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Abstract
The parameterization of spatially distributed hydraulic properties is one of the most crucial steps in groundwater modeling. A 
common approach is to estimate hydraulic properties at a set of pilot points and interpolate the values at each model cell. Despite 
the popularity of this method, several questions remain about the optimum number and distribution of pilot points, which are 
determining factors for the efficiency of the method. This study proposes a strategy for optimal pilot point parameterization that 
minimizes the number of parameters while maximizing the assimilation of an observed dataset unevenly distributed in space. The 
performance of different pilot point distributions has been compared with a synthetic groundwater model, considering regular 
grids of pilot points with different spacings and adaptive grids with different refinement criteria. This work considered both 
prior and iterative refinements, with a parameter estimation step between successive refinements. The parameter estimation was 
conducted with the Gauss–Levenberg–Marquardt algorithm, and the strategies were ranked according to the number of model 
calls to reach the target objective function. The strategy leading to the best fit with the measurement dataset at the minimum 
computational burden is an adaptive grid of pilot points with prior refinement based on measurement density. This strategy was 
successfully implemented on a regional, multilayered groundwater flow model in the south-western geological basin of France.

Keywords Groundwater modeling · Parameter estimation · Pilot points · Heterogeneity · Hydraulic properties

Introduction

During the last decades, numerical models have been exten-
sively used to gain insights into aquifer system behavior. The 
interest of water managers in model-based decision support 
is still growing, and models are more than ever expected 
to guide the definition of sustainable management policies 

(Elshall et al. 2020). Groundwater models are necessarily a 
simplification of the geology, and hydraulic properties are 
most often heterogeneous and poorly constrained by direct 
measurements (Anderson et al. 2015). In this context, the 
precision and reliability of model-predicted values is a 
critical issue that justifies the need for practical and robust 
parameter estimation methods (Delottier et al. 2017).

A number of parameter estimation methods have been used 
in the last few decades (Doherty 2015; Zhou et al. 2014). 
Manual trial-and-error calibration that prevailed historically is 
gradually replaced by algorithmic methods such as the Gauss-
Levenberg-Marquardt approach, which iteratively seeks the 
minimum error variance solution to the inverse problem from 
local finite-difference linearization of the model (Doherty 
2015; Poeter et al. 2014). Such methods are widely used 
as they are easy to implement and effective for regularized 
inversion (Anderson et al. 2015); yet, they suffer from the 
computational burden associated with the estimation of the 
Jacobian matrix and the linear assumption is a limitation for 
uncertainty quantification. More recently, ensemble-based 
methods such as the Iterative-Ensemble-Smoother (IES) have 
been proposed as an alternative (White 2018). They also rely 
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on strong assumptions but present the advantage of joining the 
parameter estimation and uncertainty quantification steps. The 
relevance of these algorithms largely depends on the context 
of the application, data availability, and the purpose of the 
modeling exercise; however, in a large majority of cases, it is 
neither relevant nor practical to consider the value of hydrau-
lic properties at each model cell as an independent, adjustable 
parameter. Therefore, a common and crucial step is choosing 
an appropriate parameterization method, which consists of 
the definition of a mapping between model properties and 
adjustable parameters to be estimated by the algorithm (Cui 
et al. 2021).

Zonation and ‘pilot points’ methods are the most common 
approaches for the parameterization of spatially distributed 
parameters. The former divides the model domain into a finite 
number of zones where parameters are assumed to be constant 
(Neuman 1973; Carrera 1986). Although some algorithms 
allow identifying the number of zones and the positions of 
the discontinuities (Hayek et al. 2009), this approach is still 
conditioned by prior knowledge of geological information and 
stratigraphy (Klaas and Imteaz 2017). As stated by Zhou et al. 
(2014), such parameterization may cause a structural error 
by introducing unrealistic, arbitrary discontinuities between 
zones. As an alternative to zones, the pilot points method 
introduced by de Marsily (1978) estimates the parameter val-
ues at a predetermined number of fixed points distributed in 
the model domain. Values at model cells are obtained by a 
smooth interpolation technique such as kriging (de Marsily 
1984). A brief overview and history of the method has been 
recently proposed by White and Lavenue (2023).

Pilot points have been widely used for groundwater 
model calibration, and several practical concerns for 
implementing this approach have been widely discussed 
(Certes and de Marsily 1991; Doherty 2003; Doherty et al. 
2010; Fienen et al. 2009). Pilot points generally lead to 
smooth isotropic fields, but recent studies have focused 
on the representation of hydraulic connectivity (Schilling 
et al. 2022; Trabucchi et al. 2022). Despite these advances, 
some issues are not fully addressed, particularly regard-
ing the distribution of pilot points in the model domain, 
which can lead to subjective choices and diminish the 
feasibility or efficiency of the method. Choosing a small 
number of pilot points can lead to satisfactory identifica-
tion of pilot-point parameter values with limited compu-
tational resources, but it decreases the level of detail and 
the description of heterogeneities and therefore misses the 
opportunity to explore some structural errors that could 
be made when conceptualizing the model (LaVenue and 
Pickens 1992). In contrast, using numerous pilot points 
can improve the description of heterogeneities, although 
this increases the need for computational resources. Addi-
tionally, using too many pilot points can lead to overpa-
rameterization where the model becomes too complex and 

