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Abstract
Uncertainties in hydrologic model outputs can arise for many reasons such as structural, parametric and input uncertainty.
Identification of the sources of uncertainties and the quantification of their impacts onmodel results are important to appropriately
reproduce hydrodynamic processes in karst aquifers and to support decision-making. The present study investigates the time-
dependent relevance of model input uncertainties, defined as the conceptual uncertainties affecting the representation and
parameterization of processes relevant for groundwater recharge, i.e. interception, evapotranspiration and snow dynamic, on
the lumped karst model LuKARS. A total of nine different models are applied, three to compute interception (DVWK, Gash and
Liu), three to compute evapotranspiration (Thornthwaite, Hamon and Oudin) and three to compute snow processes (Martinec,
Girons Lopez and Magnusson). All the input model combinations are tested for the case study of the Kerschbaum spring in
Austria. The model parameters are kept constant for all combinations. While parametric uncertainties computed for the same
model in previous studies do not show pronounced temporal variations, the results of the present work show that input uncer-
tainties are seasonally varying. Moreover, the input uncertainties of evapotranspiration and snowmelt are higher than the
interception uncertainties. The results show that the importance of a specific process for groundwater recharge can be estimated
from the respective input uncertainties. These findings have practical implications as they can guide researchers to obtain relevant
field data to improve the representation of different processes in lumped parameter models and to support model calibration.
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Introduction

Hydrologic models serve as important tools for the assessment
of dominant hydrodynamic processes in karst systems
(Hartmann et al. 2013; Sivelle et al. 2019). In those models,
subsurface heterogeneity and the resulting complex hydrody-
namic processes typical for karst aquifers are often represented
in a simplified way (Fleury et al. 2007; Guinot et al. 2015;

Sivelle et al. 2021; Sivelle and Jourde 2020). The assessment
of the reliability of a model output is therefore an important step
towards an improved description of the karst system (Hartmann
et al. 2014a). This assessment is usually done by uncertainty
quantification techniques, which investigate the likelihood of a
model outcomewhile considering the unknowns in a hydrolog-
ic model (Sarrazin et al. 2018; Teixeira Parente et al. 2019).
These unknowns arise from different sources of uncertainties,
i.e. structural (Fandel et al. 2020; Henson et al. 2018), paramet-
ric (Mazzilli et al. 2012; Moussu et al. 2011) and input uncer-
tainties (Liu et al. 2018; Nerantzaki et al. 2020).

Structural uncertainties evolve from the simplifications re-
quired while creating a conceptual model of a real-world system
(Gupta and Govindaraju 2019; Rojas et al. 2008). This concep-
tualization often neglects certain parts of the natural system due
to a lack of knowledge, which can lead to an underrepresentation
of important hydrodynamic processes (Butts et al. 2004; Lee
et al. 2011). Parametric uncertainties arise from the fact that
the exact values of model parameters, such as discharge
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coefficients and storage thresholds, are often not known
(Ahmadi et al. 2019; Hu et al. 2019). This is particularly true
for lumped conceptual models, whose parameters cannot often
be constrained by physical field experiments (Wagener et al.
2003). Hence, for each parameter, a reasonable parameter range
needs to be defined in which the true parameter value is located
(Seibert 1997). Finally, input uncertainties exist due to missing
and/or uncertain input data (Breinl 2016; McMillan et al. 2012)
as well as due to simplifications of the processes that finally
represent the model input, e.g. the groundwater recharge
(Kavetski et al. 2006; Patil et al. 2011; Vrugt et al. 2008).

More recent studies highlighted that groundwater recharge
in systems with strong subsurface heterogeneities such as
karst systems, exhibits a high sensitivity to changes in climatic
forcings (Hartmann et al. 2017). In the specific case of pre-
alpine karst catchments, these forcings controlling groundwa-
ter recharge are interception, evapotranspiration and snowmelt
processes. Garrigues et al. (2015) and Sarrazin et al. (2018)
showed that the sensitivity of groundwater recharge with re-
spect to vegetation related processes, i.e. interception and
evapotranspiration, mainly results from the spatial variability
of soil properties. Moreover, Ollivier et al. (2021) underline
that this sensitivity is further related to often missing informa-
tion about spatially distributed and vegetation-dependent
evapotranspiration dynamics. In cases where snowmelt repre-
sents a controlling factor in the water balance of karst areas,
Doummar et al. (2018) showed that groundwater recharge
estimations are most sensitive to temperature variations.
That is mainly due to the importance temperature has for the
timing of snow accumulation and melt and the resulting con-
trol on a spring’s discharge behavior (Liu et al. 2021).

As it is difficult to measure interception, evapotranspiration
and snowmelt, additional models are often applied to compute
input time series for hydrologic models (Hartmann et al. 2014b;
Mazzilli et al. 2012; Ollivier et al. 2020). Interception can be
modeled using mechanistic (Gash et al. 1995; Liu 2001) and
stochastic modeling approaches (Calder 1996; Hall 2003). Data
demanding energy balance methods (Colaizzi et al. 2012;
Penman 1948) or simple temperature-based parametrizations
(Oudin et al. 2005; Thornthwaite 1948) provide evapotranspi-
ration time series. Snow processes, which were recently shown
to play a major role for groundwater recharge in pre-alpine and
alpine areas (Jódar et al. 2020; Lucianetti et al. 2020), can be
modeled using energy balance methods (Herrero et al. 2009;
Marks et al. 1999) or simpler degree-day-factor methods
(Girons Lopez et al. 2020; Martinec 1960). Reliable time series
of interception, evapotranspiration and snowmelt are a prereq-
uisite for a proper description of the water balance for distrib-
uted, semidistributed and conceptual models.

