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Abstract
Electrical resistivity tomography (ERT) is a geophysical method used to create an image of the subsurface due to its sensitiv-
ity to porosity, water saturation, and pore fluid salinity. This geophysical method has been widely applied in the investigation 
of mineral and groundwater resources, as well as in archaeological, environmental, and engineering studies. The prediction 
of subsurface properties, such as electrical conductivity, from measured ERT data requires solving a challenging geophysical 
inversion problem. This work proposes an iterative geostatistical resistivity inversion method using stochastic sequential simu-
lation and co-simulation as stochastic model perturbation and update techniques. Electrical resistivity models are generated 
conditioned to a target histogram, often retrieved from available resistivity borehole data, and assuming a spatial continuity 
pattern described by a variogram model. From the electrical resistivity models, a finite-volume approximation of Poisson’s 
equation is used to compute synthetic ERT data. The misfit between predicted and observed data drives the convergence of 
an iterative procedure and conditions the co-simulation of new models in the subsequent iterations. This methodology is 
applied to a two-dimensional synthetic case, and a set of two-dimensional profiles obtained from an ERT survey carried out 
in southern Portugal. In both application examples, the final models predict ERT data that match the observed ones while 
reproducing borehole data and imposed variogram models. The results obtained in both data sets are compared against a 
commercial deterministic ERT inversion methodology, showing the ability of the proposed method to model small-scale 
variability and assess spatial uncertainty.
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Introduction

Electrical resistivity tomography (ERT) is a geophysical 
method used to predict the spatial distribution of subsur-
face electrical resistivity (e.g., Parasnis 1986; Telford 
et al. 1990; Reynolds 2011). Since electrical resistivity 

is directly related to rock type, porosity, ionic strength of 
the pore fluids, and surface conductivity of geologic mate-
rials (Sumner 1976; Sharma 1997), ERT is widely used 
in hydrological studies (Page 1968; Wilson et al. 2006), 
mineral exploration (Bauman 2005; White et al. 2001), 
archaeological prospection (Griffiths and Barker 1994; 
Tsokas et al. 2008), and environmental and engineering 
studies (Chambers et al. 2006; Rucker et al. 2010). ERT 
data are collected by establishing an electrical potential 
difference between two current electrodes. An electri-
cal current is injected into the ground, and the resulting 
potential distribution is measured at many pairs of poten-
tial electrodes (Griffiths and Barker 1993). The observed 
measurements are then converted into apparent resistivity, 
which represents a weighted average of the resistance of 
earth materials to current flow, providing a smooth repre-
sentation of the true subsurface spatial distribution of elec-
trical resistivity (Loke et al. 2013). Apparent resistivity 
enables a qualitative prediction of the electrical parameters 

Published in the special issue “Geostatistics and hydrogeology”

 * Leonardo Azevedo 
 leonardo.azevedo@tecnico.ulisboa.pt

1 CERENA, DER, Instituto Superior Técnico, Universidade de 
Lisboa, Lisboa, Portugal

2 Institute of Water and Environmental Engineering, 
Universitat Politècnica de València, Valencia, Spain

3 Dipartimento di Ingegneria e Architettura, Università degli 
Studi di Parma, Parma, Italy

4 School of Mineral Resources Engineering, Technical 
University of Crete, Chania, Greece

http://crossmark.crossref.org/dialog/?doi=10.1007/s10040-023-02683-w&domain=pdf
http://orcid.org/0000-0002-0677-079X


1628 Hydrogeology Journal (2023) 31:1627–1645

1 3

of the subsurface, but it is not sufficient to predict and 
capture the true spatial distribution and variability of the 
subsurface electrical resistivity. Apparent resistivity mod-
els distort the real subsurface characteristics as these data 
correspond to volumetric measurements highly dependent 
on the type and configuration of the acquisition (Dahlin 
and Zhou 2004; Saydam and Duckworth 1978).

To predict the true subsurface electrical resistivity spa-
tial distribution, observed apparent resistivity needs to be 
inverted (Loke 2002). Due to measurement errors in the 
acquisition, noise contamination, and incomplete data cov-
erage, ERT inversion is an ill-posed, nonlinear problem 
with a nonunique solution (e.g., Tarantola 2005). Multiple 
solutions imply uncertainty about the prediction obtained. 
Hence, an accurate assessment of model uncertainty is 
fundamental to properly interpreting the predictions and 
for well-informed decision-making.

The relationship between observed geophysical data 
and model parameters can be mathematically described as

where m represents the vector model parameters to be 
predicted (i.e., electrical resistivity), dobs corresponds to 
the vector of observed data (i.e., apparent resistivity), F 
is the forward operator that maps the model into the data 
domain, and e is a vector that represents the discrepan-
cies arising from measurement errors and the assumptions 
made during the data processing.

