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Geostatistics is a branch of statistics that deals with the anal-
ysis and modeling of spatial and temporal variability of natu-
ral phenomena. It is a discipline that grew at the boundaries 
of probability theory and earth sciences; it is now applied 
widely, for example, in environmental sciences, health sci-
ences, or geographical information systems. It is also the 
foundation of a family of methods (Gaussian processes) that 
are now employed heavily in machine learning and artificial 
intelligence.

Since the early days of geostatistics, a close link existed 
with hydrogeology. Georges Matheron, who was one of the 
founders of geostatistics (Matheron 1962) developed these 
tools for the estimation of ore deposit resources. He was also 
one of the first scientists to propose that hydraulic conductiv-
ity in aquifers could be described using spatially correlated 
random fields. He used this mathematical formalism to prove 
that the effective hydraulic conductivity of a log-normal iso-
tropic medium in two dimensions is the geometric mean of 
the local values (Matheron 1967). This was one of the starting 
points of the field of stochastic hydrogeology, which allowed 
deciphering the relations between the statistical characteristics 

of aquifers and their global flow and transport properties 
(Dagan 1989; Rubin 2003). The connections between the two 
fields are therefore intimate. Some theoretical developments 
in geostatistics have been inspired by specific questions origi-
nating from hydrogeological applications—for example, the 
question of the connectivity of high-permeability zones in an 
aquifer is crucial to accurately predict flow and solute trans-
port (Gómez-Hernández and Wen 1998). How to constrain the 
interpolation of a parameter field using indirect state variables 
and the flow or transport equations connecting these quantities 
is also a core problem that needs to be solved in hydrogeol-
ogy (de Marsily et al. 1999). All of these questions triggered 
research in geostatistics and had impacts on other fields.

From an application perspective, there are many situ-
ations in which data that are acquired in a groundwater 
system need to be interpolated to understand or model the 
system. These data can be state variables such as piezo-
metric levels, quality indicators, forcing terms (recharge), 
rock types, or petrophysical properties. Geostatistics offers 
a rigorous framework for analyzing the spatial variabil-
ity of these data and for carrying out the interpolation 
while quantifying the resulting uncertainty (Journel 1989; 
Goovaerts 1997; Chiles and Delfiner 2012). It is therefore 
not surprising that geostatistics became a standard tool 
available in many geographical information systems or 
modeling packages employed by hydrogeologists.

The special issue

This special issue reflects some of the typical and current 
applications of geostatistics in the field of hydrogeology. It 
also introduces some recent developments at the intersection 
of these two fields. In particular, many of the questions that 
are at the heart of the geostatistical approach are identical to 
those that are treated by machine learning or artificial intel-
ligence algorithms. The idea of learning some patterns from 
data sets and making statistical predictions is exactly what 
geostatisticians have been doing for the last 60 years. Some 
of the algorithms recently used in the machine learning 
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community are identical to what is commonly used in geo-
statistics. However, the rise and diversity of machine learn-
ing approaches and the dynamism of this new community 
has also opened new doors in the field of spatial statistics 
for hydrogeological applications; therefore, this special issue 
also explores some of these new methods.

This issue is organized into five main parts, which 
reflect the typical use of geostatistics in hydrogeology. 
The three first parts consider the problems of interpolat-
ing groundwater levels, groundwater quality, and aquifer 
parameters, and are key tools for understanding the struc-
ture or the behavior of an aquifer. The fourth part is more 
fundamental; it illustrates how geostatistical methods can 
be employed for investigating the behavior of heteroge-
neous aquifers. The final part involves the most complex 
methods. Their aim is to relate state variables and aquifer 
parameters to solve the inverse problem while quantifying 
uncertainty.

Last but not least, with the development of the open sci-
ence movement, it has become more and more common 
for scientists to share their codes and their data to foster 
reproducibility and to challenge colleagues to obtain bet-
ter results. Geostatistics was at the forefront of this move-
ment with open-source software such as GSLIB (Deutsch 
and Journel 1992). This special issue is also contributing 
to the open science movement by providing some original 
data sets.