An example for a conceptual model applied to a pre-alpine
karst system is the LuKARS model, which was developed by
Bittner et al. (2018) for the Kerschbaum springshed in Austria.
Given the natural characteristics of the springshed (forested

catchment, elevation between 415 and 969 m asl, annual mean
temperature of 8 °C), evapotranspiration, interception and snow-
melt representations are expected to have an important influence
on the modeled spring discharge (Bittner et al. 2018). However,
since no direct measurements for these input data are available,
simple algorithms have to be applied for computing the input
time series for the LuKARS model (Bittner et al. 2020a).

While previous studies investigated the parametric uncer-
tainties of LuKARS for the Kerschbaum springshed (Teixeira
Parente et al. 2019), the presented article aims to investigate how
much the input uncertainties affect model predictions. The hy-
potheses, which the authors want to test in this study, are, first,
that the input uncertainties can vary seasonally, then, that it is
possible to derive the specific importance of a single process,
e.g. snowmelt, for groundwater recharge from its related uncer-
tainties in themodel output. This is of particular importance, as it
serves as a practical example which is beneficial to guide re-
searchers and decision-makers in favoring field experiments and
data collection differently during different seasons to improve
the output of a karst aquifer model. To study the uncertainty
propagating to the spring discharge, three different modeling
approaches are applied for each of the considered hydrological
processes, i.e. interception, evapotranspiration and snow pro-
cesses. In particular, the methods of DVWK (1996), Gash
et al. (1995) and Liu (2001) are applied to compute interception,
the methods of Hamon (1961), Oudin et al. (2005) and
Thornthwaite (1948) to calculate evapotranspiration and the
methods of Girons Lopez et al. (2020), Magnusson et al.
(2014) and Martinec (1960) to model snowmelt and accumula-
tion. The selection of lumped approaches is driven by data avail-
ability in the study area and in particular by the lack of radiation
data. Then, all possible model combinations are run varying the
parameters of the input models and by using the sampling algo-
rithm of the Fourier Amplitude Sensitivity Test (FAST; Pianosi
et al. 2015). Finally, the study investigates the impact of the
input model parametrization on the LuKARS model output
and how this changes over time. To conclude, the input uncer-
tainties are compared with the parametric uncertainties, which
were computed in an earlier study (Teixeira Parente et al. 2019).

The study area

The Kerschbaum springshed is located close to the city of
Waidhofen a.d. Ybbs (Fig. 1a), about 100 km west of the city
of Vienna (Austria; Fig. 1b). The study site covers an area of
2.5 km2. This pre-alpine recharge area forms part of the eastern
foothills of the Northern Calcareous Alps and is dominated by a
lithologic sequence of dolomitic basement rocks (Fig. 1c). The
study area shows karst features such as springs, dry valleys and
caves. Due to the absence of significant sinkholes, the ground-
water recharge can be assumed barely influenced by point-
infiltration processes. Moreover, according to the study of

2364 Hydrogeol J (2021) 29:2363–2379



Narany et al. (2019), the Kerschbaum springshed is character-
ized by a deep karstified groundwater system with a well-
connected network of fractures and conduits.

The land cover is dominated by beech forests. Its spring
provides a mean discharge of 34 L/s to the regional water
supply and shows a quick reaction time to precipitation and
snowmelt events of 1 day (Bittner et al. 2021). Figure 2 shows
the available precipitation, temperature, snow depth and dis-
charge time series for the period from 1 January 2006 to 31
December 2007. These time series were measured at the
weather station whose location is shown in Fig. 1a. For more
information about the study area, the interested reader could
refer to the publication of Narany et al. (2019).

Methodology

The paper briefly describes the lumped karst hydrological
model LuKARS of the Kerschbaum springshed. For more
information about the model the reader could refer to the pub-
lication of Bittner et al. (2020b). The paper then focuses on the
description of both commonly applied and recently proposed
parameterizations for interception, evapotranspiration and
snow processes. Since precipitation and air temperature are
the only meteorological parameters measured in the study
area, temperature-based methods are used to compute evapo-
transpiration and snowmelt. Finally, the method used to

quantify the uncertainty of all investigated model combina-
tions is described.

The LuKARS model

The LuKARS model is a lumped parameter model developed
by Bittner et al. (2018) that considers the dominant hydrotopes
in a recharge area as distinct response units. Hydrotopes are
defined as landscape units with similar soil and land use char-
acteristics (Arnold et al. 1998). Each hydrotope is characterized
by a specific retention capacity. As Fig. 3a shows, shallow and
coarse-textured soils lead to low soil storage and high
quickflow intensity. In contrast, thick and fine-textured soils
lead to high soil storage and low quick flow intensity. The
conceptual model considers the hydrotopes to represent the
vadose zone (soil-epikarst-infiltration zone) and to be directly
connected to the saturated zone, which consists of a single
linear storage recharged by each hydrotope independently.
The duality of flow behavior is implemented by considering
for each hydrotope both the fast flow component through the
conduits and the slow diffusive discharge in the matrix. Each
hydrotope simulates three different types of flow, i.e. the
quickflow (Qhyd), the matrix infiltration (Qis) that feeds the
baseflow storage (B), and the secondary spring discharge
(Qsec; Fig. 3b). Qhyd represents the discharge that is directly
moved to the outlet of the catchment through preferential flow
paths such as subsurface conduits, and factors that are