Classical ERT inversion methods are deterministic. A 
deterministic inversion searches for a single earth model 
(i.e., the expected model) able to predict ERT data with 
an acceptable fit to the observed data, satisfying any other 
imposed constraints such as being consistent with an initial 
model built from the a priori knowledge about the subsur-
face geology. In deterministic inversion methods, the solu-
tion minimizes an objective function consisting of a regular-
ized weighted least squares formulation, in which the search 
is usually conducted using iterative gradient-based methods 
(e.g., Ellis and Oldenberg 1994; LaBrecque et al. 1996; Loke 
and Barker 1996; Pidlisecky et al. 2007). As determinis-
tic inversion predicts a single solution, it does not provide 
insights into the degree of uncertainty associated with the 
inversion results. Several works have investigated the use of 
geostatistical priors to regularize and impose a given spatial 
continuity pattern to the predicted models (e.g., Hermans 
et al. 2012; Jordi et al. 2018; Bouchedda et al. 2017). Her-
mans et al. (2016) propose the prediction-focused approach 
(PFA) forecast the spatiotemporal change hydrogeological 
properties using electrical resistivity tomography. Linde 
et al. (2015) review the most common methods to include 
geological realism in hydrogeological and geophysical 
inverse modelling.

(1)d
obs

= F(m) + e

Alternatively, stochastic geophysical inversion methods 
search for multiple subsurface models (e.g., of electrical 
conductivity) that predict ERT data that fit equally well with 
the observed ERT data. A variety of stochastic methods are 
described in the literature, but in general, they are divided 
into two main groups of techniques: Bayesian inversion and 
stochastic optimization algorithms (e.g., Tarantola 2005; 
Gloaguen et al. 2005; Giroux et al. 2007; de Pasquale et al. 
2017, 2019; de Pasquale and Linde 2017).

In Bayesian inversion methods, a joint posterior probabil-
ity distribution for all model parameters is used to describe 
the solution to the inverse problem. The posterior distri-
bution is obtained using a likelihood function built on the 
available data sources, which updates a prior distribution 
for the model parameters. Zhang et al. (1995) proposed an 
inversion method to maximize model parameters’ posterior 
probability density function. This method’s implementation 
for ERT relies on assumptions about the spatial covariance 
of the resistivity parameters and Gaussian distributions for 
data errors and model parameters. Mosegaard and Taran-
tola (1995) described a statistical approach reformulated as 
a Bayesian inference problem using Markov chain Monte 
Carlo (McMC) and the Metropolis algorithm sampling 
method. In their work, the posterior distribution combines 
physical models and available prior information with new 
information obtained through direct measurement of the 
subsurface.

Alternatively, stochastic optimization algorithms methods 
to predict hydrogeological properties approximate the pos-
terior distribution. A comparison between three global opti-
mization methods is provided in Barboza et al. (2018). The 
most cited works include ERT inversion based on McMC 
to assess the posterior distribution of the model parameters 
shown in de Pasquale (2017), de Pasquale and Linde (2017), 
de Pasquale et al. (2019) and Aleardi et al. (2020). Chen 
and Zhang (2006) propose an ensemble Kalman filter for 
providing updated estimates of model parameters and model 
state variables, such as hydraulic conductivity and pressure 
head and their uncertainty. Arboleda-Zapata et al. (2022) 
propose a workflow to analyze ensembles of predicted elec-
trical resistivity models.

In iterative geostatistical geophysical inversion methods 
(e.g., Azevedo and Soares 2017; Grana et al. 2021), the 
model parameters are considered as a realization of a ran-
dom function. In this context, the model parameter space is 
perturbed and updated using stochastic sequential simula-
tion and co-simulation coupled with a global optimizer. The 
optimization is driven by the mismatch between observed 
and predicted synthetic data. At the end of the iterative pro-
cedure, a set of subsurface models representing the posterior 
probability distribution are obtained. The uncertainty of the 
predicted models can be assessed, for example, by comput-
ing the pointwise inter-quantile range of the set of inverted 
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models. The application of these methods to invert ERT data 
is still limited.

Dealing with ERT data, Yeh et al. (2002) describe a 
sequential geostatistical ERT inversion method that uses 
spatial covariance matrices to include prior knowledge about 
general geological structures. The method uses well-log data 
to constrain the solution and a successive linear estimator to 
find an optimal model. Feyen and Caers (2006) employed 
multiple-point geostatistics to characterize the hydrofacies 
architecture of complex geological settings, using a training 
image designed to reflect the prior geological knowledge. 
They also used a spatial covariance and a multi-Gaussian 
random function to model the intra-facies variability of the 
hydraulic properties. Mariethoz et al. (2009) used truncated 
pluri-Gaussian simulation to assess contaminant migration 
in highly heterogeneous porous media. Truncated pluri-
Gaussian simulation attempts to create maps of categorical 
values by truncating at least two underlying multi-Gaussian 
simulations. Hörning et al. (2020) presented a geostatistical 
approach for the inversion of ERT data based on “random 
mixing”; in this technique, realizations of conductivity fields 
are constructed by combining random fields that have the 
spatial correlation of conductivity. Lochbühler et al. (2014) 
propose a method to condition the generation of subsurface 
models with multiple-point statistics with tomographic 
images.