sensitive to noise in the data, which can result in numeri-
cal instability and difficulty in obtaining a unique solu-
tion to the inverse problem. Regularization can avoid the 
latter (Alcolea et al. 2006; Fienen et al. 2009); however, 
the numerical burden remains an issue. To date, a lim-
ited series of recommendations are available to define the 
appropriate number of pilot points and their suitable loca-
tion. Gómez-Hernánez et al. (1997) recommend placing 
pilot points in a regular grid with a spacing of one-third 
of the variogram range. Wen et al. (2006) reported that 
placing pilot points with random methods yields better 
results. Doherty (2003) and Alcolea et al. (2006) sug-
gested including as many pilot points as possible with the 
appropriate mathematical regularization and subspace 
methods (Christensen and Doherty 2008). It is not often 
mentioned that for real-world studies, measurements tend 
to be heterogeneously distributed in the model domain, 
so pilot points may be unevenly constrained if they are 
homogeneously distributed. Few authors discussed the 
relationship between pilot point placement and measure-
ment availability, except Doherty et al. (2010), who rec-
ommended placing pilot points in areas with the highest 
data density (typically between wells in the groundwater 
flow direction). Klaas and Imteaz (2017) investigated the 
effects of pilot point density in a regular grid and dis-
cussed the interest in placing pilot points based on the 
experimental groundwater head contours. More recently, 
Baalousha et al. (2019) highlighted the effect of pilot point 
numbers and configurations on calibrated parameters, and 
Kapoor and Kashyap (2021) proposed a hybrid placement 
method based on both hydraulic head measurements and 
transmissivity estimates derived from pumping tests.

Despite the studies already mentioned, configuring pilot 
points remains challenging and mainly constrained by prac-
tical concerns and manual placement. This paper aims to 
define a reproducible strategy that would minimize the num-
ber of pilot points, save computational resources, and maxi-
mize the fit to measured data for the heterogeneities to be 
described at best, given measurements unevenly distributed 
in space.

This study investigates the efficiency of parameterization 
for both regular and adaptive grids of pilot points, where 
the density of pilot points is increased in the function of 
refinement criteria. The following questions arise: What is 
the optimum spacing for regular grids of pilot points? Can 
irregular, adaptive grids of pilot points improve the calibra-
tion process? If so, what are the optimum refinement crite-
ria for these grids? And eventually, should iterative refine-
ments of pilot points be considered? This paper addresses 
these issues by performing a series of tests on a synthetic 
model. The best approach is eventually implemented in a 
real-world case study: the multilayered groundwater model 
of the south-western geological basin of France.
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Methods

Parameter estimation

The calibration has been conducted with the Gauss–Lev-
enberg–Marquardt Algorithm (GLMA) as implemented in 
PEST_HP (Doherty 2020). The Jacobian matrix is computed 
at each iteration to form a linearized version of the model, 
containing parameter sensitivities to each measured observa-
tion. Sensitivities can be estimated with a classical 2-point 
finite difference approach or a more robust 3-point para-
bolic approximation (Doherty 2015). The former approach 
requires m + 1 model calls, while the second, more demand-
ing method requires (2m + 1) model calls for each iteration, 
with m being the number of adjustable parameters. The 
computational burden associated with the computation of 
the Jacobian matrix increases with the number of adjustable 
parameters, which constrains the application of the GLMA 
to highly parameterized models.

At each iteration of the calibration process, the algorithm 
upgrades the parameter vector to reduce the misfit between 
model outputs and the measurements by minimizing the 
measurement objective function corresponding to the sum 
of weighted squared residuals, �m =

∑
i

�
w
i
r
i

�2 , where the 
residual ri refers to the difference between the ith model 
output and its observed counterparts and the weights (wi) 
are assigned based on the inverse of the standard devia-
tion of measurement error. With this weighting scheme 
and assuming a perfect model, the target value for ϕm is the 
number of measurements. For real-world cases, the occur-
rence of model structural error entails that ϕm converges to 
higher values (Doherty 2015). The closer the final objective 

function value is to the target objective function value, the 
better the calibration is in terms of fitting of measured data.

This study employed the truncated singular value decom-
position (SVD) and Tikhonov regularizations to stabilize 
the inversion of the underdetermined problem and guarantee 
the convergence to a unique solution (Tonkin and Doherty 
2005). Zero-order (preferred value) and first-order (pre-
ferred homogeneity) Tikhonov regularizations were both 
employed (Tikhonov and Arsenin 1977; Doherty 2015). The 
former attempts to draw estimated pilot point values toward 
their initial (prior) value. The latter promotes homogeneity 
between neighboring pilot point values by introducing the 
weighted difference between pilot point values in the regu-
larization objective function. The termination criteria were 
chosen for the algorithm to stop when the reduction in the 
objective function is less than 1% for the last three iterations, 
or when the total number of iterations exceeds 30.