Fig. 1 Overview of the study area close to Waidhofen a.d. Ybbs and the
LuKARS model implementation. a The orthophoto of the study area
including the delineated recharge area of the Kerschbaum spring. b The

location ofWaidhofen a.d. Ybbs seen from a European perspective. c The
geological map of the study area (GBA 2021) including the elevations of
the Kerschbaum spring and the summit of the Glashüttenberg
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responsible for the fast reaction of the spring discharge to rain-
fall and snowmelt events. Qhyd is implemented considering the
hysteretic behavior of the soil-epikarst system that starts after a
constant hydrotope specific storage value (Emax) was exceeded
and stops after a lower constant threshold (Emin) was reached.
Qis is the water that infiltrates into the lower reservoir B (Fig. 3)
and, thus, represents the groundwater recharge.Qsec is the flow
that discharges outside the investigated recharge area and is
activated only when the threshold for secondary spring dis-
charge (Esec) was exceeded. Qis, Qsec and Qb (the baseflow)
are implemented using linear transfer functions. Finally, Qtot

is the discharge at the spring. The mathematical equations and
a graphical user interface for the model are provided in Bittner
et al. (2018) and (2020a), respectively.

Interception

The approach applied by Bittner et al. (2018) was based
on the percentages for interception of beech forest stands
proposed by DVWK (1996). This study further considers
the methods proposed by Gash et al. (1995) and Liu
(2001).

DVWK (1996) suggests that 11% of precipitation is
intercepted from beeches in the winter season (21
December, dw), whereas 17% of precipitation is intercepted
in the summer season (21 June, ds). A linear interpolation is
applied between these values following Eqs. (1) and (2),
which compute daily time series of interception I (mm/day)
for the time between 21 December and 21 June and the time

Fig. 2 Data time series used in the
presented study. a Daily
precipitation (mm), b daily snow
depths (m), c daily air temperature
(°C) and d daily discharge of the
Kerschbaum spring (L/s)
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between 21 June and 21 December, respectively. The maxi-
mum interception is limited to 5 mm/day.

if I < 5
mm

day
; I ¼ 11þ 17−11

ds−dw

� �
d−dwð Þ; then I

¼ 5
mm

day
from Dec 21 to June 21 ð1Þ

if I < 5 mm=day; I ¼ 17þ 11−17
dw−ds

� �
d−dsð Þ; then I

¼ 5 mm=day from June 21 to Dec 21 ð2Þ

The approach by Gash et al. (1995) is based on the calcu-
lation of a gross rainfall that is needed to saturate the canopy,
i.e. P′g (mm). P′g is calculated using Eq. (3).

P0
g ¼ −

Cm

ER 1−pð Þ
� �

ln 1−ERð Þ ð3Þ

where Cm is the stand storage capacity (mm), ER (−) is the
ratio between the mean evaporative rate E and the mean rain-
fall rate of the event for saturated canopy conditions R. The
parameter p represents the free throughfall coefficient (−). For

a daily time step, if the precipitation P (mm/day) is larger than
P′g (mm/day), I (mm/day) can be calculated with Eq. (4).

I ¼ 1−pð Þ P0
g þ 1−pð Þ ER P−P

0
g

� �
ð4Þ

If P < P′g, I is computed following Eq. (5).

I ¼ 1−pð Þ P ð5Þ
The method proposed by Liu (2001) requires the definition

of the same parameters as in the method of Gash et al. (1995).
However, instead of differentiating between the cases in
which precipitation P is greater or smaller than the gross rain-
fall that is needed to saturate the canopy (P′g), the exponential
function in Eq. (6) is defined to compute daily interception
amounts (I).

I ¼ Cm 1−e − 1−pð Þ
Cm

Pð Þh i
1−

ER

1−pð Þ
� �

þ ER � P ð6Þ

Liu (2001) investigated the parameter sensitivities of Eqs.
(4) and (6) and showed that an overestimation of either Cm or
ER results in an overestimation of interception, whereas large

Fig. 3 The conceptual modeling
approach of LuKARS. a
Conceptual representation of the
four implemented hydrotopes.
Hyd 1 indicates the dolomite
quarries with no groundwater
recharge and the dominance of
surface runoff (SF). Hyd 2 and
Hyd 4 represent coarse-textured
and fine-textured soils, respec-
tively. b The bucket-type model
implementation of dominant
hydrotopes. Qsec is the secondary
spring discharge, Qhyd the
quickflow, Qis the matrix infiltra-
tion feeding the baseflow storage
B, Qb the baseflow and Qtot the
discharge at the spring. Esec, Emax

and Emin are thresholds storage
values regulating the activation of
the discharge components
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values of p cause an underestimation of interception.
Moreover, the parameter sensitivities depend on the magni-
tude of a considered rainfall event and the type of canopy. For
example, ER is most sensitive in areas dominated by intense
rainfall events, whereas ER and Cm are most sensitive in areas
characterized by small rainfall events. The parameter p is
sensitive when the models are applied to areas with small
rainfall events and open canopies.

Evapotranspiration

The Thornthwaite (1948) evapotranspiration model was used
to calculate the potential evapotranspiration (ETpot) in the
original LuKARS model of the Kerschbaum spring (Bittner
et al. (2018). In this work, the simulation approaches proposed
by Hamon (1961) and Oudin et al. (2005) are additionally
applied. It is important to note that Bittner et al. (2018) and
Teixeira Parente et al. (2019) used ETpot as actual evapotrans-
piration (ETact), since the results obtained for the annual ETpot

losses were in good agreement with ETact computed in previ-
ous studies for the same study area (Markart et al. 2006).
Specifically, for the years 2006–2007, Bittner et al. (2018)
calculated a total of 45% ETpot, which is in good agreement
with the 43% ETact presented in Markart et al. (2006). In the
presented study, ETact is hence considered to be equal to the
ETpot to be able to compare the different model configurations
under the same conditions.

