square, and the total number of combined patches 
was 1875. The thickness of the patch is 0.3 mm, and it can 
be obtained with high accuracy because a surface flattening 
roller can be used. An opaque white margin was set between 
patches to prevent ink on each patch from bleeding and the 
incident light on any patch from striking an adjacent patch. 
Although this margin may prevent the light from spreading, 
we did not use white margin around the patch to calculate 
the LSF. In addition, white ink was placed on the back of 
each patch to prevent the transmission of incident light and 
to prevent the printed plate from bending. The white ink in 
the base layer is essential in full-color 3D printing to reflect 
light and reproduce colors. Therefore, in our experiment, we 
assumed that white ink is always set in the base layer. If we 
change this white ink into other color ink in the base layer, 
the translucency and color will be changed. In this paper, 
we did not change the ink color in the base layer throughout 
the experiments. An inkjet 3D printer (3DUJ-553, MIMAKI 
ENGINEERING) was used to create the patches. The color 

Fig. 3   Conditions for making 
human skin color patches

Fig. 4   A color gamut in RGB space of the fabricated patch
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gamut in RGB space of the created patches is shown in 
Fig. 4. The RGB data for each patch are taken from the LSF 
data obtained in the next section. A typical skin color is 
shown with a red dot for reference [19]. It can be seen that 
the color gamut of the patch contains colors like Mongolian 
skin.

5 � Acquisition of the LSF

We measured the LSF as an index of translucency to repro-
duce human skin [20]. The actual skin has complex structure 
and it is necessary to consider the LSF in two directions in 
the more practical applications. Specially, anisotropic prop-
erty in optical scattering is important to reproduce more 
realistic reproduction of skin. However, in this study, for 
the limitation of experimental resources, we assumed the 
isotropic property in optical scattering in the skin. We need 
to head to measure anisotropic property in optical scattering 
in the future works.

The setting of the measuring devices is shown in Fig. 5. A 
total of 1875 color patches were printed on three sheets in a 
25 × 25 grid. By illuminating each patch with an edge image 
and capturing the image with a camera, the change in pixel 
value near the edge was obtained and the LSF was meas-
ured. Due to the characteristics of the UV-curing inks used 
in 3D printers, the color patches have a slight gloss effect. 
However, in our measurement specular reflection was not 
observed in the captured image even if the geometry setup 
of light source, sample and camera is as in Fig. 5. In our next 
step or research, we need to improve this geometry setup. 
A laser projector (Smart Beam Laser, United Object) was 
used as an illuminator to emit a line toward each patch. This 

projector had 1280 × 720 pixels, and it was possible to con-
trol each pixel using a liquid–crystal-on-silicon device. Even 
if we used laser projector, there will spatial intensity distri-
bution. In this study, ignored this distribution and assumed 
that it is uniformed. Laser light of three wavelengths was 
used for edge projection; its spectral distribution is shown in 
Fig. 6. It is known that the use of a light source with a spiky 
spectral distribution reduce the accuracy of color measure-
ment due to the poor color rendering properties (color ren-
dering index) of the illumination in color engineering [21]. 
In contrast, white light has a wide spectral distribution with 
usual color filters exhibits very high color rendering proper-
ties. In this research, we used a laser light source since the 
optical set up is very easy, since we do not need to consider 
the distance between the laser light source (laser projector) 
and sample from the focusing free property of laser pro-
jector. From a spectroscopic point of view, there is room 
for improvement in the light source. An image with 25 × 25 
edges, as shown in Fig. 7, was created and irradiated onto a 
color patch using a laser projector. This illuminated the right 
half of all patches, as shown in Fig. 8. Since it is difficult 
to accurately arrange the projected pattern on 625 patches, 
there is a slight inclination in the edge at each patch. The 
slight inclination causes the slight blur in the obtained LSF 

Fig. 5   Setting for imaging the color patch

Fig. 6   Spectral distribution of the laser projector

Fig. 7   Image input to the projector
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since we average the transitions of pixel values in multiple 
lines along the edge. A magnified view of one of the patches 
in Fig. 8 is shown in Fig. 9a. A camera (α5100, SONY) with 
6000 × 4000 pixels was used as the capturing device. We 

set the shutter speed to 1 s and the ISO setting to 100. The 
plate was 30 cm in size with 1-cm patches, and the camera 
thus had a sufficient number of pixels for measurement of 
the LSF of each patch. As a result, we were able to capture 
each patch with 100 × 100 pixels.