This paper proposes an alternative iterative geostatisti-
cal resistivity inversion method based on direct sequential 
simulation and co-simulation (Deutsch and Journel 1998). 
The available resistivity borehole data are used to model the 
spatial continuity patterns of subsurface geology as given 
by a variogram model and to condition the generation of 
electrical resistivity models locally. When borehole data 
are not available, variogram models and the target distribu-
tion of electrical resistivity retrieved from analogues can be 
imposed. The similarity coefficient between observed and 
predicted data at a given iteration drives the convergence 
of the iterative procedure and the assimilation level of the 
observed ERT data from iteration to iteration.

The proposed geostatistical ERT inversion methodol-
ogy is applied to two-dimensional (2D) synthetic and real 
data sets. The real application example consists of a set of 
2D profiles obtained from an ERT survey carried out in the 
Alentejo region in Portugal, which was designed to model 
the groundwater system of the region. All predicted models 
generate synthetic ERT data similar to the observed ones, 
reproducing both the borehole data and the imposed vari-
ogram models. In addition, the predicted models show the 
ability of the proposed inversion method to characterize the 
spatial uncertainty of the model parameters. The results 
obtained in both application examples are compared against 
a conventional deterministic inversion methodology avail-
able in commercial software (RES2DINV) (Loke 2010).

The next section details the proposed methodology. 
This is followed by synthetic and real case applications, 
including a detailed description of the data sets. The results 
are discussed in the subsequent section before the main 
conclusions.

Methodology

The proposed iterative geostatistical ERT inversion method 
aims to predict the spatial distribution of subsurface electri-
cal resistivity from recorded ERT data (i.e., apparent resis-
tivity pseudo-sections). This method encompasses three 
main steps—model generation, generation of synthetic ERT 
data, and a stochastic update (Fig. 1). Each step is described 
in detail in the following.

Model generation

Electrical resistivity model parameters are generated using 
direct sequential simulation (DSS) during the first iteration 
and direct sequential co-simulation (co-DSS) in the follow-
ing iterations (Soares 2001; Azevedo and Soares 2017). At 
each iteration, a set of Ns electrical resistivity models are 
generated, accounting for the spatial continuity given by a 
variogram model (i.e., a spatial covariance matrix), consid-
ering the local distribution that the attribute should have 
at each location and conditioned to the available resistivity 
borehole data. The variogram model and the local probabil-
ity distribution can be estimated from the existing borehole 
data and/or inferred from expert knowledge.

Briefly, in direct sequential simulation, each location of 
the simulation grid is visited sequentially following a ran-
dom path. At each visited location, a value of the original 
variable is drawn from a probability distribution function 
based on a simple kriging estimate using observed data (i.e., 
direct observations) and previously simulated values within 
a given neighborhood (Deutsch and Journel 1998; Soares 
2001). The simple kriging estimate and variance are used 
to build an auxiliary probability distribution function from 
the distribution of the experimental data set. The stochastic 
sequential simulation finishes after all the locations of the 
random path are visited. Each time the simulation runs, an 
alternative model is generated (i.e., a geostatistical realiza-
tion) as the random path changes, and so they change the 
previously simulated data at each location.

Generating synthetic ERT data

The forward model implemented in the iterative geostatisti-
cal ERT inversion method described herein was developed 
by Pidlisecky and Knight (2008). During the iterative proce-
dure, this 2D forward model is used to compute Ns synthetic 
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apparent resistivity models from the previously generated Ns 
electrical resistivity geostatistical realizations. Using a 2D 
forward model might represent a limitation when computing 
the ERT response from highly complex geological settings, 
as the injected electrical current into the subsurface flows 
three-dimensionally through preferential paths that could 
circumvent resistive structures present in a 2D representa-
tion. In these cases, alternative 3D forward models could be 
used, but the computational costs of the proposed method-
ology would increase. A summary of the main principles 
followed by Pidlisecky and Knight (2008) is provided in 
the following.

In ERT surveys, a series of voltage measurements are 
obtained in response to a series of known input currents. 
Poisson’s equation can be used to describe the electric poten-
tial field generated when a current passes across an electrode 
dipole

 where σ is the electrical conductivity  [M–1L–3T3I2], ϕ is 
the potential field  [ML2T–3I–1], I is the input current [I], δ is 
the Dirac delta function, and r+ and r– are the locations of 
the positive and negative current electrodes, respectively. 
To numerically solve Eq. (2) for the electric potential, ϕ, 
numerical gradient, and divergence approximations are 
required. Following Pidlisecky and Knight (2008), once 
numerical finite difference operators have been derived for 
gradient and divergence, Eq. (2) can be written in matrix 
notation as

(2)−∇ ∙ (�∇�) = I
(

�
(

r − r+
)

− �(r − r−)
)

where D is the divergence matrix, S(σ) is a diagonal 
matrix containing the electrical conductivity values, G is the 
gradient matrix, �̂� is a vector of electric potentials, A(σ) is 
the combined forward operator, and q is a vector containing 
the current electrode pairs. Equation (3) is solved to yield 
the potential field