Interpolation of groundwater levels

In the first part of this special issue, three approaches are 
discussed for mapping groundwater levels using geostatis-
tics or machine learning methods. Chihi and Ben Cheikh 
Larbi compare ordinary kriging and kernel ridge regression 
(KRR) to improve water table prediction in complex geologi-
cal environments. The KRR approach is tested and evaluated 
in a coastal faulted aquifer system in southeast Tunisia. Both 
methods were able to generate plausible piezometric maps. 
The results of the cross-validation are better for both methods 
when faults are considered, and KRR is slightly superior to 
ordinary kriging. Júnez-Ferreira et al. emphasize the supe-
riority of spatiotemporal (ST) kriging estimation of ground-
water levels as compared to the classical spatial approach, 
especially when assessing temporal fluctuations. Based on 
long-term, but irregular, time series in the southern Basin of 
the Mexico aquifer system, the advantages and limitations of 
ST kriging are demonstrated. Finally, Pavlides et al. compare 
universal kriging (UK) and stochastic local interactions (SLI) 
to interpolate groundwater levels around three mine sites in 
northern Greece. They employ cross-validation to compare 
the methods and show that both methods perform adequately 
given the small sample size. UK performs slightly better; this 

is interpreted to be the result of using a constant mean in the 
current implementation of the SLI approach.

Interpolation of groundwater quality

In the second part of this special issue, four papers present 
methods and case studies involving the interpolation or 
analysis of groundwater quality. The paper by Palma et al. 
conducts an analysis of three water quality parameters and 
one water quantity parameter with the ultimate objective of 
producing a probability map that shows the risk for aquifer 
deterioration. The method the authors use to produce the 
probability map is space-time indicator kriging. A space-
time linear co-regionalization model (ST-LCM) is applied 
to describe the direct and cross-covariance of the four vari-
ables in space-time. Schafmeister et al. present an applica-
tion of extension variance, together with Voronoi tessellation, 
to groundwater quality data in Germany. By calculating the 
extension variance and utilizing geostatistical assumptions, 
it becomes possible to estimate the probability of exceeding 
a given concentration threshold. Furthermore, the method is 
extended to include the delimitation of hydraulically defined 
groundwater bodies, ensuring that hydraulic boundaries are 
appropriately considered. Wang et al. present a comprehen-
sive investigation of the spatial redox architecture, which 
is important, for example, to understand nitrate reduction 
capacity in rural areas. Data from transient electromagnetic 
resistivity surveys and noncollocated boreholes are integrated 
by means of geostatistical simulations and a subsequent sta-
tistical learning method (multinomial logistic regression) in 
order to predict the three-dimensional (3D) redox structure 
in a heterogeneous glacial aquifer in Denmark. Finally, de 
Fouquet et al. treat the problem of mapping a radioactive 
contaminant plume in Chernobyl, Ukraine, using kriging. 
The difficulty lies in the nonstationarity of the spatial statis-
tics of the concentrations. To circumvent this common issue, 
the authors propose to construct numerical covariances that 
are estimated from a set of numerical simulations of plume 
migration using a solute transport model. From the ensemble 
of numerical results, one can derive all the covariances that 
are required to solve the kriging equations. It is worthwhile 
to note that this approach can potentially be applied to relate 
other quantities such as transmissivity and hydraulic data, 
offering a practical solution to the inverse problem.

Modeling aquifer structure 
and heterogeneity

One of the key features of aquifers is their internal geologi-
cal heterogeneity, implying that their petrophysical proper-
ties can vary very strongly in space. Pardo‑Igúzquiza et al. 
compare different variants of kriging and cokriging for 
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interpolating the transmissivity field of the Vega de Granada 
aquifer in Spain. Three types of data are used: actual trans-
missivity measurements, specific capacity measurements, 
and hydraulic heads. The authors show how cokriging can be 
used to combine these different sources of information. The 
use of an analytical covariance relating groundwater heads 
and transmissivity overcomes the need to infer a covariance 
model from a scarce data set and provides a simple and 
straightforward solution. To complement the lack of direct 
observations, another possibility is to integrate indirect geo-
physical data in the interpolation algorithm. Along this line 
of research, Kawo et al. address the necessity of building 
realistic 3D models of highly heterogeneous aquifers, such 
as the glacial deposits in Nebraska, USA, in order to design 
reliable groundwater management zones. Multiple point 
simulations based on electromagnetic geophysical surveys 
are used to generate 3D hydrofacies models that realistically 
reflect the spatial aquifer heterogeneity. Manzoni et al. use 
a very large data set covering most of the Po Plain of Italy to 
build an artificial neural network (ANN) trained on 450,000 
lithology labels collected on more than 50,000 boreholes 
to predict the lithology of the sediments in three dimen-
sions. The hyperparameters of the ANN are selected based 
on a k-fold cross-validation procedure. In addition to the 
exceptional data set treated in this case study, the authors 
focus a large part of their research on the quantification of 
the uncertainty with ANN. Finally, instead of generating 
geostatistical simulations of random fields, a new possibility 
is to use generative neural networks. The advantage is that 
the generation of realizations is usually very fast. In this per-
spective, Redoloza et al. show how a progressive growing 
generative adversarial network (PGGAN) can be employed 
to generate 2D stochastic binary facies models represent-
ing channels embedded in a matrix. One of the difficulties 
with this family of methods is accurately conditioning the 
simulations with borehole data. In the paper, the authors 
investigate, in detail, the relationship between the efficiency 
of the conditioning and the internal structure of the GAN.