An example of a projected color patch is shown in 
Fig. 9. Many color patches exist for each color, and it is 
thus necessary to automate each LSF calculation for the 
purpose of efficiency. First, the right half of a patch was 
illuminated as shown in Fig. 9a. We, therefore, obtained 
the change in pixel value from left to right in the middle 
of the patch (y = 50 in Fig. 9a) to measure the LSF. The 
obtained results are shown in Fig. 9b. However, it is seen 
that there is much noise in the transition of the acquired 
pixel values. This is due to the speckle noise caused by 
the use of a laser light and the resolution of the captured 
image that is only 100 × 100 pixels. We, therefore, aver-
aged the pixel value transitions from left to right in the 
vertical direction. Differentiation was then performed on 
the data from which the noise had been removed. The 
result is shown in Fig. 9c. The LSF was divided into RGB 
signals to obtain patch color information. Here, even 

Fig. 8   Color patches illuminated by the laser projector

Fig. 9   Processing flow for LSF 
acquisition



455Optical Review (2021) 28:449–461	

1 3

though the LSF is usually assumed to be isotropic and 
uniform, the differential value differs before and after 
the peak due to the effect of noise. Therefore, assum-
ing isotropy, only the side before the peak (from 0 to 
the maximum value of x) was used. After smoothing to 
remove the noise of the differential value, the data having 
a value less than zero were corrected to zero. In addition, 
there are patches where the edges are off-center because 
the edges are irradiating many patches at once. Therefore, 
to align the format of the LSF data, we shifted the data 
so that the peak is at the right end of the data (x = 99). 
The LSF obtained through the above process is shown in 
Fig. 9d. The same process was applied to all 1875 skin 
patches. Some of the measurement results are shown in 
Fig. 10. It can be seen that as the number of colored layers 
decreases, the LSF shows a larger light spreading. This 
indicates that the LSF can be controlled by the ink layout.

6 � Training of a neural network model

We next train a neural network to associate the LSF data for 
the 1875 skin patches with layouts representing the color 
assignment to each layer in the corresponding patch. It is 
possible to predict the layout of human skin patches with 
arbitrary translucency using this learning result. When train-
ing a neural network, it is difficult to determine the accu-
racy of the output layout. Therefore, in this study, we used 
an encoder–decoder type of neural network, which is often 
applied to such problems [14, 22]. A schematic diagram of 
the network structure is shown in Fig. 11. LSF values were 
used for both input and output. As explained in the previous 
section, the representation is a (3 × 100) vector such that 
each of the three RGB components has 100 elements, and 
the values range from 0 to 1. The values have been normal-
ized within each sample. Although the setting of the maxi-
mum value to 1 may be affected by noise, such normaliza-
tion was performed because no such effect was observed in 

Fig. 10   Relationship between 
the number of colored layers 
and LSF

Fig. 11   Structure of our neural 
network
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this study. The layout of the layered structure is a middle 
output. It is a vector of 14 elements, representing the number 
of layers for each of the 14 inks used. In this study, the struc-
ture was fixed as 10 layers, such that the sum of the vectors 
was 10. During training, values were normalized from 0 to 
1. The encoder and decoder were fully connected layers, and 
loss functions were provided in the middle output section 
and the output section using the RMSE. This loss function 
L is expressed by the following equation:

where ypred is the vector predicted by the neural network, ytrue 
is the ground-truth vector, and N is the size of the vector. 
The loss for LSF is calculated in RGB space which depends 
on the camera (α5100, SONY) used for LSF acquisition. 
This is an intensity linear space, since we used RAW mode 
for shooting. The number of layers for each ink estimated 
using this network needs to be an integer, but simple round-
ing makes differentiation impossible. A soft quantiza-
tion layer was, therefore, provided to make the output of 
the encoder close to an integer value when denormalized. 
Although this operation may cause quantization errors, Shi 
et al. have shown that it is possible to estimate the layout 
using the same method [14].