Equation (4) results in a vector of electric potential val-
ues for the cells in the model. Knowing the survey potential 
electrode locations, potential differences can be calculated 
across each measurement pair. These measurements are then 
multiplied by the geometric factor K to provide apparent 
resistivities

The geometric factor (K) depends on the arrangement of 
the four electrodes (i.e., depends on the distance between 
each electrode and the measurement). K is given by

where rC1–P1 is the distance between current electrode C1 
and potential electrode P1, rC1–P2 is the distance between 
current electrode C1 and potential electrode P2, rC2–P1 is 
the distance between current electrode C2 and potential 

(3)(DS(𝜎)G)�̂� = A(𝜎)�̂� = q

(4)�̂� = A
−1
(𝜎)q
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2�
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Fig. 1  Schematic representation of the proposed iterative geostatistical ERT inversion method
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electrode P1, and rC2–P2 is the distance between current 
electrode C2 and potential electrode P2.

Stochastic update

At the end of each iteration, the stochastic update of the 
electrical resistivity models is performed using a data selec-
tion procedure that controls the assimilation degree of the 
observed ERT data. For a given iteration, and for the set 
of Ns simulated electrical resistivity models, Ns synthetic 
apparent resistivity models are computed using the forward 
model described previously. The computed apparent resis-
tivities are locally compared against the observed one in 
terms of a similarity coefficient (S) using a nonoverlapping 
moving window that visits all the inversion grid locations

 where x and y are the observed and synthetic apparent resis-
tivity, respectively. N is the number of observations used in 
the calculations. The moving window does not need to be 
square, and its width and height are randomly generated at 
the beginning of each iteration to avoid biasing the results 
from iteration to iteration. Alternative similarity coefficients 
could be used as long as they are bounded between –1 and 
1 with a similar meaning to Pearson’s correlation coeffi-
cient. This assumption is required due to the use of S in the 
stochastic sequential co-simulation of new models in the 
subsequent iteration.

At each moving window location, the samples of electri-
cal resistivity corresponding to a given geostatistical realiza-
tion from which the largest similarity coefficient originated 
are stored together with the similarity coefficient in two aux-
iliary arrays, which are used as conditioning information in 
the subsequent iteration.

In the new iteration, a new set of Ns models is co-sim-
ulated using both auxiliary arrays as secondary variables. 
The magnitude of S determines the variability of the new 
ensemble of electrical resistivity co-simulated models. The 
higher the similarity coefficient, the less variable the ensem-
ble will be (i.e., the higher the assimilation of the observed 
apparent resistivity data). S is similar to Pearson’s correla-
tion coefficient but is sensitive to the amplitude mismatch 
between signals. The iterative process finishes when the 
similarity coefficient, computed over the entire domain, is 
above a given threshold, or if a given number of predefined 
iterations is reached.

During the entire iterative procedure, each electrical resis-
tivity model generated with DSS and co-DSS reproduces the 
observed data at their locations, the probability distribution 
function of electrical resistivity, and the variogram model 
imposed during the stochastic sequential (co-)simulation. 

(7)S =

2
∑N

s=1

�

xs⋅ys
�

∑N

s=1

�

xs
�2

+
∑N

s=1

�

ys
�2

The variogram model adopted for the inversion depends on 
the data availability and will condition the geological plau-
sibility of the predicted subsurface models.

The proposed iterative geostatistical ERT inversion 
method can be summarized by the following sequence of 
steps (illustrated in Fig. 1):

1. Simulation of a set of Ns electrical resistivity models 
using DSS. The existing borehole data are used as hard 
data. The spatial continuity pattern of the stochastic 
sequential simulation is imposed by a variogram model.

2. Calculation of the corresponding Ns synthetic ERT data 
(i.e., apparent electrical resistivity) for each electrical 
resistivity subsurface model simulated in step 1) using 
the forward model.

3. Computation of the local similarity coefficient (S) 
between observed (i.e., measured) and predicted (i.e., 
synthetic) ERT data.

4. Construction of the two auxiliary arrays by selecting, for 
each moving window position, the grid cells from the 
realization with the highest S and the corresponding S 
values, respectively.

5. Generation of a new ensemble of Ns electrical resistivity 
models by co-DSS using the auxiliary arrays resulting 
from step 4 as secondary variables.

6. Iterate and repeat steps 2–5, until the value of S com-
puted over the entire domain reaches a predefined 
threshold or the number of iterations gets to a user-
defined number of iterations.

Application examples

The proposed iterative geostatistical ERT inversion meth-
odology was applied to 2D synthetic and real data sets. The 
synthetic application example acts as proof of concept of the 
proposed methodology and is compared against a commer-
cial deterministic inversion solution. The results obtained 
with the real application example that considers realistic 
noise levels are compared against a conventional determin-
istic inversion methodology to analyze its advantages and 
disadvantages.