Pilot point parameterization

In this approach, pilot points are placed according to a grid, 
which is necessarily coarser than the model grid and should 
not be confused with it. Two different strategies for pilot point 
placement have been considered: (1) regular grids with uni-
form spacings and (2) adaptive grids with local refinements 
(Fig. 1). In addition, an iterative strategy was explored, involv-
ing the estimation of parameters between successive refine-
ments of the pilot point grids. The refinement is conducted 
following a 2D quadtree style, which allows cells to be subdi-
vided repeatedly into four child cells. It should be noted that 
the parent pilot points are kept throughout refinement steps to 
facilitate the implementation of the iterative approach. Four 

Fig. 1  a Base pilot-points distribution according to a regular grid and 
b adaptive parameterization where pilot points constrained by meas-
urements are refined following the quadtree grid method. Cells with 

black bold outlines are for the grid of pilot points, and cells with thin 
grey outlines are for the model grid
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refinement criteria were evaluated for each pilot point: the 
composite scaled sensitivity, the component of the gradient 
of the objective function corresponding to the pilot point, the 
parameter identifiability, and the density of the measurement 
data, which corresponds to the number of measures in the cell 
of the pilot points grid (Fig. 1). The positioning of the pilot 
points was achieved using Python scripts.

The composite scaled sensitivities (CSS) describe the 
intensity of the control provided by a measured dataset over 
a given parameter (Hill and Tiedeman 2006):

where J is the Jacobian matrix, Q is the measurement 
weight matrix, b is the vector of (transformed) parameter 
values, and n is the number of nonzero-weighted observa-
tions (Doherty 2015). The component of the gradient of the 
objective function pertaining to the i-th parameter can be 
expressed as follows (Doherty 2015):

where r is the vector of the model to measurement residuals. 
��

�bi
 is the partial derivative of the objective function ϕ with 

respect to a parameter bi.
The parameter identifiability, fi corresponds to the cosine 

of the angle between the vector pointing in the parameter’s 
direction and its projection onto the calibration solution 
space (Doherty and Hunt 2009). It ranges between 0 for 
complete nonidentifiability and 1 for complete identifiabil-
ity. It can be used to describe the capability of a calibra-
tion dataset to constrain a parameter value as it accounts for 
both parameter sensitivity and correlation. The computa-
tion of fi is conducted after singular value decomposition 
(SVD) of the weighted Jacobian matrix and subdivision of 
the parameter space into a “solution” and a “null” space. 
The dimension of the solution space is considered optimal 
when the introduction of additional eigenvectors leads to 
an increase (rather than a decrease) in the associated error 
variance (Doherty 2015). This was performed with the PEST 
SUPCALC utility (Doherty 2019).

The adaptive approach is tested with refinements of the 
pilot points grid conducted prior to the calibration process, 
and in an iterative manner (Fig. 2). The iterative refinement 
procedure starts with the initial, regular grid of pilot points 
until the convergence of the objective function. The parame-
terization is then updated by refining the pilot points satisfy-
ing the refinement criteria. The calibration is then resumed 
with the new parameterization and the procedure continues 
until the objective function reaches the target value.

(1)cssi =
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The calibration efficiency has been evaluated for both reg-
ular and adaptive parameterization approaches. The compar-
ison is conducted by analyzing the evolution of the objective 
function with respect to the number of model calls. The best 
configuration presents the fastest decrease of the objective 
function to the target value at the minimum calculation costs.

The interpolation of hydraulic conductivity at model 
cells was undertaken by kriging from pilot point values as 
implemented in the PyEMU Python package (White et al. 
2016). For all the configurations considered in this study, 
the kriging factors were computed with Python consider-
ing an exponential variogram with a range of twice the 
largest spacing between pilot points. This as a ratio avoids 
the “bulls-eyes” effect in the interpolated field. The expo-
nential variogram model is recommended when describing 
the heterogeneity of hydraulic properties because it avoids 
the occurrence of parasitic values between closely spaced 
pilot points of very different values (Doherty et al. 2010).

Synthetic model

Model description

Investigations are conducted on a synthetic model derived 
from Moore and Doherty (2005), which considers steady-
state flow in a confined aquifer described with a single 
10-m-thick layer over a domain of 500 m × 800 m, discretized 

Fig. 2  Summary of tested strategies for optimizing the pilot points 
configuration
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with a regular grid of 10 m square cells (Fig. 3). A fixed 
inflow of 1  m3  day-1 is imposed at the model upper boundary, 
and heads are fixed at 0 m along the lower boundary.