Thornthwaite (1948) provides estimates for monthly ETpot

and assumes that once the mean monthly temperature be-
comes larger than 0 °C, ETpot becomes 0. In this method,
the hours of daylight are assumed to be 12 and each month
is 30 days long. Then, ETpot (mm/month) is calculated as
shown in Eq. (7),

ETpot ¼ kTH 10
TMean

H

� �r

ð7Þ

where kTH (mm/month) is a proportionality constant, Tmean

(°C) the mean monthly temperature and H (°C) is the heat
index defined in Eq. (8),

H ¼ TMean

5

� �1:514

ð8Þ

with r an exponent given by Eq. (9).

r ¼ 6:75e−7 H3 þ 7:71 e−5 H2 þ 1:792 e−2 H þ 0:49239ð9Þ

As proposed by Bittner et al. (2018), the monthly ETpot are
divided by the number of days and the resulting daily ETpot

are to be representative for the 15th day of a month. In order to
obtain daily ETpot (mm/day) from this method, a linear inter-
polation is applied between these representative ETpot values.

Oudin et al. (2005) derived an empirical equation to esti-
mate daily ETpot (mm/day) as input for lumped rainfall-runoff
models. They tested various ETpot modeling approaches for
numerous catchments in France, Australia and the United
States. Their goal was to identify those atmospheric variables
which provide the best streamflow predictions when being
used as input for ETpot models. The equation they derived is
shown in Eq. (10),

ETpot ¼ 0:408 HO½ � kOU TMean þ 5ð Þ½ � ð10Þ
where HO is the extraterrestrial solar radiation [MJ/(m2/day)],
kOU [m3/kg/(1,000 MJ2 °C)] is a proportionality constant,
Tmean is the mean daily temp (°C), and 0.408 is an approxi-
mation for the latent heat flux (MJ/kg). It is important to note
that ETpot is 0 (mm/day) if Tmean ≤ 5 (°C).

The third method applied to calculate ETpot was proposed
by Hamon (1961), who derived a simple procedure to be used
in water balance estimations. The goal was to use readily
available data, i.e. daily air temperature (Tmean), for ETpot es-
timations. The derived methodology is based on the saturated
water vapor concentration at Tmean, i.e. e

0(Tmean) (kPa) and is
expressed by Eq. (11),

ETpot ¼ kHA
N
12

216:7 e0 Tmeanð Þ= Tmean þ 273:3ð Þ� 	 ð11Þ

where kHA (mm/day) is a proportionality constant and N is the
maximum number of daylight hours. e0(Tmean) was approxi-
mated using the modified Magnus equation proposed by
Alduchov and Eskridge (1996) that is shown in Eq. (12).

e0 Tmeanð Þ ¼ 6:1094 e17:625 Tmean= 243:04þTmeanð Þ ð12Þ

Snowmelt

Bittner et al. (2018) used the method proposed by Martinec
(1960) to model snowmelt and storage for the Kerschbaum
spring recharge area. This study additionally considers the
methods described by Girons Lopez et al. (2020) and
Magnusson et al. (2014). All snow routines considered in this
framework assume that the energy available for snowmelt is
proportional to air temperature. This means that below a cer-
tain threshold temperature TT, precipitation falls as snow,
whereas rainfall occurs for temperatures above this threshold.
The proportionality of snowmelt (M) is controlled by the
degree-day factor C0 [mm/(day °C)] and the daily mean tem-
perature Tmean (°C). Moreover, all the considered snow
models neglect sublimation processes, which is often the case
in degree-day methods.

The degree-day method proposed by Martinec (1960) sim-
ulates M (mm/day) using Eq. (13).
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M ¼ C0 max 0; Tmean−TTð Þ ð13Þ

While Martinec (1960) considers C0 to be constant, Braun
and Renner (1992) argue that this factor should be changing
over time, since environmental conditions, e.g. solar
inclination and snow albedo, vary seasonally. Girons Lopez
et al. (2020) describe a seasonally varying degree-day factor,
i.e. C0,n, based on a sine function. The intensity by which C0

varies is controlled by an amplitude factorC0,a [mm/(day °C)].
Then, C0,n is computed as shown in Eq. (14), where n is the
time (day).

C0;n ¼ C0 þ 1

2
C0;a sin

2π n−81ð Þ
365

ð14Þ

Finally, Magnusson et al. (2014) approach the calculation
of snowmelt with the exponential function shown in Eq. (15),

M ¼ C0 MM
Tmean−TT

MM
þ ln 1þ e−

Tmean−TT
MM

� �� �
ð15Þ

whereMM represents a snowmelt transition (°C). This method
allows for melting to occur even below freezing temperature.

According to the investigation of Girons Lopez et al.
(2020), who tested a variety of modifications to different
temperature-based snow routines, the most sensitive parame-
ters in the models applied in this study are the snowmelt tran-
sitionMM and the temporally varying degree-day factor C0, n.

Parameter sampling and investigated model
combinations

Appropriate parameter ranges are defined for all unknown
parameters in the equations describing interception, evapo-
transpiration and snowmelt. The parameter ranges selected
for the nine considered calibration parameters, i.e. Cm, p,
ER, kOU, kHA, C0, TT, C0, a and MM, are shown in Table 1.
The specific range of values for each parameter is based on
previous studies, which are indicated in Table 1.