Synthetic application example

The synthetic application example shown herein is 
inspired by a laboratory experiment conducted in a sand-
box by Citarella et  al. (2015) and Chen et  al. (2018). 
In this experiment, a laboratory sandbox is filled with 
homogeneous porous material (i.e., glass beads) and has 
an impermeable barrier positioned in the middle top of 
the sandbox. Within the sandbox, pollutant dispersion in 
a groundwater system is simulated by injecting a tracer 
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solution into the porous medium and controlling the 
head level. A photometric method is used to monitor the 
plume evolution in time. This experiment mimics a typical 
groundwater system recharged by natural rainfall entering 
the soil profile and leaching into deeper soil layers. Due 
to intensive agricultural or industrial activities, the lea-
chate leaving the soil profile and entering the aquifer may 
contain concentrations of toxic substances. Once these 
substances have entered the aquifer, they can be trans-
ported over large horizontal distances, thus contaminat-
ing large parts of the aquifer. In the case of groundwater 
contamination, it is important to understand how the toxic 
substances are dispersing so that proper mitigation actions 
can be taken. The inversion results illustrated herein aim at 
assessing the potential of the proposed inversion method 
to detect contamination plumes.

The electrical resistivity reference data set used in this 
work represents a snapshot of the system described previ-
ously with the plume already dispersed under the imper-
meable barrier (Fig. 2a). Plume spread is apparent by the 
V-shaped low resistivity feature in a high resistive back-
ground (i.e., the glass beads filled with freshwater). The ver-
tical impermeable barrier induces the V-shape. The sandbox 
is 90 cm long by 18.2 cm high. Tracer dispersion occurs 
from right to left. The impermeable barrier is observed as 
a vertical low resistivity feature starting from the top of the 

model until a depth of about 5.6 cm and positioned at a 
horizontal distance of 43.5 cm from the left border. The 2D 
inversion grid consists of 60 × 1 × 13 cells for the i-, j-, and 
k-directions, respectively.

The reference apparent resistivity (Fig. 2b) was numeri-
cally computed considering a Wenner-Schlumberger acquisi-
tion array (e.g., Loke 2002) composed of a total of 31 elec-
trodes spaced every 3 cm and solving the forward model 
to yield the potential field following Pidlisecky and Knight 
(2008). This apparent resistivity was used as true geophysi-
cal data during the application of the proposed methodology. 
The same forward model used to calculate the true appar-
ent resistivity field was used as part of the inversion. This 
approach assumes that no uncertainty is considered in the 
forward model, which might be a strong assumption in real 
case applications with complex geology settings.

To apply the proposed geostatistical resistivity inversion 
to the reference data set, the true electrical resistivity field 
was sampled at two boreholes on both sides of the imper-
meable barrier. The position of the boreholes can be seen 
in Fig. 2. The borehole data were used as experimental data 
to condition the generation of models during the iterative 
geostatistical inversion. As two boreholes are being consid-
ered as conditioning data, the spatial continuity pattern of 
both horizontal and vertical directions was estimated directly 
from the true electrical resistivity, as represented by a 2D 
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global variogram model (Fig. 3). In this synthetic applica-
tion example, it is assumed that there is no uncertainty in 
the spatial continuity pattern imposed during the iterative 
procedure (i.e., no uncertainty on the variogram model). 
Also, to reduce the complexity of the synthetic data set, the 
simulation and inversion area is limited to the region where 
the apparent resistivity exists (Fig. 2b).

The experimental variograms in the horizontal and verti-
cal directions were fitted with a spherical variogram model. 
The ranges used were 30 cm for the horizontal direction and 
5 cm for the vertical one.

The iterative geostatistical inversion ran with 32 mod-
els of resistivity and for 6 iterations. These values were set 
after trial-and-error to make sure the iterative procedure con-
verged. The evolution of the global S between reference and 
synthetic apparent resistivity is shown in Fig. 4. The models 
generated during the first iteration of the inversion procedure 
are characterized by a global S higher than 0.90. This means 

that the inversion problem is well characterized since a good 
convergence is reached at the early stages of the iterative 
procedure. This effect might be due to the relatively small 
size of the inversion grid versus the number of experimental 
data; also, the imposed variogram model is close to the true 
one. After the second iteration, the global S is higher than 
0.95, reaching almost 1 at the end of the six iterations. As the 
stopping criterion for the iterative procedure, a fixed number 
of iterations was chosen, which was set after trial-and-error 
over a small portion of the area of interest.

Figure 5 shows the results of the inversion. In Fig. 5a, 
the reference apparent resistivity computed from the refer-
ence map in Fig. 2a is shown, whereas Fig. 5b shows the 
apparent resistivity from the realization that has the best 
fit (i.e., with the highest similarity coefficient), and Fig. 5c 
shows the apparent resistivity computed from the pointwise 
mean of all realizations generated during the last iteration of 
the iterative procedure. Next, Figs. 5e,f show the similarity 
coefficients computed between the reference apparent elec-
trical resistivity and that obtained from the best-fit electri-
cal resistivity realization and the pointwise mean. There are 
small-scale differences around the areas where the tracer is 
being injected, the impermeable barrier is located, and at the 
plume front (black arrows in Fig. 5). These areas are charac-
terized by high and abrupt resistivity contrasts, which have 
an impact on the quality of the inverted pseudo-sections. 
This effect is also noticeable in the local S values.