The reference hydraulic conductivity field was generated 
by Gaussian sequential simulation with Gstat (Pebesma 2004) 
using a log exponential variogram with a range of 100 m and 
a sill of 0.3. Flow within the domain was simulated using 
the finite-difference MARTHE model (Thiery 2015). Simu-
lated heads were extracted at 26 observation wells unevenly 
distributed over the model domain to reflect real-world con-
figurations. Indeed, observation networks typically present 
clusters with high measurement density and areas deprived 
of measurements. Gaussian noise was added to the simulated 
heads with a standard deviation of 0.01 m to introduce meas-
urement error. Following the weighing strategy described in 
section ‘Parameter estimation’, an equal weight of 100 was 
assigned to each measure, corresponding to the inverse of the 
standard deviation of measurement error. In such conditions, 
the target measurement objective function corresponds to the 
number of measured data (here, 26).

Pilot points

The initial exploration involved regular grids of pilot 
points, covering spacings ranging from 24 to 3 model cells 
(Fig. 4). This resulted in varying numbers of pilot points, 
starting at 12 for the largest spacing (240 m) and reaching 
456 for the shortest spacing (50 m).

Adaptive grids of pilot points were obtained by local refine-
ments of the coarse regular grid with a spacing of 24 model 
cells with 12 pilot points (referred as “REG 24”). Different 
refinement strategies were tested with 4 different criteria 

(refer to section ‘Parameter estimation’ for a description of 
these criteria). In all, 30% of the pilot points presenting the 
highest criteria values were subsequently refined to reach a 
resolution twice finer than the original grid. The number of 
pilot points after the refinement is 52, except for the refine-
ment based on the measurement availability, where the total 
number is 40. There are fewer pilot points for this criterion 
due to successive refinements of the same points, which are 
discarded. The adaptive parameterization was tested from the 
beginning of the calibration (Fig. 5) and iteratively (Fig. 6). In 
the first approach, the grid of pilot points is refined according 
to the criteria inferred from the initial parameter values. In 
the second approach, the first calibration is conducted with a 
regular grid of pilot points, and the refinement criteria are then 
computed from the Jacobian matrix with updated parameter 
values. As for consequence, the set of pilot points to be refined 
may differ between the two approaches.

Results

The calibration efficiency for the configurations of pilot 
points is evaluated by comparing the evolution of the meas-
urement objective function with the number of model runs. 
The discussion begins with the results achieved using regular 
grids of pilot points (Fig. 7a). Large spacings between pilot 
points with 24 and 12 model cells (REG 24 and REG 12) led 
to fast convergence of the objective function value but did not 
wholly assimilate the measurements dataset. The objective 
function target value was reached with small spacings but 
with increased calculation times (REG 6 and REG 3). The 
best convergence of the objective function at minimum cal-
culation costs is obtained with a spacing of 6 (REG 6) model 

Fig. 3  The synthetic model: a model domain and boundary conditions, b True hydraulic conductivity distribution, and c Simulated heads and 
locations of observation wells (red crosses)
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cells. Configurations with spacings of 3 (REG 3) model cells 
provide the same level of fit but require almost double model 
runs. This demonstrates the effect of pilot point numbers on 
fitting the measurements and the importance of choosing ade-
quate spacing for the regular grid. Though it may be of inter-
est for uncertainty analysis, including as many pilot points as 
possible for the calibration step increases the computational 
burden, which can be a limiting factor when dealing with 
highly parameterized models with long computation time.

The size of the solution space for the configurations with 
regular grids increases with the number of adjustable param-
eters (pilot points) but reaches a plateau beyond 126 pilot 
points (spacing of 6 grid cells; Fig. 8). Thus, when seeking to 
enhance the fit of measurements, it is unnecessary to increase 
the number of parameters beyond a certain threshold.

The performance of the initial adaptive configurations 
appears to be largely dependent on the choice of the refine-
ment criterion (Fig. 7b). Refinements based on measurement 
availability and parameter identifiability lead to better per-
formance than regular grids. In contrast, refinements based 
on CSS and the gradient of the objective function did not 
reach the target objective function and required more than 
4,400 model runs for convergence.

For the adaptive approach (Fig. 7c), the refinements of the 
pilot points grid with the different criteria were conducted after 
calibration with the regular grid with a spacing of 24 model 
cells. From these results, the interest of the iterative approach 

is not salient compared to the initial adaptive approach. Except 
for the refinement based on the number of measurements, the 
performance of the iterative adaptive strategy is poor compared 
to the best configuration with the regular grid.

The results for the three different approaches for pilot 
point placement (regular grid, initial adaptive grid, iterative 
adaptive grid) are summarized in Fig. 9. The best configu-
rations with low objective function and a small number of 
model runs (bottom left portion of the plot) correspond to 
the initial adaptive approach based on measurement avail-
ability (N = 40 pilot points). The regular grid with a spacing 
of 6 model cells also reaches the target objective function 
value, but at a much greater cost in terms of model runs. The 
hydraulic conductivity fields for these two “best” configura-
tions are compared to the “reference” field in Fig. 10. As 
expected, only large-scale heterogeneities can be described 
with a better resolution where the measured dataset is dense. 
In areas poorly constrained by measurements, the pilot points 
of the regular grid present similar values, which leads to an 
outcome similar to the more parsimonious adaptive approach.