This study considers the model configuration from Bittner
et al. (2018) as the reference model, whose results are used to
evaluate the performance of all the considered model combi-
nations. All investigated model combinations are shown in
Table 2. The name given to each model combination indicates
the input algorithms which have been changed from Bittner
et al. (2018). Each simulation is run with daily time steps for a
warm-up period between 2001 and 2005 and an evaluation
period from 2006 to 2007. The selection of these two
particular years was driven, firstly, by the fact that the
original LuKARS model from Bittner et al. (2018) was cali-
brated and validated for the years 2006 and 2007, respectively.
Secondly, the relevant contrast in snow accumulation and

evaporative demand between 2006 and 2007makes it possible
to account for the climatic variability between different years.
Indeed, as Fig. 2b shows, the winter in 2006 is characterized
by snow depth values up to 0.72 m, whereas almost no snow
accumulation occurred in 2007 (max snow depth = 0.2 m).

The sampling algorithm of the Fourier Amplitude
Sensitivity Test (FAST), which was developed by Cukier
et al. (1978) and implemented in the SAFE toolbox (Pianosi
et al. 2015), is used in this study to obtain for each model
combination a set of values that covers the full parameter
space of each parameter. To avoid unrealistic water budgets,
the model input time series computed with each parameter
sample of each model combination are compared with the
computed input time series of Bittner et al. (2018) for the
hydrological year 2006. All parameter samples leading to an
annual model input that differs more than 15% from the water
volume computed by Bittner et al. (2018) are discarded. Then,
the remaining 2,673 parameter samples are used to investigate
all possible model combinations, i.e. 26, which are evaluated
and compared with the results of Bittner et al. (2018) for the
period 2006 and 2007. For the input algorithms of the original
Kerschbaum spring LuKARS model, i.e. DVWK (1996),
Thornthwaite (1948) and Martinec (1960), rather than defin-
ing parameter ranges and samples, this study keeps the
parameters fixed and equal to those found in Bittner et al.
(2018) (Table 1). The model combinations including the total
number of investigated samples are summarized in Table 2.
For the sake of completeness, Appendix shows the calibrated
LuKARSmodel parameters found in Bittner et al. (2018). The
hydrotope specific parameters control the behavior of the soil-
epikarst system, of the matrix infiltration and of the quickflow
through the conduits, while the baseflow storage parameters
determine the response of the saturated zone.

Results

The results of this study are presented in the following sec-
tions. First, the uncertainties of single processes in relation to
the parametric uncertainties of the Kerschbaum spring
LuKARS model which were computed in an earlier study
(Teixeira Parente et al. 2019). Notice that this comparison is
mainly qualitative, since the parameter uncertainty was esti-
mated using only the combination DVWK – Thornthwaite –
Martinec with fixed input parameters. Then, section
‘Evaluation of all model combinations’ focuses on the com-
parison of the results of all evaluated model combinations and
highlights how the input uncertainties change when
considering more processes to be unknown, i.e. interception,
evapotranspiration and snowmelt. The analyses focus on the
comparison of the interquartile range of the LuKARS model
outputs as an indicator for model uncertainty. Moreover, the
interquartile ranges are normalized with the observed spring
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Table 1 Overview of the
calibration parameter used in the
presented methodology,
including their respective
parameter range, their description
and the reference. The parameters
marked with (*) are taken fixed
and correspond to the input
algorithms used in Bittner et al.
(2018)

Parameter Parameter
range

Description Reference

Cm 0.1–5 Stand storage capacity (mm) Liu (2001)

p 0.01–0.6 Free throughfall coefficient (−) Liu (2001)

ER 0.01–0.4 Ratio between mean evaporative rate and mean
rainfall
rate for saturated canopy conditions (−)

Liu (2001)

kOU 0.006–0.012 Proportionality constant in Oudin’s method
[m3 kg/(1,000 MJ2 °C)]

Almorox et al. (2015)

kHA 0.1–0.2 Proportionality constant in Hamon’s method
(mm/day)

Almorox et al. (2015)

C0 1–10 Degree-day factor [mm/(day °C)] Bittner et al. (2018)

TT −2–2 Threshold temperature (°C) Bittner et al. (2018)

C0,a 1–10 Amplitude factor [mm/(day °C)] Hottelet et al. (1994)

MM 1–10 Snowmelt transition (°C) Magnusson et al.
(2014)

kTH
(*) 16 Proportionality constant in Thornthwaite’s

method (−)
Bittner et al. (2018)

C0
(*) 4 Degree-day factor [mm/(day °C)] Bittner et al. (2018)

TT
(*) 0.5 Threshold temperature (°C) Bittner et al. (2018)

Table 2 Overview of the 26
investigated model combinations
including the total number of
investigated parameter samples

