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Abstract

The parameterization of spatially distributed hydraulic properties is one of the most crucial steps in groundwater modeling. A
common approach is to estimate hydraulic properties at a set of pilot points and interpolate the values at each model cell. Despite
the popularity of this method, several questions remain about the optimum number and distribution of pilot points, which are
determining factors for the efficiency of the method. This study proposes a strategy for optimal pilot point parameterization that
minimizes the number of parameters while maximizing the assimilation of an observed dataset unevenly distributed in space. The
performance of different pilot point distributions has been compared with a synthetic groundwater model, considering regular
grids of pilot points with different spacings and adaptive grids with different refinement criteria. This work considered both
prior and iterative refinements, with a parameter estimation step between successive refinements. The parameter estimation was
conducted with the Gauss—Levenberg—Marquardt algorithm, and the strategies were ranked according to the number of model
calls to reach the target objective function. The strategy leading to the best fit with the measurement dataset at the minimum
computational burden is an adaptive grid of pilot points with prior refinement based on measurement density. This strategy was
successfully implemented on a regional, multilayered groundwater flow model in the south-western geological basin of France.
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Introduction (Elshall et al. 2020). Groundwater models are necessarily a
simplification of the geology, and hydraulic properties are
most often heterogeneous and poorly constrained by direct

measurements (Anderson et al. 2015). In this context, the

During the last decades, numerical models have been exten-
sively used to gain insights into aquifer system behavior. The

interest of water managers in model-based decision support
is still growing, and models are more than ever expected
to guide the definition of sustainable management policies
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precision and reliability of model-predicted values is a
critical issue that justifies the need for practical and robust
parameter estimation methods (Delottier et al. 2017).

A number of parameter estimation methods have been used
in the last few decades (Doherty 2015; Zhou et al. 2014).
Manual trial-and-error calibration that prevailed historically is
gradually replaced by algorithmic methods such as the Gauss-
Levenberg-Marquardt approach, which iteratively seeks the
minimum error variance solution to the inverse problem from
local finite-difference linearization of the model (Doherty
2015; Poeter et al. 2014). Such methods are widely used
as they are easy to implement and effective for regularized
inversion (Anderson et al. 2015); yet, they suffer from the
computational burden associated with the estimation of the
Jacobian matrix and the linear assumption is a limitation for
uncertainty quantification. More recently, ensemble-based
methods such as the Iterative-Ensemble-Smoother (IES) have
been proposed as an alternative (White 2018). They also rely
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on strong assumptions but present the advantage of joining the
parameter estimation and uncertainty quantification steps. The
relevance of these algorithms largely depends on the context
of the application, data availability, and the purpose of the
modeling exercise; however, in a large majority of cases, it is
neither relevant nor practical to consider the value of hydrau-
lic properties at each model cell as an independent, adjustable
parameter. Therefore, a common and crucial step is choosing
an appropriate parameterization method, which consists of
the definition of a mapping between model properties and
adjustable parameters to be estimated by the algorithm (Cui
et al. 2021).

Zonation and ‘pilot points’ methods are the most common
approaches for the parameterization of spatially distributed
parameters. The former divides the model domain into a finite
number of zones where parameters are assumed to be constant
(Neuman 1973; Carrera 1986). Although some algorithms
allow identifying the number of zones and the positions of
the discontinuities (Hayek et al. 2009), this approach is still
conditioned by prior knowledge of geological information and
stratigraphy (Klaas and Imteaz 2017). As stated by Zhou et al.
(2014), such parameterization may cause a structural error
by introducing unrealistic, arbitrary discontinuities between
zones. As an alternative to zones, the pilot points method
introduced by de Marsily (1978) estimates the parameter val-
ues at a predetermined number of fixed points distributed in
the model domain. Values at model cells are obtained by a
smooth interpolation technique such as kriging (de Marsily
1984). A brief overview and history of the method has been
recently proposed by White and Lavenue (2023).