The best-fit electrical resistivity model (i.e., the one that 
produces apparent resistivity with the highest global S) and 
the pointwise mean of the electrical resistivity models pre-
dicted in the last iteration of the inversion process are shown 
respectively in parts b and c of Fig. 6. These models repro-
duce the overall spatial distribution of the pollutant disper-
sion observed in the reference model (Fig. 6a), but small 
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differences are identified. Neither the plume V-shape nor 
the impermeable barrier are accurately reproduced, which is 
consistent with the small-scale differences identified between 
synthetic and reference apparent resistivity pseudo-sections 
in Fig. 5. It is a challenge for geostatistical simulation based 
on two-point statistics to reproduce small features such as the 
impermeable barrier or the curved shape seen in the plume 
spatial distribution. Alternative geostatistical methods such as 
multiple-point geostatistical simulation could perform better.

Each electric resistivity model generated during the itera-
tive procedure reproduces the histogram of the true model 
as retrieved from the borehole. This is an intrinsic property 
of direct simulation and co-simulation algorithms and is of 
great importance to ensure subsurface geological consist-
ency. Figure 7 compares the reference histogram and the 
best-fit model histogram.

To assess the performance of the proposed geostatisti-
cal ERT inversion method, it is necessary to compare the 
results obtained with those from a deterministic inversion 
(Fig. 8). The deterministic inversion was obtained using 
RES2DINV (Loke 2010) with a default parameterization. 
The predicted pseudo-sections of apparent resistivity 
obtained at the last iteration of the deterministic inversion 
(Fig. 8a) can reproduce the main patterns of the true data. 
The local similarity coefficients between these data are 
high for the entire inversion grid (Fig. 8b). The predicted 
electrical resistivity (Fig. 8c) does reproduce the main 
V-shape of the electrical resistivity anomaly but is smooth 
and has a lower spatial resolution than the predicted model 
from the geostatistical inversion (Fig. 6). The small bar-
rier at the top of the model is almost undetected by the 
predicted electrical resistivity model.

Fig. 5  Pseudo-sections of a 
reference apparent resistivity, b 
synthetic best-fit apparent resis-
tivity, and c synthetic apparent 
resistivity given by the mean of 
the resistivity models after the 
last iteration of the inversion 
process. The similarity coef-
ficient S is also shown, d for the 
similarity between reference and 
best-fit realization, and e for the 
similarity between the reference 
and the pointwise mean of all 
realizations. The black arrows 
point to small-scale differences 
between the reference (a) and 
the two synthetic estimates 
(b–c). w1 and w2 represent 
the location of the boreholes 
considered
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Additionally, one of the advantages of using iterative 
geostatistical geophysical inversion methods is the ability 
to assess the spatial uncertainty associated with model pre-
dictions. Figure 8 shows the pointwise variance of electrical 
resistivity computed from the ensemble of models generated 
during the first and sixth iterations of the inversion proce-
dure (Fig. 9a,b, respectively). It was assumed that the spa-
tial distribution of electrical resistivity is only variable in 
the area with geophysical data (area inside the grey lines in 
Fig. 9). The remaining areas correspond to the constant high 
resistive background, so there is no variability. During the 
first iteration, the spatial uncertainty in the area of interest is 
only dependent on the location of the borehole data since no 
geophysical data have been assimilated yet. As expected, the 
variance increases with the distance from the experimental 
data. In the last iteration of the inversion process, the spatial 

uncertainty decreases drastically as the observed geophysi-
cal data are assimilated during the iterative procedure reveal-
ing areas where the match between observed and predicted 
data is less good (i.e., the predictions at these locations are 
more uncertain).

Real application example

The proposed iterative geostatistical ERT inversion meth-
odology was applied to four 2D profiles obtained from an 
ERT survey carried out at the Neves-Corvo mining site 
(Alentejo region, Portugal). The survey aimed to char-
acterize the spatial distribution of a groundwater system 
within mining premises. The full data set consists of a 
total of 22 apparent resistivity profiles. The application 
of the proposed geostatistical inversion is shown for four 
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profiles that intersect each other, allowing for the assess-
ment of the spatial coherency between predictions as each 
profile is inverted individually (Fig. 10). The predicted 
models with the proposed inversion methodology were 
compared against models inverted with a deterministic 
inversion method.

 The ERT survey was performed with a Wenner-Schlum-
berger acquisition array configuration (e.g., Everett 2013). 
Table 1 summarizes the survey setup for the acquisition of 
each profile.