Name of model combination Samples I model ET model M model

Gash 17 Gash Thornthwaite Martinec

Liu 11 Liu Thornthwaite Martinec

Oudin 24 DVWK Oudin Martinec

Hamon 19 DVWK Hamon Martinec

Girons Lopez 105 DVWK Thornthwaite Girons Lopez

Magnusson 105 DVWK Thornthwaite Magnusson

Gash – Hamon 48 Gash Hamon Martinec

Gash – Girons Lopez 63 Gash Thornthwaite Girons Lopez

Gash – Magnusson 64 Gash Thornthwaite Magnusson

Gash – Oudin 59 Gash Oudin Martinec

Liu – Hamon 34 Liu Hamon Martinec

Liu – Girons Lopez 51 Liu Thornthwaite Girons Lopez

Liu – Magnusson 52 Liu Thornthwaite Magnusson

Liu – Oudin 45 Liu Oudin Martinec

Girons Lopez – Hamon 232 DVWK Hamon Girons Lopez

Girons Lopez – Oudin 281 DVWK Oudin Girons Lopez

Magnusson – Hamon 238 DVWK Hamon Magnusson

Magnusson – Oudin 285 DVWK Oudin Magnusson

Gash – Girons Lopez – Hamon 114 Gash Hamon Girons Lopez

Gash – Girons Lopez – Oudin 153 Gash Oudin Girons Lopez

Gash – Magnusson – Hamon 113 Gash Hamon Magnusson

Gash – Magnusson – Oudin 150 Gash Oudin Magnusson

Liu – Girons Lopez – Hamon 84 Liu Hamon Girons Lopez

Liu – Girons Lopez – Oudin 121 Liu Oudin Girons Lopez

Liu – Magnusson – Hamon 83 Liu Hamon Magnusson

Liu – Magnusson – Oudin 122 Liu Oudin Magnusson
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discharge to make the interpretation of input uncertainties
independent of high and low flow periods, occurring during
snowmelt and snow accumulation periods, respectively.

Figure 4 shows the cumulative input values generated with
all parameter samples for each applied algorithm. As the anal-
yses focus on the interquartile range of model outputs, also the
generated cumulative recharge values of that range are shown.
Cumulated sums allow a better visualization through contin-
uous plots. It is observed that the inputs computed with the

different algorithms are well distributed around the input time
series used in the original Kerschbaum spring LuKARS mod-
el. Slight deviations are only visible for ETpot in 2006, where
the method of Hamon (1961) partially overshoots the inputs
generated with the method of Thornthwaite (1948), and in
2007, where the Thornthwaite (1948) method overshoots the
interquartile range of inputs computed with the method of
Oudin et al. (2005). These deviations are related to the linear
interpolation which is applied to derive daily values from the

Fig. 4 The plots show the interquartile range of the cumulative input
values for each applied algorithm. For comparison, the black lines
highlight the inputs used in the study of Bittner et al. (2018). a The

interception inputs, b the potential evapotranspiration inputs and c the
potential snowmelt inputs
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monthly ETpot, obtained with the methodology of
Thornthwaite (1948).

Model input uncertainties related to single
hydrological processes

In this section, the focus is on the uncertainties related to
single hydrological processes, i.e. interception, evapotranspi-
ration and snowmelt, how these uncertainties change in dif-
ferent periods of the year and how they compare to the para-
metric uncertainties previously computed by Teixeira Parente
et al. (2019). The model parameters, which were considered in
the evaluation of the parametric uncertainties of the LuKARS
model, are highlighted with an asterisk (*) in the Appendix
and are the discharge coefficients and exponents, minimum
and maximum storage capacities, and activation level of sec-
ondary spring discharge for hydrotopes Hyd 2, Hyd 3 and
Hyd 4 (Teixeira Parente et al. 2019).

Figure 5 shows that the interquartile ranges resulting from
uncertainties in interception (model combinations Gash and
Liu) are generally smaller than the evapotranspiration and
parametric uncertainties. Moreover, the uncertainties related
to interception do not show a distinct seasonal variation in
2006; however, a slight seasonal variation with increasing
interception over the summer period can be observed in
2007. Moreover, both Gash and Liu model follow the same
temporal dynamics and lead to very similar interquartile
ranges, showing that the choice of the interception model is
not very significant for this case study.

Regarding the interquartile ranges resulting from the use of
the Oudin et al. (2005) and Hamon (1961) methods, it is noted
that the uncertainties related to evapotranspiration are charac-
terized by a clear seasonal variability. The method of Oudin
et al. (2005) brings the largest difference in the normalized

interquartile range, which increases over the summer sea-
sons in 2006 from 0.03 (29 March) to 0.06 (2 August) and
in 2007 from below 0.04 (21 January) to 0.1 (5 September)
and decreases again in the winter seasons. Overall, the nor-
malized interquartile range of evapotranspiration is smaller
than the parametric uncertainties. Moreover, most of the
time the uncertainties of evapotranspiration are higher than
the snowmelt uncertainties, even over the winter period
2006–2007. The uncertainties in snowmelt are higher than
the evapotranspiration uncertainties for an extended period
only in the early year 2006. Also in this case, as it was
observed for interception, the difference in the normalized
interquartile range between the Hamon and the Oudin
models is rather small, reaching a maximum value of 0.04
on 4 September 2007.

Figure 5 also shows that the uncertainties in snowmelt have
the highest temporal variability of all investigated hydrologi-
cal processes. Here, the method of Magnusson et al. (2014)
bears the largest variation in normalized interquartile range,
i.e. between 0.18 on 19 January 2006, and 0.003 on 6
November 2006. Moreover, similar to the normalized inter-
quartile ranges of model results considering uncertainties in
evapotranspiration, the results show a seasonal dependence of
uncertainties in snowmelt. The normalized interquartile range
of LuKARS results considering snowmelt to be uncertain ex-
ceeds all other normalized interquartile ranges in January
2006. In contrast, the snow-melt-related uncertainties are even
smaller than the uncertainties related to interception during the
winter season 2006–2007. Moreover, the normalized inter-
quartile range of LuKARS results considering snowmelt to
be uncertain almost becomes 0 (<2% of the measured dis-
charge) in summertime in 2006 and 2007.