We here describe the learning process. In our network, 
we first learnt only the decoder part. We next combined the 
encoders, fixed the decoder weights, and trained them. Of 
the 1875 data, 1500 were used for training and 375 for test-
ing. We used a GPU instance of Google Colab for training, 
and the total training time was about 5 min. The training 
results are shown in Fig. 12.

We see that the learning converged for both the encoder 
and decoder. Furthermore, the accuracy for the validation 
data is the same as that for the training data. The final loss 
for training was 0.049 and the loss value for the 375 test 
data was 0.051, which indicates that the accuracy of the 
training data was comparable to even that of training data 
for unknown data.

7 � Evaluation

7.1 � Making a human skin with CG

The purpose of the present study is to predict the mul-
tilayer layout that provides the desired color and trans-
lucency of human skin created by the designer. It is, 
therefore, possible to predict the layout using a neural 
network by measuring the LSF from human skin designed 
in CG simulation. We, therefore, evaluated the result of 
machine learning by reproducing the CG of human skin 

(1)L =

√

(ypred−ytrue)
2

N

,

with expected translucency. It is necessary to specify the 
absorption coefficient and scattering coefficient of the 
object to control the color and translucency of translu-
cent objects, such as human skin. In rendering human skin 
in CG, we used the Mitsuba renderer [23], which is an 
open-source physics-based renderer. In this renderer, the 
desired translucency can be reproduced by specifying the 
absorption and scattering coefficients. We used known val-
ues of the absorption and scattering coefficients for typi-
cal Asian skin, which were calculated in Ref. [24]. Each 
coefficient was calculated for RGB wavelengths (700.00, 
546.10, 435.80 nm). As a detailed setting of Asian skin, 
the ratio of the two types of melanin in the skin was set at 
0.7 for eumelanin to 0.3 for pheomelanin. In addition, the 
ratio of the melanin portion to the baseline portion (non-
pigmented skin tissue) of the skin was set at 0.12–0.88. 
These values have been given as average values for Asians 
[24]. The absorption coefficients of the human skin thus 
set were (R, G, B) = (2.2035, 5.3338, 12.178) mm−1 and the 
isotropic scattering coefficients were (R, G, B) = (191.28, 
381.59, 774.31)mm−1 . Here, we assume that the designer 
has no knowledge of the biological skin structure and from 
the limitation of rendering program, we can only use the 
rendering technique by Jensen et al. which can only handle 
single set of µs and µa in the media [15]. Therefore, we 
used a single set of µs and µa to create our CG of skin. 
The rendering result for a cube with the above coefficients 
is shown in Fig. 13a. Figure 13b shows an enlarged view 

Fig. 12   Learning curves of our neural network
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of standard human skin with a spotlight (width of 0.1 in 
world coordinate system) applied. The skin in Fig. 13a 
has the general translucency of Asian skin, but to repro-
duce various translucencies, the absorption coefficient was 
empirically multiplied by an appropriate constant. Fig-
ure 13c is a rendered image of skin with a high absorption 
coefficient; i.e., 100 times the absorption coefficient in 
Fig. 13a. Figure 13d shows the skin in Fig. 13c illumi-
nated by a point light source. A comparison of the two 
images confirms that the light spreads differently and there 
is a different translucency. Thus, CG samples with various 
degrees of translucency are created by empirically multi-
plying the absorption coefficient by a constant. We only 
changed the absorption coefficient in rendering process 
as the first step of series of researches, and the change of 

scattering coefficient should be considered in the next step 
of research.