Pilot points have been widely used for groundwater
model calibration, and several practical concerns for
implementing this approach have been widely discussed
(Certes and de Marsily 1991; Doherty 2003; Doherty et al.
2010; Fienen et al. 2009). Pilot points generally lead to
smooth isotropic fields, but recent studies have focused
on the representation of hydraulic connectivity (Schilling
et al. 2022; Trabucchi et al. 2022). Despite these advances,
some issues are not fully addressed, particularly regard-
ing the distribution of pilot points in the model domain,
which can lead to subjective choices and diminish the
feasibility or efficiency of the method. Choosing a small
number of pilot points can lead to satisfactory identifica-
tion of pilot-point parameter values with limited compu-
tational resources, but it decreases the level of detail and
the description of heterogeneities and therefore misses the
opportunity to explore some structural errors that could
be made when conceptualizing the model (LaVenue and
Pickens 1992). In contrast, using numerous pilot points
can improve the description of heterogeneities, although
this increases the need for computational resources. Addi-
tionally, using too many pilot points can lead to overpa-
rameterization where the model becomes too complex and
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sensitive to noise in the data, which can result in numeri-
cal instability and difficulty in obtaining a unique solu-
tion to the inverse problem. Regularization can avoid the
latter (Alcolea et al. 2006; Fienen et al. 2009); however,
the numerical burden remains an issue. To date, a lim-
ited series of recommendations are available to define the
appropriate number of pilot points and their suitable loca-
tion. Gémez-Hernénez et al. (1997) recommend placing
pilot points in a regular grid with a spacing of one-third
of the variogram range. Wen et al. (2006) reported that
placing pilot points with random methods yields better
results. Doherty (2003) and Alcolea et al. (2006) sug-
gested including as many pilot points as possible with the
appropriate mathematical regularization and subspace
methods (Christensen and Doherty 2008). It is not often
mentioned that for real-world studies, measurements tend
to be heterogeneously distributed in the model domain,
so pilot points may be unevenly constrained if they are
homogeneously distributed. Few authors discussed the
relationship between pilot point placement and measure-
ment availability, except Doherty et al. (2010), who rec-
ommended placing pilot points in areas with the highest
data density (typically between wells in the groundwater
flow direction). Klaas and Imteaz (2017) investigated the
effects of pilot point density in a regular grid and dis-
cussed the interest in placing pilot points based on the
experimental groundwater head contours. More recently,
Baalousha et al. (2019) highlighted the effect of pilot point
numbers and configurations on calibrated parameters, and
Kapoor and Kashyap (2021) proposed a hybrid placement
method based on both hydraulic head measurements and
transmissivity estimates derived from pumping tests.

Despite the studies already mentioned, configuring pilot
points remains challenging and mainly constrained by prac-
tical concerns and manual placement. This paper aims to
define a reproducible strategy that would minimize the num-
ber of pilot points, save computational resources, and maxi-
mize the fit to measured data for the heterogeneities to be
described at best, given measurements unevenly distributed
in space.

This study investigates the efficiency of parameterization
for both regular and adaptive grids of pilot points, where
the density of pilot points is increased in the function of
refinement criteria. The following questions arise: What is
the optimum spacing for regular grids of pilot points? Can
irregular, adaptive grids of pilot points improve the calibra-
tion process? If so, what are the optimum refinement crite-
ria for these grids? And eventually, should iterative refine-
ments of pilot points be considered? This paper addresses
these issues by performing a series of tests on a synthetic
model. The best approach is eventually implemented in a
real-world case study: the multilayered groundwater model
of the south-western geological basin of France.
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Methods
Parameter estimation

The calibration has been conducted with the Gauss—Lev-
enberg—Marquardt Algorithm (GLMA) as implemented in
PEST_HP (Doherty 2020). The Jacobian matrix is computed
at each iteration to form a linearized version of the model,
containing parameter sensitivities to each measured observa-
tion. Sensitivities can be estimated with a classical 2-point
finite difference approach or a more robust 3-point para-
bolic approximation (Doherty 2015). The former approach
requires m + 1 model calls, while the second, more demand-
ing method requires (2m + 1) model calls for each iteration,
with m being the number of adjustable parameters. The
computational burden associated with the computation of
the Jacobian matrix increases with the number of adjustable
parameters, which constrains the application of the GLMA
to highly parameterized models.

At each iteration of the calibration process, the algorithm
upgrades the parameter vector to reduce the misfit between
model outputs and the measurements by minimizing the
measurement objective function correspondin% to the sum
of weighted squared residuals, ¢, = >, (w;r;)", where the
residual r; refers to the difference between the ith model
output and its observed counterparts and the weights (w;)
are assigned based on the inverse of the standard devia-
tion of measurement error. With this weighting scheme
and assuming a perfect model, the target value for ¢, is the
number of measurements. For real-world cases, the occur-
rence of model structural error entails that ¢, converges to
higher values (Doherty 2015). The closer the final objective
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function value is to the target objective function value, the
better the calibration is in terms of fitting of measured data.

This study employed the truncated singular value decom-
position (SVD) and Tikhonov regularizations to stabilize
the inversion of the underdetermined problem and guarantee
the convergence to a unique solution (Tonkin and Doherty
2005). Zero-order (preferred value) and first-order (pre-
ferred homogeneity) Tikhonov regularizations were both
employed (Tikhonov and Arsenin 1977; Doherty 2015). The
former attempts to draw estimated pilot point values toward
their initial (prior) value. The latter promotes homogeneity
between neighboring pilot point values by introducing the
weighted difference between pilot point values in the regu-
larization objective function. The termination criteria were
chosen for the algorithm to stop when the reduction in the
objective function is less than 1% for the last three iterations,
or when the total number of iterations exceeds 30.