In case of snow processes, the choice of the model ap-
pears to be more relevant than for evapotranspiration and

Fig. 5 Interquartile ranges of LuKARS model outputs normalized by the
observed discharge. Single processes, i.e. interception, evapotranspiration
and snowmelt, are considered as uncertain. For comparison, the
parametric uncertainties of the Kerschbaum LuKARS model computed

by Teixeira Parente et al. (2019) are also shown. A clear seasonal depen-
dence of uncertainties related to snowmelt and evapotranspiration can be
identified
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interception. On the one hand, the mean of the differences
in the normalized interquartile range between both ET
models, i.e. 0.011, is higher than the mean of the
normalized interquartile range differences between the
snow models, i.e. 0.008. On the other hand, the maximum
difference in the normalized interquartile range is identified
between the Girons Lopez and Magnusson models, i.e. is
0.06 on 21 March 2006. This is reasonable, since snow
processes do not play a role over the whole time of a year,
whereas ET does.

Evaluation of all model combinations

The minimum and maximum percentage discrepancies be-
tween the simulated and observed spring discharge for each
model combination are shown in Fig. 6. Figure 7 shows the
interquartile ranges of all model evaluations, including the
results of the parametric uncertainty study performed in
Teixeira Parente et al. (2019) and the simulated spring dis-
charge obtained from the original Kerschbaum LuKARS
model. Comparing the interquartile ranges of the different
model combinations (Fig. 7), it is seen that including more
uncertain hydrological processes does not necessarily lead to
an increase in the output variance. As an example, Fig. 8a,b
shows two different cases, characterized by an increase and a
decrease in output variance with increasing process complex-
ity, respectively. Figure 8a compares the model combinations
Liu, Liu–Magnusson and Liu–Magnusson–Oudin, therefore
introducing progressive uncertainties in interception, snow-
melt and evapotranspiration. Here, the normalized interquar-
tile ranges increase with the number of hydrological inputs
considered as uncertain. Figure 8b considers the model com-
binations Magnusson, Magnusson–Oudin and Gash–
Magnusson–Oudin. In contrast to the previous case, the model
combination considering snow and evapotranspiration as

uncertain input (Magnusson–Oudin) shows larger output var-
iability than the model considering uncertainties in all the
three processes (Gash–Magnusson–Oudin). Looking at all
model combinations in Fig. 7, the highest normalized inter-
quartile ranges are noted for model combinations considering
snowmelt and evapotranspiration to be uncertain.

Discussion

When considering the uncertainties related to single process-
es, no significant seasonal variation is observed in the normal-
ized interquartile range related to uncertainties in interception.
In the particular case of a broadleaf forest, in Waidhofen a.d.
Ybbs beech forest, a more pronounced seasonal variation
should be expected due to the higher interception capacity of
the leafs in the summer period. This change in canopy cover
is, however, not considered in the modeling approaches of
Gash et al. (1995) and Liu (2001). In order to obtain more
realistic interception estimates, future works should represent
variable canopy cover by considering the gross rainfall needed
to saturate the canopy, i.e. P′g, to be changing over time rather
than constant. This could be achieved by a temporally varying
stand storage capacity (Cm).

In contrast to uncertainties related to interception, a pro-
nounced seasonal variation characterises the uncertainties re-
lated to evapotranspiration. The reason why the uncertainties
in evapotranspiration are higher in summer 2007 as compared
to summer 2006 can be found in the mean summer tempera-
tures of both years (Fig. 2). The mean temperature between
April and September in 2006 was 13.17 °C. In comparison, a
mean temperature of 14.16 °C was observed in the same pe-
riod in 2007. This difference of 1 °C leads to the observed
increased uncertainties in ETpot. Thus, the results using
temperature-based approaches for computing ETpot show that

Fig. 6 The bars show the
minimum and maximum
percentage discrepancies between
each model combination and the
observed spring discharge
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the uncertainties of ETpot increase with the available temper-
ature for evapotranspiration. Given the fact that evapotranspi-
ration related uncertainties can even reach the range of para-
metric uncertainties, e.g. in summer 2007, an appropriate rep-
resentation of evapotranspiration is crucial to reasonably cal-
culate the groundwater recharge as input for modeling a karst
spring discharge in pre-alpine karst systems. Given the sea-
sonal variation of uncertainties related to evapotranspiration, a
reasonable representation of evapotranspiration for computing

groundwater recharge is even more important during the sum-
mer period. This specific knowledge can guide researchers in
gathering better field data when specific discharge conditions,
e.g. mean and low flow conditions in summer, should be fa-
vored in model calibration. As recent studies highlighted the
specific role of snowmelt for groundwater recharge in alpine
and pre-alpine catchments, this study further investigates if
this specific importance is also reflected in increased uncer-
tainties in modeled spring discharge when snowmelt is

Fig. 7 Interquartile ranges of each model combination (red bands),
including the results of the calibrated model from Bittner et al. (2018)
(black line) and the parametric uncertainties obtained from Teixeira

Parente et al. (2019), which are shown in the bottom-right graph. The
results of the calibrated model from Bittner et al. (2018) (black line) are
also compared to the measured discharge (red line) in the top-left graph