7.2 � Prediction of layered ink layout

The LSF of the rendered human skin was acquired and input 
to the learned neural network to predict its layout. We cal-
culated the LSF using the point spread function (PSF) of 
the image where the narrow spotlight was projected on the 
CG human skin. The LSF gave each RGB component 100 
values in a total of 300 arrays as for the learned setting. 
The obtained LSF was input to the learned network, and 
we show an example of the layout estimated using the LSF 
in Fig. 14a. The figure shows how many layers of each ink 
are required and is a denormalized version of the output of 
the neural network. However, considering the cost of 3D 

Fig. 13   CG-created human skin 
and its PSF (512 × 512 px)
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printing, in this study, the estimated layout by the neural 
network is converted to the layout in the dataset used for 
learning of the neural network, and the color patches are 
considered as fabricated objects for evaluation. The specific 
operation of the layout modification is that if multiple lay-
ers are selected in each of the epidermal or dermal layers, 
they are merged into the largest number. The result of these 
modifications is shown in Fig. 14b. The concern about the 
no evaluation of the actual fabricated skin is considered 
to be the error caused by converting the estimated layout 
to the layout in the dataset used for learning of neural net-
work. In evaluating the LSF, the above modification of the 
layout from actual estimated layout will give disadvanta-
geous to the evaluation results if the experimental setting 
of 3D printer is same as the setting when the 1875 patches 
were printed. Therefore, we can conclude that our estimated 
layout will give enough high evaluation if the evaluation 
results for layout in the dataset which was converted from 

the estimated layout give a enough high evaluation results. 
In addition, we consider that limiting the number of layouts 
by converting to layouts in the dataset is effective in terms 
of reducing printing costs.

Figure 15 shows the results of estimating the layout using 
the LSF obtained from the rendered human skin. In this 
study, the LSF of the fabricating results is known because 
the layout is selected from the dataset, as shown in Fig. 15. 
Therefore, the LSF of each result is also included. The 
results show that (a) the universal skin and (b) the red skin 
are subjectively similar in appearance. However, (c) the skin 
with absorption coefficients that are 100 times higher has a 
color different from that of the CG skin. In material appear-
ance reproduction, subjective appearance is also a very 
important factor. We next computed the RMSE between the 
LSF of the CG and the LSF of the object with the estimated 
layout to compare the LSFs. Results are given in Table 1. 
The color reproduction was also evaluated by RMSE using 
RGB data which is ranged from 0 to 1 in each channel. As a 
result, the color error in RGB space was 0.032 for (a), 0.058 
for (b), and 0.054 for (c) in the Fig. 15. Furthermore, to eval-
uate the error, the patch with the lowest RMSE for the LSF 

Fig. 14   Outputs (ink layer layout)

Fig. 15   Layout prediction and fabrication results

Table 1   RMSE for LSF values

Target CG skin RMSE (predicted 
patches)

RMSE (minimum)

(a) 0.04114 0.03087
(b) 0.04455 0.01482
(c) 0.02859 0.01899
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of the CG skin was searched for and selected from a dataset, 
like a lookup table (LUT). The RMSE of the LSF between 
the selected patches and the CG skin is also given in Table 1. 
In addition, a subjective comparison of the estimation result 
using the neural network and the search result using the LUT 
is made in Fig. 16. Table 1 shows that the LSF difference 
in RMSE between the estimation results by the neural net-
work and the search results by the LUT is about 1 ~ 3%. In 
Fig. 16, the rough shape of the LSF is similar in (a) and 
(b), but there is a difference in (c). This result suggests that 
our neural network is unstable in estimating the LSF, which 
shows strong absorption.

In a more detailed evaluation, the error statistics were 
examined using a larger number of CG samples. In addi-
tion to the three samples shown in Fig. 15, we included five 
samples as shown in Fig. 17. These samples were created by 
varying the absorption coefficient of the skin, as explained 
above. We estimated the layout using the LSF obtained from 
these samples as in the above procedure and took the RMSE 
between the LSF of the fabrication result and the LSF of the 
input. These eight results are shown in Table 2. The results 
show that the RMSE is about 3 ~ 6%, and the accuracy of 
the estimation results varied depending on the difference of 
absorption coefficient.