Pilot point parameterization

In this approach, pilot points are placed according to a grid,
which is necessarily coarser than the model grid and should
not be confused with it. Two different strategies for pilot point
placement have been considered: (1) regular grids with uni-
form spacings and (2) adaptive grids with local refinements
(Fig. 1). In addition, an iterative strategy was explored, involv-
ing the estimation of parameters between successive refine-
ments of the pilot point grids. The refinement is conducted
following a 2D quadtree style, which allows cells to be subdi-
vided repeatedly into four child cells. It should be noted that
the parent pilot points are kept throughout refinement steps to
facilitate the implementation of the iterative approach. Four
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Fig. 1 a Base pilot-points distribution according to a regular grid and
b adaptive parameterization where pilot points constrained by meas-
urements are refined following the quadtree grid method. Cells with

black bold outlines are for the grid of pilot points, and cells with thin
grey outlines are for the model grid
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refinement criteria were evaluated for each pilot point: the
composite scaled sensitivity, the component of the gradient
of the objective function corresponding to the pilot point, the
parameter identifiability, and the density of the measurement
data, which corresponds to the number of measures in the cell
of the pilot points grid (Fig. 1). The positioning of the pilot
points was achieved using Python scripts.

The composite scaled sensitivities (CSS) describe the
intensity of the control provided by a measured dataset over
a given parameter (Hill and Tiedeman 2006):

roi);

css; =
n

X | by | (1)

where J is the Jacobian matrix, Q is the measurement
weight matrix, b is the vector of (transformed) parameter
values, and n is the number of nonzero-weighted observa-
tions (Doherty 2015). The component of the gradient of the
objective function pertaining to the i-th parameter can be
expressed as follows (Doherty 2015):

d¢ t

— =2 r|.

o, = 2, )
where r is the vector of the model to measurement residuals.
% is the partial derivative of the objective function ¢ with

respect to a parameter b;.

The parameter identifiability, f; corresponds to the cosine
of the angle between the vector pointing in the parameter’s
direction and its projection onto the calibration solution
space (Doherty and Hunt 2009). It ranges between O for
complete nonidentifiability and 1 for complete identifiabil-
ity. It can be used to describe the capability of a calibra-
tion dataset to constrain a parameter value as it accounts for
both parameter sensitivity and correlation. The computa-
tion of f, is conducted after singular value decomposition
(SVD) of the weighted Jacobian matrix and subdivision of
the parameter space into a “solution” and a “null” space.
The dimension of the solution space is considered optimal
when the introduction of additional eigenvectors leads to
an increase (rather than a decrease) in the associated error
variance (Doherty 2015). This was performed with the PEST
SUPCALC utility (Doherty 2019).

The adaptive approach is tested with refinements of the
pilot points grid conducted prior to the calibration process,
and in an iterative manner (Fig. 2). The iterative refinement
procedure starts with the initial, regular grid of pilot points
until the convergence of the objective function. The parame-
terization is then updated by refining the pilot points satisfy-
ing the refinement criteria. The calibration is then resumed
with the new parameterization and the procedure continues
until the objective function reaches the target value.
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Fig.2 Summary of tested strategies for optimizing the pilot points
configuration

The calibration efficiency has been evaluated for both reg-
ular and adaptive parameterization approaches. The compar-
ison is conducted by analyzing the evolution of the objective
function with respect to the number of model calls. The best
configuration presents the fastest decrease of the objective
function to the target value at the minimum calculation costs.

The interpolation of hydraulic conductivity at model
cells was undertaken by kriging from pilot point values as
implemented in the PYEMU Python package (White et al.
2016). For all the configurations considered in this study,
the kriging factors were computed with Python consider-
ing an exponential variogram with a range of twice the
largest spacing between pilot points. This as a ratio avoids
the “bulls-eyes” effect in the interpolated field. The expo-
nential variogram model is recommended when describing
the heterogeneity of hydraulic properties because it avoids
the occurrence of parasitic values between closely spaced
pilot points of very different values (Doherty et al. 2010).

Synthetic model

Model description

Investigations are conducted on a synthetic model derived
from Moore and Doherty (2005), which considers steady-

state flow in a confined aquifer described with a single
10-m-thick layer over a domain of 500 m X 800 m, discretized
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with a regular grid of 10 m square cells (Fig. 3). A fixed
inflow of 1 m? day™! is imposed at the model upper boundary,
and heads are fixed at 0 m along the lower boundary.

The reference hydraulic conductivity field was generated
by Gaussian sequential simulation with Gstat (Pebesma 2004)
using a log exponential variogram with a range of 100 m and
a sill of 0.3. Flow within the domain was simulated using
the finite-difference MARTHE model (Thiery 2015). Simu-
lated heads were extracted at 26 observation wells unevenly
distributed over the model domain to reflect real-world con-
figurations. Indeed, observation networks typically present
clusters with high measurement density and areas deprived
of measurements. Gaussian noise was added to the simulated
heads with a standard deviation of 0.01 m to introduce meas-
urement error. Following the weighing strategy described in
section ‘Parameter estimation’, an equal weight of 100 was
assigned to each measure, corresponding to the inverse of the
standard deviation of measurement error. In such conditions,
the target measurement objective function corresponds to the
number of measured data (here, 26).