Application to a regional flow model

The findings obtained with the synthetic model have been 
applied to estimate the hydraulic properties of the regional 
groundwater "MOdel of North Aquitania" (MONA). The 

Fig. 4  Regular grids of pilot 
points with four different spac-
ing (a REG 24, b REG 12, c 
REG 16, d REG 3 model cells). 
Measurements are depicted 
with red crosses and pilot points 
with black points. N is the total 
number of pilot points
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model was developed by the French Geological Survey 
(BRGM) to simulate flow and investigate the impact of pump-
ing in the extensive unconfined aquifers supplying the city of 
Bordeaux. The model covers the northern part (46,032  km2) 
of the French south-west sedimentary basin (Fig. 11). It has 

15 aquifers interbedded by aquitards discretized with a regular 
grid of 2 × 2 km from Plio-Quaternary down to Jurassic units 
(Thiéry et al. 2011). The model does not explicitly simulate 
flow in the aquitards but accounts for vertical flows adjusted 
by a conductance parameter (pseudo-3-D assumption). The 

Fig. 5  Initial adaptive grid with 
refinement of pilot points based 
on a measurements availability, 
b sensitivity, c identifiability, 
and d the gradient objective 
function. “Parent” pilot points 
(pp) are displayed as large grey 
points, “child” pilot points as 
small black points, and meas-
urements as red crosses

Fig. 6  Iterative adaptive grids. 
“Parent” pilot points (pp) are 
displayed as large grey points, 
“child” pilot points as small 
black points, and measure-
ments as red crosses. 30% of the 
initial pilot points are refined 
two successive times based on 
a measurements availability, b 
sensitivity, c identifiability, and 
d the highest value of the objec-
tive function’s gradient
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domain is bounded by Cretaceous and Jurassic outcrops to 
the east and north, the Atlantic Ocean and the Gironde Estu-
ary to the west. Hydraulic heads are imposed on the western 
boundary, accounting for seawater level along the Atlantic 
Coast. Heads are also prescribed along the Garonne River and 
its estuary, and no-flow boundaries are assumed at the south-
ern limit, which corresponds with the separation from the 
southern part of the Aquitaine basin (Buscarlet et al. 2019). 
Recharge is estimated annually by an empirical formula using 
climatic data (precipitation and evapotranspiration) from a 
series of weather stations (Pédron and Platel 2005). The 
pumping database includes 6,235 wells distributed within the 
15 geological formations (Saltel et al. 2016). The diffusivity 
equation is solved at the annual time step in a finite volume 
scheme with MARTHE (Thiery 2015).

The purpose of this calibration exercise is to use his-
torical head measurements to improve the predictive 

capacity of the model for simulating heads in different 
prospective management scenarios over the next decades. 
The model was calibrated in the transient state over the 
1972–2011 period using 423 observation wells. To assess 
the measurement noise and assign weights, two types of 
uncertainties were considered: the measurement uncer-
tainty, 𝜎m, and the uncertainty raised from the aggrega-
tion of incomplete daily data at the annual time step, 𝜎a. 
Assuming a standard deviation of ±3 m at the 68% confi-
dence level for measurement uncertainty, arising from all 

Fig. 7  Evolution of the measurement objective function with the number of model runs for different pilot point parameterizations: a regular 
grids, b initial adaptive grids, and c iterative adaptive grids. Results of regular grids are also presented to facilitate the comparison (b–c)

Fig. 8  Evolution of the dimension of the solution space for the regu-
lar grids of pilot points with different spacing

Fig. 9  Values of measurement objective functions against the total 
number of model calls at convergence for the regular, initial adaptive, 
and iterative adaptive parameterizations. The best parameterization 
is obtained with the initial adaptive approach (bottom left), which 
presents the lower number of model runs to reach the target objec-
tive function. “nobs” stands for the number of observations, “ident” 
represents identifiability criteria, “css” denotes the composite scaled 
sensitivity, “grad” signifies the gradient of the objective function, and 
“reg” refers to the regular grid, followed by the corresponding spac-
ing. For example, “reg12” indicates that the spacing for the regular 
grid is 12
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potential errors in the measurements (groundwater depth 
and borehole leveling), the aggregation uncertainty was 
determined for each individual annual value by calculating 
the standard error of the mean (Hughes and Hase 2013).

The parameter estimation procedure focused on the dis-
tributed hydraulic properties: the horizontal hydraulic con-
ductivity of aquifers, Kh, the vertical hydraulic conductivity 
of aquitards, Kv,, the unconfined specific yield ω, and the 
specific storage, Ss. Prior information on these parameters 
was first collected for each layer of the model from the 
French geological database (BSS) and several local stud-
ies (Moussié 1972; Hosteins 1982; Larroque 2004). These 
values were used as a starting point for the GLMA and 
were considered the preferred value for 0-order Tikhonov 
regularization.