The histograms necessary for the stochastic sequential 
simulation and co-simulation were derived from previ-
ous ERT deterministic inversions due to the lack of wells 
drilled along the profile cross-sections. Therefore, the geo-
statistical simulation and co-simulation were not locally 
conditioned by any borehole information. Given the lack 
of direct observations and their spatial sparseness, the hor-
izontal variogram models were retrieved from the sections 
of electrical resistivity obtained with a deterministic inver-
sion approach provided by the data owner and adjusted 
for the expected geological knowledge of the area. This 
approach is similar to the workflow used in iterative geo-
statistical seismic inversion methodologies, where the 
horizontal variogram models are computed directly from 
the seismic data instead of the borehole data (Azevedo 
and Soares 2017) and were also proposed by Hermans 
et al. (2012). These approaches tend to overestimate the 
variogram ranges adding uncertainty to the imposed vari-
ogram model and it might result in unplausible predicted 
models. An alternative, commonly used in geostatistical 
seismic inversion, but not applied in this application exam-
ple, is to optimize the variogram model by running small 
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Fig. 8  a Pseudo-section of 
apparent resistivity predicted 
with a deterministic solution, 
b the similarity between refer-
ence and predicted data, and c 
predicted electrical resistivity 
from the deterministic inversion 
method
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Portugal) and inverted with the proposed methodology
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inversion pilot regions (i.e., mini-inversions). In these 
small inversion pilot regions, the inversion grid is divided 
into smaller regions, where multiple inversions run with 

different parameterizations. Then, the results are inter-
preted based on the geological knowledge of the study area 
and the parameters with the best results are used to invert 
the full inversion grid. The number of samples along the 
borehole path in the vertical direction is also limited and 
not able to capture the expected variability of the subsur-
face electrical conductivity. The limitations in estimating 
the spatial continuity pattern do impact the inverse solu-
tion. The resulting variogram models are shown in Table 2 
and Fig. 11.

The evolution of the global S between observed and syn-
thetic apparent resistivity for the four inverted profiles is 
shown in Fig. 12. At the end of the inversion, the models 
generated for the different profiles reach a global S higher 
than 0.9. The models predicted during the first iteration 
produce synthetic ERT data with similarity coefficients 
between 0.6 and 0.85. The high convergence at an early 

Table 1  ERT survey setup for 
the acquisition of profiles P15, 
P17, P19, and P20

Profile ID Total number of 
electrodes

Minimum elec-
trode spacing (m)

First electrode 
position (m)

Last electrode 
position (m)

Total number 
of measure-
ments

P15 323 2.5 0 805 3,389
P17 285 2.5 0 715 2,803
P19 179 2.5 0 445 1,406
P20 177 2.5 0 445 1,322

Table 2  Dimension of the inversion grid and global variogram model 
parameters used to invert profiles P15, P17, P19, and P20

Profile ID Inversion grid (num-
ber of cells)

Global variogram

i-direc-
tion

k-direc-
tion

Horizon-
tal range 
(m)

Vertical 
range 
(m)

Model

P15 322 21 55 41 Spherical
P17 286 21 65 45.5 Spherical
P19 178 21 87.5 35 Spherical
P20 178 21 95 35 Spherical
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Fig. 11  Two-dimensional experimental variograms computed from 
the electrical resistivity data resulting from a deterministic inversion 
provided by the site owner: a horizontal and b vertical directions for 

profile P15; c horizontal and d vertical directions for profile P17; e 
horizontal and f vertical directions for profile P19; and g horizontal 
and h vertical directions for profile P20
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stage of the iterative procedure indicates that the electrical 
conductivity models generated in the first iteration, when 
there is no assimilation of the observed ERT data, might 
resemble the true subsurface geology. In cases where the 
variogram model is not geologically plausible, these global 
S values would be smaller. The predicted ERT data with 
the deterministic solution reached a S value above 0.95 for 
the four sections.

The synthetic apparent resistivity data computed from 
the best-fit electrical resistivity model for profiles P15, 
P17, P19, and P20 are shown in Fig. 13. These appar-
ent electrical resistivity pseudo-sections reproduce the 
main spatial patterns seen on the field apparent resistivity. 
The differences between synthetic and observed data are 
mainly identified at depth and in areas characterized by 
pronounced irregular shapes with abrupt apparent resis-
tivity contrasts (black arrows in Fig. 13). The local S com-
puted between observed and best-fit apparent resistivity 
for profiles P15, P17, P19 and P20 (shown in Fig. 14) 
confirms the lower quality of the inverted results in these 
areas. The predictions obtained for these locations are 
therefore uncertain as reflected by the pointwise vari-
ance computed from the ensemble of resistivity models 
computed during the last iteration of the inversion pro-
cedure (Fig. 15d). For these regions the variance values 
are higher and close to the total variance of the imposed 

histogram as the local conditioning with the observed 
ERT data is low.