Pilot points

The initial exploration involved regular grids of pilot
points, covering spacings ranging from 24 to 3 model cells
(Fig. 4). This resulted in varying numbers of pilot points,
starting at 12 for the largest spacing (240 m) and reaching
456 for the shortest spacing (50 m).

Adaptive grids of pilot points were obtained by local refine-
ments of the coarse regular grid with a spacing of 24 model
cells with 12 pilot points (referred as “REG 24”). Different
refinement strategies were tested with 4 different criteria

Fixed inflow = 1 m3/d

ay v 3 b

800 800
700 A 700
600 - 600
500 1 500
400 - 400
300 300
200 200
100 1 100
Fixed head =0 m
0 200 400 0 200

(refer to section ‘Parameter estimation’ for a description of
these criteria). In all, 30% of the pilot points presenting the
highest criteria values were subsequently refined to reach a
resolution twice finer than the original grid. The number of
pilot points after the refinement is 52, except for the refine-
ment based on the measurement availability, where the total
number is 40. There are fewer pilot points for this criterion
due to successive refinements of the same points, which are
discarded. The adaptive parameterization was tested from the
beginning of the calibration (Fig. 5) and iteratively (Fig. 6). In
the first approach, the grid of pilot points is refined according
to the criteria inferred from the initial parameter values. In
the second approach, the first calibration is conducted with a
regular grid of pilot points, and the refinement criteria are then
computed from the Jacobian matrix with updated parameter
values. As for consequence, the set of pilot points to be refined
may differ between the two approaches.

Results

The calibration efficiency for the configurations of pilot
points is evaluated by comparing the evolution of the meas-
urement objective function with the number of model runs.
The discussion begins with the results achieved using regular
grids of pilot points (Fig. 7a). Large spacings between pilot
points with 24 and 12 model cells (REG 24 and REG 12) led
to fast convergence of the objective function value but did not
wholly assimilate the measurements dataset. The objective
function target value was reached with small spacings but
with increased calculation times (REG 6 and REG 3). The
best convergence of the objective function at minimum cal-
culation costs is obtained with a spacing of 6 (REG 6) model

Log K (m/s C H(m
g K (m/s) o (m)
-35 700 8
-4.0 600
500 6
-4.5
400
-5.0 4
300
-5.5 500
2
=60 100 ,
-6.5 0 0
400 0 200 400

Fig.3 The synthetic model: a model domain and boundary conditions, b True hydraulic conductivity distribution, and ¢ Simulated heads and

locations of observation wells (red crosses)
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cells. Configurations with spacings of 3 (REG 3) model cells
provide the same level of fit but require almost double model
runs. This demonstrates the effect of pilot point numbers on
fitting the measurements and the importance of choosing ade-
quate spacing for the regular grid. Though it may be of inter-
est for uncertainty analysis, including as many pilot points as
possible for the calibration step increases the computational
burden, which can be a limiting factor when dealing with
highly parameterized models with long computation time.

The size of the solution space for the configurations with
regular grids increases with the number of adjustable param-
eters (pilot points) but reaches a plateau beyond 126 pilot
points (spacing of 6 grid cells; Fig. 8). Thus, when seeking to
enhance the fit of measurements, it is unnecessary to increase
the number of parameters beyond a certain threshold.

The performance of the initial adaptive configurations
appears to be largely dependent on the choice of the refine-
ment criterion (Fig. 7b). Refinements based on measurement
availability and parameter identifiability lead to better per-
formance than regular grids. In contrast, refinements based
on CSS and the gradient of the objective function did not
reach the target objective function and required more than
4,400 model runs for convergence.

For the adaptive approach (Fig. 7c), the refinements of the
pilot points grid with the different criteria were conducted after
calibration with the regular grid with a spacing of 24 model
cells. From these results, the interest of the iterative approach
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is not salient compared to the initial adaptive approach. Except
for the refinement based on the number of measurements, the
performance of the iterative adaptive strategy is poor compared
to the best configuration with the regular grid.

The results for the three different approaches for pilot
point placement (regular grid, initial adaptive grid, iterative
adaptive grid) are summarized in Fig. 9. The best configu-
rations with low objective function and a small number of
model runs (bottom left portion of the plot) correspond to
the initial adaptive approach based on measurement avail-
ability (N=40 pilot points). The regular grid with a spacing
of 6 model cells also reaches the target objective function
value, but at a much greater cost in terms of model runs. The
hydraulic conductivity fields for these two “best” configura-
tions are compared to the “reference” field in Fig. 10. As
expected, only large-scale heterogeneities can be described
with a better resolution where the measured dataset is dense.
In areas poorly constrained by measurements, the pilot points
of the regular grid present similar values, which leads to an
outcome similar to the more parsimonious adaptive approach.