Parameterization

Both pilot points (PP) and zones of piecewise constancy 
(ZPC) were used for the parameterization of this regional 
model, which is summarized in Table 1. The specific yield 
(ω) was parameterized with pilot points for the first layer 
(QUAT) with regular grids of pilot points with a spacing 
of 20 model cells (40 km). ZPC were used for layers 2–15 
since most parts of these aquifers remain confined and the 
annual time step reduces the sensitivity of this parameter in 
unconfined areas. For the specific storage (Ss), pilot points 
were placed with a spacing of 40 model cells (80 km) in 
the permanently confined parts of the layers, and ZPC were 
used for the permanently unconfined parts, where Ss are 
insensitive. The vertical hydraulic conductivity of aquitards 
was parameterized with a regular grid of pilot points with a 
spacing of 40 model cells (80 km). Maps with the locations 

of pilot points are provided in all the items in the Appendix 
Figs. 14, 15, 16, 17, 18, 19 and Table 2.

Several configurations were considered for the param-
eterization of horizontal hydraulic conductivity (Kh). A 
coarse regular grid with a 20-model-cell spacing (40 km) 
and a finer regular grid with a 5-model-cell spacing (10 
km) were considered. An adaptive grid of pilot points was 
also taken into account, employing measurement density as 
the refinement criterion. Pilot points with a minimum of 1 
measurement within their neighboring values were refined 
twice, resulting in a 5-model-cell spacing (10 km) between 
pilot points in areas with a high measurement density and 
20-model-cell spacing (40 km) in areas with sparse meas-
urements. Both the initial and iterative adaptive refinement 
strategies were tested. In areas with high measurement den-
sity, the adaptive grids present the same spacing as the fine 
regular grid. It should be noted that spacings between pilot 
points are large (10–80 km), even with the local refinements. 
With such parameterizations, only the most salient hetero-
geneities impacting the regional groundwater flow can be 
described. This can be appropriate for the simulation of the 
long-term regional flow dynamics; however, this approach 
would not be relevant to describe small-scale local heteroge-
neities in the hydraulic property fields, which would require 
a much denser measurement dataset.

Results

The calibration was conducted with three different strate-
gies for the parameterization of hydraulic conductivities 
with pilot points: the coarse regular grid, the initial adaptive 
grid, and the adaptive grid with an iterative approach. Each 
model run took ~ 20 min of CPU time and calculations were 

Fig. 10  Comparison of the a “true” hydraulic conductivity field with b its estimated counterparts obtained with the best regular grid (pilot point 
spacing of six model cells), and c the adaptive grid refined according to the measurement density
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parallelized over 114 CPU cores. The fine regular grid of 
pilot points resulted in an excessive number of parameters 
and prohibitive computation time, so it could not be tested.

The evolution of the objective function for the tested 
configurations is presented in Fig. 12. As expected, the 
configuration with the coarse grid of pilot points con-
verged to a relatively high value of the objective function, 
illustrating the incapacity of this parameterization to rep-
resent sufficiently fine details in the hydraulic conductiv-
ity field to satisfy the measurement dataset. The iterative 
adaptive approach performed well but with results close 
to the initial adaptive approach, which is easier to imple-
ment. The initial adaptive approach, which took a week 
and 56,393 model runs to converge, can therefore be con-
sidered the best approach.

The post-calibration hydraulic conductivity fields 
obtained with the “best” initial adaptive approach are 
provided in Fig. 13. The other estimated fields and per-
formance statistics are provided in the Appendix Figs. 14, 
15, 16, 17, 18, 19 and Table 2. Overall, simulated values 
reproduce their observed counterparts with a root mean 
squared error (RMSE) of 6 m and a mean bias of −0.16 

m. The goodness of fit varies substantially between layers. 
Errors are the largest for the deep layers, for which the 
density of measurements is low. The misfit is more hetero-
geneous in those layers that include some outliers with high 
error values that affect the average. The outliers are mostly 
related to insufficient or inconsistent data to constrain the 
calibration; therefore, the algorithm is not focusing on their 
fits since the weight assigned is low.

Discussion

The present study confirmed the importance of pilot point 
distribution on calibration efficiency and provides guidelines 
for optimizing the placement of pilot points when the com-
putational burden matters, such as for highly parameterized 
regional models with long execution times. The purpose was 
to identify the configuration leading to the fastest conver-
gence of the objective function to the target value, indicative 
of appropriate assimilation of the measured dataset.