Impact of aquifer heterogeneity 
on hydrogeological processes

While the papers presented in the previous part report on 
methods that can be used to describe geological heterogene-
ity, the two papers that are grouped in this section use those 
methods to investigate the impact of geological heterogene-
ity on hydrogeological processes. The first paper, by Chen 
et al., highlights the importance of mineralogical rock het-
erogeneity, especially when considering the transport of dis-
solved radionuclides within granitic host rocks for high-level 
radioactive repositories. They demonstrate the impact of the 
spatial correlation structure of reactive mineral facies (RMF) 

on scale-dependent sorption coefficients based on data from 
rock samples of the Beishan site, in northwest China. The 
second paper, by Pannone, provides an in-depth analytical 
derivation of the dispersive behavior of a solute plume in 3D 
geological formations displaying power-law-type variograms 
of log-hydraulic conductivity. This kind of variogram is typ-
ical of aquifers having no characteristic scales (correlation 
length) of heterogeneity but rather having heterogeneity pat-
terns that evolve with the scale of observation. Under these 
conditions, the author is able to predict how the exponent of 
the variogram influences the statistics of the center of mass 
of a plume of solute and its macrodispersion. A comparison 
with tracer experiments in Cape Cod, USA, seems to con-
firm the validity of the theory.

Inverse and data assimilation methods 
to identify aquifer parameters

In the last section, all the papers aim to identify aquifer param-
eters from the measurements of state variables. The relation 
between these two quantities involves a set of partial dif-
ferential equations and therefore it is necessary to solve an 
inverse problem to identify the parameters. While the inverse 
problem is as old as quantitative hydrogeology, obtaining 
reasonable solutions efficiently is still a major challenge and 
an area of very active research. In the first paper, van Leer 
et al. investigate whether it is feasible to employ an inverse 
method, not to identify directly the hydraulic conductivity 
values, but rather to identify the parameters of the covariance 
function of the hydraulic conductivity of an aquitard using 
pumping test data. Their aim is therefore not only to identify 
the specific heterogeneity of their aquitard, but also the type 
of heterogeneity that would be compatible with the pumping 
test data. They show that such a procedure can work but that 
large uncertainties remain. Pereira et al. show that geosta-
tistical methods can also be used to improve aquifer charac-
terization by enhancing the results obtained from electrical 
resistivity tomography (ERT). The method that they propose 
better characterizes small-scale variability and uncertainty 
than traditional geophysical inversion methods. Lauzon and 
Marcotte consider the problem of jointly identifying a map 
of hydrofacies and the spatially varying hydraulic conductivi-
ties within the hydrofacies using transient data. They model 
the hydrofacies’ categorical distribution using a pluriGaussian 
geostatistical method and the hydraulic conductivity using 
more classical multiGaussian fields. These two distributions 
are simulated using a spectral turning band method. By opti-
mizing the underlying phase vectors, the method can drasti-
cally reduce the dimensionality of the problem and minimize 
the misfit function; 2D and 3D synthetic examples demon-
strate the applicability of the approach. Todaro et al. consider 
a rather similar type of problem (identifying the sediment type 
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and the hydraulic parameters), but they invert concentration 
data that were obtained during a tracer test in an experimental 
sandbox. They compare the direct application of the ensem-
ble smoother with multiple data assimilation (ES-MDA) to 
the hydraulic conductivity field and its application coupled 
with a truncated Gaussian model. The parameter updates are 
applied to pilot point values. They conclude that ES-MDA 
coupled with a truncated Gaussian model outperforms the 
standard ES-MDA. The last paper in this special issue consid-
ers an even more complex situation. The aim is not only to 
identify the hydraulic conductivity field but also to locate the 
initial spatial distribution of a dense nonaqueous phase liquid 
(DNAPL) contamination. To solve this problem, Shi et al. 
compare the performances of two geostatistical algorithms 
and one deep-learning inversion algorithm. The numerical 
experiments are carried out on a synthetic case. The conclu-
sion of this study is that the deep learning approach consist-
ently outperformed the two other approaches.
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