Application to a regional flow model

The findings obtained with the synthetic model have been
applied to estimate the hydraulic properties of the regional
groundwater "MOdel of North Aquitania" (MONA). The
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Fig.5 Initial adaptive grid with
refinement of pilot points based
on a measurements availability,
b sensitivity, ¢ identifiability,
and d the gradient objective
function. “Parent” pilot points
(pp) are displayed as large grey
points, “child” pilot points as
small black points, and meas-
urements as red crosses

model was developed by the French Geological Survey
(BRGM) to simulate flow and investigate the impact of pump-
ing in the extensive unconfined aquifers supplying the city of
Bordeaux. The model covers the northern part (46,032 kmz)
of the French south-west sedimentary basin (Fig. 11). It has

Fig.6 Iterative adaptive grids.
“Parent” pilot points (pp) are
displayed as large grey points,
“child” pilot points as small
black points, and measure-
ments as red crosses. 30% of the
initial pilot points are refined
two successive times based on
a measurements availability, b
sensitivity, ¢ identifiability, and
d the highest value of the objec-
tive function’s gradient
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15 aquifers interbedded by aquitards discretized with a regular
grid of 2 X 2 km from Plio-Quaternary down to Jurassic units
(Thiéry et al. 2011). The model does not explicitly simulate
flow in the aquitards but accounts for vertical flows adjusted
by a conductance parameter (pseudo-3-D assumption). The
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Fig.7 Evolution of the measurement objective function with the number of model runs for different pilot point parameterizations: a regular
grids, b initial adaptive grids, and c iterative adaptive grids. Results of regular grids are also presented to facilitate the comparison (b—c)
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Fig. 8 Evolution of the dimension of the solution space for the regu-
lar grids of pilot points with different spacing

domain is bounded by Cretaceous and Jurassic outcrops to
the east and north, the Atlantic Ocean and the Gironde Estu-
ary to the west. Hydraulic heads are imposed on the western
boundary, accounting for seawater level along the Atlantic
Coast. Heads are also prescribed along the Garonne River and
its estuary, and no-flow boundaries are assumed at the south-
ern limit, which corresponds with the separation from the
southern part of the Aquitaine basin (Buscarlet et al. 2019).
Recharge is estimated annually by an empirical formula using
climatic data (precipitation and evapotranspiration) from a
series of weather stations (Pédron and Platel 2005). The
pumping database includes 6,235 wells distributed within the
15 geological formations (Saltel et al. 2016). The diffusivity
equation is solved at the annual time step in a finite volume
scheme with MARTHE (Thiery 2015).

The purpose of this calibration exercise is to use his-
torical head measurements to improve the predictive
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Fig.9 Values of measurement objective functions against the total
number of model calls at convergence for the regular, initial adaptive,
and iterative adaptive parameterizations. The best parameterization
is obtained with the initial adaptive approach (bottom left), which
presents the lower number of model runs to reach the target objec-
tive function. “nobs” stands for the number of observations, “ident”
represents identifiability criteria, “css” denotes the composite scaled
sensitivity, “grad” signifies the gradient of the objective function, and
“reg” refers to the regular grid, followed by the corresponding spac-
ing. For example, “regl2” indicates that the spacing for the regular
grid is 12

capacity of the model for simulating heads in different
prospective management scenarios over the next decades.
The model was calibrated in the transient state over the
1972-2011 period using 423 observation wells. To assess
the measurement noise and assign weights, two types of
uncertainties were considered: the measurement uncer-
tainty, o, and the uncertainty raised from the aggrega-
tion of incomplete daily data at the annual time step, o,.
Assuming a standard deviation of +3 m at the 68% confi-
dence level for measurement uncertainty, arising from all
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potential errors in the measurements (groundwater depth
and borehole leveling), the aggregation uncertainty was
determined for each individual annual value by calculating
the standard error of the mean (Hughes and Hase 2013).

The parameter estimation procedure focused on the dis-
tributed hydraulic properties: the horizontal hydraulic con-
ductivity of aquifers, K, the vertical hydraulic conductivity
of aquitards, K|, the unconfined specific yield w, and the
specific storage, S,. Prior information on these parameters
was first collected for each layer of the model from the
French geological database (BSS) and several local stud-
ies (Moussié 1972; Hosteins 1982; Larroque 2004). These
values were used as a starting point for the GLMA and
were considered the preferred value for 0-order Tikhonov
regularization.