Investigations were conducted on a synthetic model 
with both regular and adaptive grids of pilot points. The 

Fig. 11  Representation of the aquifers considered in the MONA. The insert shows the location of the Aquitaine region in France
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first analysis with regular grids revealed the importance 
of choosing an appropriate spacing between pilot points. 
Large spacings lead to fast convergence of the objective 
function but do not allow complete assimilation of the 
measured dataset. In contrast, including as many pilot 
points as possible for calibration, as suggested by Alcolea 
et al. (2006), leads to a good fit of observed data but 
increases the computational burden. The optimum spac-
ing, leading to the fastest convergence of the objective 
function to the target value was obtained with a pilot point 
spacing of 60 m and a variogram range of 120 m, which 
is close to the variogram used for the generation of the 
synthetic hydraulic conductivity field (100 m). Such a 
result is in line with the expectations for a synthetic case, 
but further questions remain when dealing with unknown, 
real-world hydraulic conductivity fields, for which the 
structure of heterogeneities that matter for the modeling 
exercise is not precisely known. An option can be to use 
the calibration dataset to investigate the size of solution 
space and get insights on the optimum number of pilot 
points by truncated singular value decomposition. This 
requires the computation of a Jacobian matrix for each 
configuration which may be computationally intensive. 
Furthermore, the size of the solution space suggested by 
this approach is often too large because its computations 
fail to account for the contribution made to measurement 
uncertainty by structural noise of unknown covariance 
structure (Doherty et al. 2010).

Results of the synthetic case also revealed that an adap-
tive approach with refinement based on measurement 
density leads to better performances than the optimum 

Table 1  Summary of the parameterization of the regional model

Par. refers to the type of parameterization, PP for pilot points and ZPC for zones of piecewise constancy. Spacings are expressed in terms of 
model cells. Three configurations have been considered for the parameterization of hydraulic conductivity: a coarse regular grid, a fine regular 
grid, and an adaptive refinement based on measurement density. For the latter, both the maximum/minimum values of pilot point spacing are 
provided

Layers Kh (m/s) Kv (m/s) Ss(m–1) ω

Par. Spacing for 
coarse reg. grid

Spacing for 
fine reg. grid

Spacings for 
adapt. grid

Par. Spacing Par. Spacing Par. Spacing

1 QUAT PP 20 5 20/5 - - - - PP 20
2 HELV PP 20 5 20/5 PP 40 PP/ZPC 40 ZPC -
3 AQUI PP 20 5 20/5 PP 40 PP/ZPC 40 ZPC -
4 OLNP PP 20 5 20/5 PP 40 PP/ZPC 40 ZPC -
5 EOCS PP 20 5 20/5 PP 40 PP/ZPC 40 ZPC -
6 EOM PP 20 5 20/5 PP 40 PP/ZPC 40 ZPC -
7 EOCI PP 20 5 20/5 PP 40 PP/ZPC 40 ZPC -
8 CAMP PP 20 5 20/5 PP 40 PP/ZPC 40 ZPC -
9 COST PP 20 5 20/5 PP 40 PP/ZPC 40 ZPC -
10 TURO PP 20 5 20/5 PP 40 PP/ZPC 40 ZPC -
11 CENO PP 20 5 20/5 PP 40 PP/ZPC 40 ZPC -
12 TITH PP 20 5 20/5 PP 40 PP/ZPC 40 ZPC -
13 KIMM PP 20 5 20/5 PP 40 PP/ZPC 40 ZPC -
14 BACX PP 20 5 20/5 PP 40 PP/ZPC 40 ZPC -
15 BAJO PP 20 5 20/5 PP 40 PP/ZPC 40 ZPC -

Fig. 12  Summary of objective function vs. the number of model runs 
for regular and adaptive approaches
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regular grid of pilot points. Both configurations reached 
the target objective function and a similar description of 
the heterogeneity, but the adaptive approach required much 
fewer model calls. This stems from the fact that measure-
ments were heterogeneously distributed, as is often the 
case in the real world. The refinement criteria based on 

the measurement density outperformed the criteria derived 
from parameter sensitivities (CSS, identifiability, gradi-
ent of the objective function). This is quite unexpected 
given previous studies on this topic (Ackerer et al. 2014; 
RamaRao et al. 1995) but can be interpreted as an effect 
of the local and approximate nature of model derivatives 

Fig. 13  Post-calibration horizontal hydraulic conductivities (Kh) obtained with the initial adaptive approach
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obtained by perturbation of prior (initial) parameter values 
in this study. Apart from its efficiency, a great advantage 
of the criteria based on measurement density is that it does 
not require any model runs to be evaluated. In contrast, 
the iterative adaptive approach, which involves param-
eter calibration before the refinement of the pilot points 
grid, yields disappointing results. This may be explained 
by the characteristics of the GLMA, which could remain 
“trapped” in a local optimum in the parameter space and 
prevent further descent of the objective function after 
refinement. Another tuning factor of the adaptive strat-
egy is the proportion of pilot points to be refined. This 
threshold was set to 30% in this study, and those pilot 
points were refined two successive times, leading to the 
best results in this case but may be subject to further inves-
tigation and adjustments in other case studies.