The above results show that we were able to estimate 
a layout with translucency close to the target translucency 
within the range of the dataset. The limitation of the present 

study is that it is difficult to reproduce the LSF of the target 
with high accuracy because the output is modified by the 
condition that the number of layers is 10 and that only one 
clear ink, only one brown ink, and only one red ink can be 
used. Therefore, the accuracy may be further improved when 
modeling using the layout output by the neural network. 
However, because of the cost of 3D printing, this study is 
limited to evaluating the accuracy within a color patch. In 
addition, Fig. 15c shows that there are cases where the colors 
are different even though the LSFs are similar. We, therefore, 
consider that obtaining the LSF with RGB values is not well 
suited to color reproduction. It is thus clear that we need to 
reconsider the methods of LSF calculation and color acquisi-
tion for the more accurate reproduction of translucency and 
color. In addition, we consider that it is possible to obtain 
similar LSF with different layouts. In this case, it is not pos-
sible to distinguish between those layouts with the current 
evaluation method. By adding a new evaluation aspect such 
as the number of used inks, it will be possible to distinguish 
similar LSF with different layouts.

Finally, we discuss some of the other accuracy issues that 
need to be considered in this study. First, regarding the LSF 
measurement accuracy of the CG skin, since our CG is based 
on simulation with enough number of lay tracing, it is not 
affected by noise. The second is the accuracy of fabricating 
the skin using the predicted layout. 3D printers can control 
the ink dot by dot, and we use our own system to perform 

Fig. 16   Comparison of the patch with the minimum RMSE with the target and the predicted patch
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half-toning; therefore, we have very high reproducibility (if 
we have the same 3D printer). Third, about the accuracy of 
LSF measurement of the 3D fabricated skin model. In this 
study, the images of 625 patches are taken in one shot for 
efficiency. As you can see in Sect. 5, there is some noise 
due to resolution and speckle. These are expected to be 
removed by improving the imaging system in our next step 
of research.

8 � Conclusions and future works

We proposed an estimation method with which to select the 
best multiple layers of human skin with arbitrary translu-
cency for the application of an inkjet 3D printer. Various 
combinations of LSF information for translucency were 
measured, and an appropriate layout of multiple layers was 
derived through machine learning.

In a preliminary study, we focused on LSF matching with 
the limitation of the application for human skin. It was pos-
sible to select a combination of layers that produces similar 
LSFs as the result of estimation, despite the complexity of 
there being 10 layers. Meanwhile, it was difficult to find 
the best combination that satisfies both color and the LSF. 
We think this is due to the design of our neural network 
to minimize the average error of the LSF. This may lead 
to a case where reducing the overall average error of LSF 

lead to the situation that the estimation system deal with the 
translucency as priority compared to RGB ratio. Therefore, 
the design of the network needs to be improved, taking into 
account that there is some trade-off between color and trans-
lucency. The evaluation was done only on the LSF and not 
on the layout, because we could not build index to compare 
the quality of layouts. Shi et al. did not evaluate the layout 
for the same reason [14]. We also gave up to compare the 
quality in layout layer. In addition, a simple two-layer model 
was applied in this study, despite the fact that more complex 
modeling of human skin structure has been done in the field 
of CG. This was preliminarily determined by considering 
the limitations of materials and fabrication methods in 3D 
printing. In future work, we hope to improve the appear-
ance using models that are more complex. The integration 
of knowledge from biomedical optics and skin biology will 
be required.

Moreover, we imposed restrictions on overpainting in 
each part of the skin. However, we did not restrict the learn-
ing process. We assume that it is necessary to separate net-
works using features such as the BSSRDF [15] and LSF to 
avoid complicated learning, and error propagation must be 
comprehensively investigated. The skin color gamut used in 
this study was empirically selected as a common skin color 
for Asians. It is difficult to cover a large skin color gamut 
with this limited color gamut, and it is thus necessary to con-
sider how to deal with a wide color gamut in combination 

Fig. 17   Various CG-skin samples

Table 2   RMSE for various 
samples

(a) (b) (c) (d) (e) (f) (g) (h)

0.04115 0.04455 0.02859 0.05542 0.05145 0.04819 0.06101 0.04939
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with evaluation using a skin color database. Our research is 
expected to be applied to skin phantoms and tattoo coloring 
effects.
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