Parameterization

Both pilot points (PP) and zones of piecewise constancy
(ZPC) were used for the parameterization of this regional
model, which is summarized in Table 1. The specific yield
(w) was parameterized with pilot points for the first layer
(QUAT) with regular grids of pilot points with a spacing
of 20 model cells (40 km). ZPC were used for layers 2—15
since most parts of these aquifers remain confined and the
annual time step reduces the sensitivity of this parameter in
unconfined areas. For the specific storage (S,), pilot points
were placed with a spacing of 40 model cells (80 km) in
the permanently confined parts of the layers, and ZPC were
used for the permanently unconfined parts, where S are
insensitive. The vertical hydraulic conductivity of aquitards
was parameterized with a regular grid of pilot points with a
spacing of 40 model cells (80 km). Maps with the locations

a Reference data b

800 800

700 700
600 600
500 500
400 400
300 300
200 200

100 100

0 0
0 100 200 300 400 500 0

RMSE =0.51 m s’!

0
100 200 300 400 500 0 100 200 300 400

of pilot points are provided in all the items in the Appendix
Figs. 14, 15, 16, 17, 18, 19 and Table 2.

Several configurations were considered for the param-
eterization of horizontal hydraulic conductivity (K,). A
coarse regular grid with a 20-model-cell spacing (40 km)
and a finer regular grid with a 5-model-cell spacing (10
km) were considered. An adaptive grid of pilot points was
also taken into account, employing measurement density as
the refinement criterion. Pilot points with a minimum of 1
measurement within their neighboring values were refined
twice, resulting in a 5-model-cell spacing (10 km) between
pilot points in areas with a high measurement density and
20-model-cell spacing (40 km) in areas with sparse meas-
urements. Both the initial and iterative adaptive refinement
strategies were tested. In areas with high measurement den-
sity, the adaptive grids present the same spacing as the fine
regular grid. It should be noted that spacings between pilot
points are large (10-80 km), even with the local refinements.
With such parameterizations, only the most salient hetero-
geneities impacting the regional groundwater flow can be
described. This can be appropriate for the simulation of the
long-term regional flow dynamics; however, this approach
would not be relevant to describe small-scale local heteroge-
neities in the hydraulic property fields, which would require
a much denser measurement dataset.

Results

The calibration was conducted with three different strate-
gies for the parameterization of hydraulic conductivities
with pilot points: the coarse regular grid, the initial adaptive
grid, and the adaptive grid with an iterative approach. Each
model run took ~ 20 min of CPU time and calculations were
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-6.5
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800 C RMSE=0.53ms

Pilot points «
7008 Observation data +

LogK [m s7]
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Fig. 10 Comparison of the a “true” hydraulic conductivity field with b its estimated counterparts obtained with the best regular grid (pilot point
spacing of six model cells), and ¢ the adaptive grid refined according to the measurement density
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Fig. 11 Representation of the aquifers considered in the MONA. The insert shows the location of the Aquitaine region in France

parallelized over 114 CPU cores. The fine regular grid of
pilot points resulted in an excessive number of parameters
and prohibitive computation time, so it could not be tested.

The evolution of the objective function for the tested
configurations is presented in Fig. 12. As expected, the
configuration with the coarse grid of pilot points con-
verged to a relatively high value of the objective function,
illustrating the incapacity of this parameterization to rep-
resent sufficiently fine details in the hydraulic conductiv-
ity field to satisfy the measurement dataset. The iterative
adaptive approach performed well but with results close
to the initial adaptive approach, which is easier to imple-
ment. The initial adaptive approach, which took a week
and 56,393 model runs to converge, can therefore be con-
sidered the best approach.

The post-calibration hydraulic conductivity fields
obtained with the “best” initial adaptive approach are
provided in Fig. 13. The other estimated fields and per-
formance statistics are provided in the Appendix Figs. 14,
15, 16, 17, 18, 19 and Table 2. Overall, simulated values
reproduce their observed counterparts with a root mean
squared error (RMSE) of 6 m and a mean bias of —0.16

@ Springer

m. The goodness of fit varies substantially between layers.
Errors are the largest for the deep layers, for which the
density of measurements is low. The misfit is more hetero-
geneous in those layers that include some outliers with high
error values that affect the average. The outliers are mostly
related to insufficient or inconsistent data to constrain the
calibration; therefore, the algorithm is not focusing on their
fits since the weight assigned is low.