Figure 15 illustrates the integration, in a three-dimen-
sional (3D) view, of the best-fit electrical resistivity 
models (Fig. 15a), as well as the pointwise mean of the 
models predicted in the last iteration of the inversion pro-
cess (Fig. 15b). The models obtained via deterministic 
ERT inversion using the commercial software RES2DINV 
(Loke 2010) are also shown (Fig. 15c). These models 
were provided by the data owner and serve as a bench-
mark for the models predicted with the proposed ERT 
inversion method. The predicted models with the geosta-
tistical inversion method show larger spatial variability, 
due to the stochastic sequential simulation algorithm and 
the imposed variogram model, and have higher coher-
ency when interpreted together. Despite being inverted 
individually, there is consistency at the intersection 
locations; on the other hand, the results obtained with a 
deterministic inversion are smoother with abrupt verti-
cal changes, which might not be geologically realistic. 
These abrupt variations depend on the parameterization of 
the inversion (e.g., vertical versus horizontal smoothing). 
Moreover, the integration of the deterministic solutions 
in a 3D view shows some resistivity spatial continuity 
inconsistencies, especially in the area where profiles P17 
and P20 intersect.
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The pointwise variance model computed from the elec-
trical resistivity models predicted during the last iteration 
of the geostatistical inversion is also presented in a 3D 
view (Fig. 15d). For the different profiles, the lowest spa-
tial uncertainty is observed in areas where the predicted 
resistivity models are populated with low electrical resis-
tivity values, while higher variability is observed in areas 
characterized by high electrical resistivity values. The 
observed ERT data for these regions tend to be smoother 
(i.e., with lower spatial variability) and therefore easier to 
match. As the observed ERT data of these regions have a 
higher assimilation degree during the iterative procedure 
the ensemble of predicted models during the last iteration 
has a smaller pointwise variance (i.e., spatial uncertainty).

Discussion

This study proposes an iterative geostatistical ERT 
inversion method based on stochastic sequential simu-
lation and co-simulation. Information regarding the 

resistivity spatial continuity pattern (i.e., the variogram 
model) is inferred directly from the available resistivity 
borehole data, which might be complemented by expert 
knowledge.

The results obtained in both application examples show 
the ability of the proposed method to predict electrical resis-
tivity models that are consistent with the recorded ERT geo-
physical data and with alternative deterministic inversion 
approaches. During the first iteration, the predicted models 
are already close to the true subsurface resistivity, which 
explains the high convergence rates. However, the iterative 
procedure’s success and convergence rate depend on the qual-
ity of the observed ERT data, the number of boreholes, and 
the reliability of the estimated global variogram model. Also, 
in both application examples, a Wenner-Schlumberger type 
of acquisition array is considered. This kind of array has a 
good correspondence between the pseudo-resistivity section 
and the true spatial distribution and therefore might facilitate 
the convergence of the geostatistical inversion method. Tests 
with different acquisition geometries (e.g., dipole-dipole, 
multiple-gradient arrays) have shown that the performance 
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of the proposed inversion method is similar. Depending on 
the acquisition geometry of the data, apparent resistivity sec-
tions might exhibit geometric deformations. If the geometry 
imposed during the forward model step matches the one from 
the field the same level of distortion is expected in the field 
and synthetic apparent resistivity sections.

Also, the proposed methodology is presented and 
illustrated with a 2D forward model; however, a 3D 
forward model could be used in a straightforward man-
ner. In this case, the stochastic sequential simulation 
would generate sets of 3D models of subsurface electri-
cal resistivity.

The synthetic application example is characterized by a 
homogeneous background versus a V-shaped contamination 
plume. This data set poses a challenge for geostatistical sim-
ulation methods based on two-point statistics due to the non-
stationary behavior of the model parameters represented by 
the sharp discontinuities and the contamination plume with 
opposite directions. Nevertheless, in this synthetic appli-
cation example, the predicted electrical resistivity models 
reproduce the spatial pattern of pollutant dispersion while 
sharing the same histogram as the reference model (Fig. 16). 
Nevertheless, due to the use of geostatistical simulation and 
co-simulation methods based on two-point statistics, the 
proposed inversion method struggles to predict exactly the 
location of the impermeable barrier and the V-shaped plume. 
The results agree with those obtained with the deterministic 
inversion.

The real case application example illustrates the meth-
od’s potential with real, noisy data. The proposed method 
could predict spatially consistent electrical resistivity mod-
els for the different profiles from the observed ERT data. 
These models generated synthetic geophysical data similar 
to the observations while being able to reproduce the tar-
get histogram imposed for the geostatistical simulation. In 
this application example, the target distribution is the one 
retrieved with the deterministic solution, but alternative 
target histograms could be used (e.g., from borehole data; 
Fig. 15).

In the application examples shown in this paper, only the 
spatial uncertainty of the predicted subsurface properties is 
explored. However, further developments could also include 
uncertainty in the observed data as provided by modern 
ERT systems that provide an estimate of the variance of the 
measurements.

Conclusion

The work presented herein proposes an alternative iterative 
geostatistical ERT inversion method based on stochastic 
simulation and co-simulation. It was successfully applied 
to a 2D synthetic case and a set of 2D ERT profiles. This 
was verified by computing apparent resistivity models 
from the generated electrical resistivity realizations, which 
were locally compared against the observed one in terms 
of similarity coefficient. The models were constructed by 
selecting portions from each realization of the ensemble 
that showed high similarity with the observed data and 
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then using these portions as secondary data for the next 
co-simulation. The ensemble of realizations generated dur-
ing the last iteration of the inversion process was used to 
assess the uncertainty of the spatial distribution of elec-
trical resistivity. These electrical resistivity models were 
characterized by variability and converged towards the 
areas of lower electrical resistivity values in the real case 
application.
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