The best strategy identified with the synthetic model 
(adaptive grid of pilot points refined according to measure-
ment density) was tested on a real-world, regional ground-
water model together with two other configurations for com-
parative purposes: a coarse grid and an iterative adaptive 
approach. As expected, the objective function converged 
to a high value with the coarse grid. The iterative adaptive 
approach gave satisfactory results but was outperformed by 
the adaptive approach, which is easier to implement. This 
approach can therefore be recommended for similar con-
figurations, which is a step forward, but a series of improve-
ments and perspectives can be outlined.

While it can significantly facilitate parameter estima-
tion of highly parameterized models, the main limitation 
of the presented approach is its implication for uncertainty 
quantification. The proposed refinement strategy focuses 
on the heterogeneity that can be described by the assimi-
lation of the measured dataset, not necessarily on the 
heterogeneity that matters for the predictions of interest. 
As for consequence, heterogeneities in areas with no data 
may be poorly described, and the uncertainty of related 
predictions can be underestimated. Measurements are usu-
ally conducted where they are supposed to be of greater 
interest, but this is not always the case. The proposed 
approach could be extended with refinement criteria not 
only based on the measurement dataset but also criteria 
derived from prediction sensitivities, which would allow 

better consideration of heterogeneities that matter for pre-
dictions of interest for decision-making.

The presented approach is optimum in the sense that it 
maximizes data assimilation while minimizing the number 
of parameters, and consequently, the computational burden 
of parameter estimation. This effort on pilot point param-
eterization may yet be insufficient for parameter estimation 
to become tractable. It should be accompanied by optimiz-
ing the numerical solver and model complexity level that 
may reduce computation times (Doherty and Moore 2020; 
Guthke 2017). Apart from reducing the number of parame-
ters and model run times, more frugal parameter estimation 
algorithms may also be considered. Randomized Jacobian 
estimates (Doherty 2020) can reduce the need for model 
calls, and ensemble-based approaches such as IES (White 
2018) can also be considered. Most likely, a smart combina-
tion of these options may be relevant to address impractical 
inverse problems.

Conclusion

The parameter estimation of highly parameterized mod-
els with long run times, such as regional multilayered 
groundwater models, is often associated with challenges 
that threaten its practicality. In such models, most param-
eters are representative of parameter values at pilot points. 
A series of configurations was explored to optimize their 
distribution and reduce their number. The strategy lead-
ing to the best data assimilation, while minimizing the 
computational burden, is an adaptive grid of pilot points 
with a refinement based on measurement density. In this 
approach, the grid of pilot points was refined in areas with 
the largest number of measurements. This strategy was 
successfully implemented on a regional flow model, illus-
trating its efficiency; however, the best parameterization 
approach to fit the available measurements may not be 
optimum for uncertainty quantification. To this purpose, 
the current approach could be extended with pilot point 
refinement criteria accounting for the sensitivity of pre-
dictions of interest. Evaluating these options is a topic for 
future work.



2394 Hydrogeology Journal (2023) 31:2381–2400

1 3

Appendix Figures 14, 15, 16, 17, 18, 19 and Table 2

Fig. 14  Pilot points distribution with the coarse regular grid with a spacing of 20 model cells between pilot points (black points). Measurement/
observation data are represented by red crosses
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Fig 15  Adaptive pilot points distribution for all MONA layers. The pilot points were initially distributed using a coarse grid of 20 cell spacing 
and then refined two successive times based on measurement data availability
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Fig. 16  Post-calibration vertical hydraulic conductivities (Kv) for all aquitard layers
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Fig. 17  Post-calibration specific storage (Ss) for all aquifer layers
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Fig. 18  Post-calibration specific yield, ω, for the 1st aquifer

Fig. 19  Boxplot distribution comparing a the root mean squared error 
(RMSE) and b the bias of each layer. The lowest RMSE and bias val-
ues indicate better calibration performance for the first eight layers. 
The boxes span from the 25th to the 75th percentile; green horizon-

tal lines denote the median, and whiskers span from 1.5 of the inter-
quartile (IQR) range below the low quartile to the 1.5 IQR above the 
upper quartile

Table 2  Summary statistics for calibration: root mean squared error 
(RMSE) and bias calculated for each MONA layer. Mean values are 
in italic font.  obs observations

Layer No. of obs RMSE (m) BIAS (m)

1 QUAT 296 1.77 –0.30

2 HELV 258 1.94 0.86
3 AQUI 741 1.95 –0.14
4 OLNP 1,250 2.77 –0.09
5 EOCS 129 2.93 –0.98
6 EOCM 1,800 2.13 –0.32
7 EOCI 416 2.49 –0.01
8 CAMP 720 10.76 0.99
9 COST 265 5.23 –0.48
10 TURO 427 7.04 0.63
11 CENO 219 3.69 –0.75
12 TITH 61 11.21 –1.90
13 KIMM 48 13.10 0.51
14 BACX 273 7.75 –0.78
15 BAJO 97 3.85 0.30
Mean 466 6.0 –0.16
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