Discussion

The present study confirmed the importance of pilot point
distribution on calibration efficiency and provides guidelines
for optimizing the placement of pilot points when the com-
putational burden matters, such as for highly parameterized
regional models with long execution times. The purpose was
to identify the configuration leading to the fastest conver-
gence of the objective function to the target value, indicative
of appropriate assimilation of the measured dataset.
Investigations were conducted on a synthetic model
with both regular and adaptive grids of pilot points. The
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Table 1 Summary of the parameterization of the regional model
Layers K, (m/s) K, (m/s) Ss(rn’l) 0]
Par. Spacing for Spacing for Spacings for ~ Par. Spacing Par. Spacing Par. Spacing
coarse reg. grid  fine reg. grid  adapt. grid
1 QUAT PP 20 5 20/5 - - - - PP 20
2 HELV PP 20 5 20/5 PP 40 PP/ZPC 40 ZPC -
3 AQUI PP 20 5 20/5 PP 40 PP/ZPC 40 ZPC -
4 OLNP PP 20 5 20/5 PP 40 PP/ZPC 40 ZPC -
5 EOCS PP 20 5 20/5 PP 40 PP/ZPC 40 ZPC -
6 EOM PP 20 5 20/5 PP 40 PP/ZPC 40 ZPC -
7 EOCI PP 20 5 20/5 PP 40 PP/ZPC 40 ZPC -
8 CAMP PP 20 5 20/5 PP 40 PP/ZPC 40 ZPC -
9 COST PP 20 5 20/5 PP 40 PP/ZPC 40 ZPC -
10 TURO PP 20 5 20/5 PP 40 PP/ZPC 40 ZPC -
11 CENO PP 20 5 20/5 PP 40 PP/ZPC 40 ZPC -
12 TITH PP 20 5 20/5 PP 40 PP/ZPC 40 ZPC -
13 KIMM PP 20 5 20/5 PP 40 PP/ZPC 40 ZpPC -
14 BACX PP 20 5 20/5 PP 40 PP/ZPC 40 ZPC -
15 BAJO PP 20 5 20/5 PP 40 PP/ZPC 40 ZPC -

Par. refers to the type of parameterization, PP for pilot points and ZPC for zones of piecewise constancy. Spacings are expressed in terms of
model cells. Three configurations have been considered for the parameterization of hydraulic conductivity: a coarse regular grid, a fine regular
grid, and an adaptive refinement based on measurement density. For the latter, both the maximum/minimum values of pilot point spacing are

provided

first analysis with regular grids revealed the importance
of choosing an appropriate spacing between pilot points.
Large spacings lead to fast convergence of the objective
function but do not allow complete assimilation of the
measured dataset. In contrast, including as many pilot
points as possible for calibration, as suggested by Alcolea
et al. (2006), leads to a good fit of observed data but
increases the computational burden. The optimum spac-
ing, leading to the fastest convergence of the objective
function to the target value was obtained with a pilot point
spacing of 60 m and a variogram range of 120 m, which
is close to the variogram used for the generation of the
synthetic hydraulic conductivity field (100 m). Such a
result is in line with the expectations for a synthetic case,
but further questions remain when dealing with unknown,
real-world hydraulic conductivity fields, for which the
structure of heterogeneities that matter for the modeling
exercise is not precisely known. An option can be to use
the calibration dataset to investigate the size of solution
space and get insights on the optimum number of pilot
points by truncated singular value decomposition. This
requires the computation of a Jacobian matrix for each
configuration which may be computationally intensive.
Furthermore, the size of the solution space suggested by
this approach is often too large because its computations
fail to account for the contribution made to measurement
uncertainty by structural noise of unknown covariance
structure (Doherty et al. 2010).

Results of the synthetic case also revealed that an adap-
tive approach with refinement based on measurement
density leads to better performances than the optimum

== Coarse regular grid
Initial adaptive approach
—— [terative adaptive approach
10% = = Targel (¢m)

103

Measurement objective function (¢.,)

0 20000 40000 60000
Number of model runs

Fig. 12 Summary of objective function vs. the number of model runs
for regular and adaptive approaches
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Fig. 13 Post-calibration horizontal hydraulic conductivities (Kj,) obtained with the initial adaptive approach

regular grid of pilot points. Both configurations reached
the target objective function and a similar description of
the heterogeneity, but the adaptive approach required much
fewer model calls. This stems from the fact that measure-
ments were heterogeneously distributed, as is often the
case in the real world. The refinement criteria based on

@ Springer

the measurement density outperformed the criteria derived
from parameter sensitivities (CSS, identifiability, gradi-
ent of the objective function). This is quite unexpected
given previous studies on this topic (Ackerer et al. 2014;
RamaRao et al. 1995) but can be interpreted as an effect
of the local and approximate nature of model derivatives
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obtained by perturbation of prior (initial) parameter values
in this study. Apart from its efficiency, a great advantage
of the criteria based on measurement density is that it does
not require any model runs to be evaluated. In contrast,
the iterative adaptive approach, which involves param-
eter calibration before the refinement of the pilot points
grid, yields disappointing results. This may be explained
by the characteristics of the GLMA, which could remain
“trapped” in a local optimum in the parameter space and
prevent further descent of the objective function after
refinement. Another tuning factor of the adaptive strat-
egy is the proportion of pilot points to be refined. This
threshold was set to 30% in this study, and those pilot
points were refined two successive times, leading to the
best results in this case but may be subject to further inves-
tigation and adjustments in other case studies.

The best strategy identified with the synthetic model
(adaptive grid of pilot points refined according to measure-
ment density) was tested on a real-world, regional ground-
water model together with two other configurations for com-
parative purposes: a coarse grid and an iterative adaptive
approach. As expected, the objective function converged
to a high value with the coarse grid. The iterative adaptive
approach gave satisfactory results but was outperformed by
the adaptive approach, which is easier to implement. This
approach can therefore be recommended for similar con-
figurations, which is a step forward, but a series of improve-
ments and perspectives can be outlined.

While it can significantly facilitate parameter estima-
tion of highly parameterized models, the main limitation
of the presented approach is its implication for uncertainty
quantification. The proposed refinement strategy focuses
on the heterogeneity that can be described by the assimi-
lation of the measured dataset, not necessarily on the
heterogeneity that matters for the predictions of interest.
As for consequence, heterogeneities in areas with no data
may be poorly described, and the uncertainty of related
predictions can be underestimated. Measurements are usu-
ally conducted where they are supposed to be of greater
interest, but this is not always the case. The proposed
approach could be extended with refinement criteria not
only based on the measurement dataset but also criteria
derived from prediction sensitivities, which would allow

better consideration of heterogeneities that matter for pre-
dictions of interest for decision-making.

The presented approach is optimum in the sense that it
maximizes data assimilation while minimizing the number
of parameters, and consequently, the computational burden
of parameter estimation. This effort on pilot point param-
eterization may yet be insufficient for parameter estimation
to become tractable. It should be accompanied by optimiz-
ing the numerical solver and model complexity level that
may reduce computation times (Doherty and Moore 2020;
Guthke 2017). Apart from reducing the number of parame-
ters and model run times, more frugal parameter estimation
algorithms may also be considered. Randomized Jacobian
estimates (Doherty 2020) can reduce the need for model
calls, and ensemble-based approaches such as IES (White
2018) can also be considered. Most likely, a smart combina-
tion of these options may be relevant to address impractical
inverse problems.

Conclusion

The parameter estimation of highly parameterized mod-
els with long run times, such as regional multilayered
groundwater models, is often associated with challenges
that threaten its practicality. In such models, most param-
eters are representative of parameter values at pilot points.
A series of configurations was explored to optimize their
distribution and reduce their number. The strategy lead-
ing to the best data assimilation, while minimizing the
computational burden, is an adaptive grid of pilot points
with a refinement based on measurement density. In this
approach, the grid of pilot points was refined in areas with
the largest number of measurements. This strategy was
successfully implemented on a regional flow model, illus-
trating its efficiency; however, the best parameterization
approach to fit the available measurements may not be
optimum for uncertainty quantification. To this purpose,
the current approach could be extended with pilot point
refinement criteria accounting for the sensitivity of pre-
dictions of interest. Evaluating these options is a topic for
future work.
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Fig. 14 Pilot points distribution with the coarse regular grid with a spacing of 20 model cells between pilot points (black points). Measurement/
observation data are represented by red crosses
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Fig 15 Adaptive pilot points distribution for all MONA layers. The pilot points were initially distributed using a coarse grid of 20 cell spacing
and then refined two successive times based on measurement data availability

@ Springer



Hydrogeology Journal (2023) 31:2381-2400

2396
1
LogK [m 1] LogK [m s7]
- AQUI
400 =7
400- 7.6
-7.8
350-
-8.0
300-
-8.2
250-
-84
-86 300 350 400 450 S00 S50 -8.6
LogK [m s? LogK [m s]
gk(m s EOCM
400 -8.5 400 . -8.5
-9.0
3s0 & _9.0 3501
-95
4 300
%08 -95 -10.0
250 250 -105
-10.0
200 200 -11.0
— . -10.5 -115
300 350 400 450 500 550 300 350 400 450 500 SS0
Logk [m S: LogK [m s]
CAMP J COST
400- . .50 300
350- N ~8.75 350 -
300- =9.00 309
-9.25
250- 250 -
-9.50
200+ . -9.75 2001
3°°3S°‘°°‘5°5°°55° -10.01 300 350 400 450 500 550
LogK [m s] LogK [m s]
CENO
-8.0
-85
3501 350 -~ -8.2
200 ] =90 300.
\ -8.4
250 - g5 250-
200 . . 200- -8.6
300 350 400 450 soo sso Ml 100 3557350 a0 450 soo S50
LogK [m 5] LogK [m s}
BACX 5o BAJO o
400 . -8 "
-85
350 _8.5350- 8
300 300- —9.0
-9.0
250 250-
-9.5
200 -9.5200-
300 350 400 450 500 550 300 350 400 450 soo sso fgf —10.0

Fig. 16 Post-calibration vertical hydraulic conductivities (K,) for all aquitard layers
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w Table2 Summary statistics for calibration: root mean squared error
400 0.254 (RMSE) and bias calculated for each MONA layer. Mean values are
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