Fig. 8 Two examples to highlight
that model input uncertainties do
not necessarily increase with
increasing hydrological process
complexity. a Shows a case in
which the input uncertainties
increase with increasing process
complexity. b Shows a case in
which the input uncertainties can
also partially decrease with
increasing process complexity
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relevant. Similar to evapotranspiration, the results show a
clear seasonal pattern of snowmelt related uncertainties. The
differences in snowmelt uncertainties are more pronounced
than for evapotranspiration. Large uncertainties in snowmelt
are found in the winter 2005/2006, whereas snowmelt related
uncertainties are even smaller than those related to intercep-
tion in winter 2006–2007. Figure 2b shows that in the winter
season 2005–2006 the snow cover stayed for several months.
Whereas, no long-lasting and pronounced snow cover was
observed in the winter season 2006–2007. The same pattern
of uncertainties can also be identified when considering snow-
melt to be uncertain in combination with other processes, i.e.
interception and evapotranspiration. Figure 9 shows the max-
imum interquartile range for all model combinations including
uncertainties in snow processes, i.e. 18 model combinations,
and for those which do not include these uncertainties, i.e. 8
model combinations. In case of uncertain snowmelt, the over-
all interquartile range significantly changes when snowmelt
controls groundwater recharge and, thus, the modeled spring
discharge (e.g. from January 2006 to May 2006).
Moreover, while only considering snowmelt estimations
to be uncertain does not lead to a significant increase in
model output uncertainties in the evaporative season
(Fig. 5), Fig. 9 shows that snowmelt estimations increase
model output uncertainties in cases when snowmelt, inter-
ception and evapotranspiration are uncertain, e.g. in sum-
mer 2007. This can be explained by the fact that different
processes can compensate for over- or underestimated wa-
ter budgets of other processes. For example, an overesti-
mation of the snowmelt can be compensated by an under-
estimation of the evapotranspiration. Summarizing, the re-
sults show that the higher uncertainties in snowmelt occur
when the simulated spring discharge is controlled by snow
processes. This highlights that the specific importance of
snowmelt for groundwater recharge can be identified in the
snowmelt related uncertainties when modeling a karst

spring discharge. Hence, an erroneous assessment of
snowmelt-related groundwater recharge can negatively af-
fect the simulated spring discharge. On the contrary, the
results do not exhibit a clear impact of uncertainties in
snowmelt on the spring discharge during the evaporative
season in summer, when the snowmelt related uncertainties
are not significant (<2% of the observed discharge, Fig. 5).
In the specific case of the Kerschbaum LuKARS model,
the baseflow storage of the dolomite-dominated aquifer has
a high storage capacity and is not immediately affected by
changing hydrometeorological conditions. However, this
can be different in more limestone-dominated karst sys-
tems and requires further investigations.

Finally, the results of all model combinations highlight that
considering more processes to be uncertain does not necessar-
ily lead to an increase of the normalized interquartile range of
modeled spring discharge. This is particularly true when con-
sidering evapotranspiration and snowmelt to be uncertain
compared to considering also interception to be uncertain.
These results highlight oncemore that two uncertain processes
can compensate each other, leading to a reduction of the in-
terquartile range of model outputs.

Conclusion

This study investigated how the input uncertainties of a
lumped parameter model, i.e. LuKARS, vary temporally
when applying the hydrologic model in a pre-alpine recharge
area. Therefore, snowmelt, evapotranspiration and intercep-
tion were computed with three different algorithms each.
The resulting groundwater recharge was used as input for
LuKARS considering each possible model combination and
focusing on the uncertainties of each single process.
Moreover, the input uncertainties imposed by each process

Fig. 9 Contribution of uncertainties related to snowmelt to the total
LuKARS model input uncertainties. The two bands show the maximum
interquartile ranges of the investigated model combinations that include

uncertainties in snowmelt (grey) and of those which do not (red). An
effect of snow process uncertainties can be observed throughout the years
with a more pronounced impact during the winter
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were compared to the parametric uncertainties obtained in
previous studies (Teixeira Parente et al. 2019).

No clear tendency towards increasing model output uncer-
tainties can be identified when more hydrological input time
series are considered to be uncertain. Indeed, it was found that
with increasing number of uncertain input the interquartile range
of the LuKARS model outputs can even decrease. This shows
that two or more uncertain processes can compensate each other.

The results of this study further show that model input
uncertainties show temporal variations depending on how
much the groundwater recharge and the modeled spring dis-
charge is controlled by one specific process, e.g. snowmelt
and evapotranspiration. Thus, the results highlight that the
importance of a specific process for groundwater recharge
can be derived from the respective input uncertainties.
Further, this research identified that uncertainties in snow pro-
cesses can even be higher than parametric uncertainties.

This study investigated the time-dependent relevance of the
model input uncertainties for pre-alpine conditions typical of
Central Europe. A similar approach should be applied to ex-

tend these results to karst catchments with different climate
conditions and land uses. An intercomparison study could be
based on the recently developed WoKaS database (Olarinoye
et al. 2020). Moreover, it is of particular interest to apply the
presented methodology to karst catchments characterized by
different recharge processes. Thus, a comparison between
catchments dominated by diffusive recharge, as the
Kerschbaum springshed, and those dominated by point infil-
tration is suggested.

The knowledge gained from investigating temporally vary-
ing model input uncertainties can guide researchers and water
managers in gaining relevant data needed for improving the
reliability of hydrologic model results. In this case, e.g., the
uncertainties in snowmelt could be reduced by implementing
snow measurement stations in the recharge area. Moreover,
the information on the temporal variability of model input
uncertainties helps to derive which data are needed to improve
the reliability of model output results during different times of
year.

Appendix 1

Table 3 Overview of all model parameters used for the LuKARS model in the Kerschbaum spring recharge area (Bittner et al. 2018)

Parameter Hyd 1 Hyd 2 Hyd 3 Hyd 4 Parameter description

Hydrotope-specific parameters

Eini [mm] 0 1 1 1 Initial value of hydrotope storage

Emin [mm]a 0 23 60 90 Hydrotope storage under dry conditions

Emax [mm]a 1 31 120 200 Hydrotope storage under saturated conditions

Esec [mm]a 0 35 180 380 Activation level for secondary springs

khyd [m
2/day]a 0 90 85 77 Discharge parameter for quickflow

kis [m/mm/day]a 0 0.02 0.0055 0.0025 Discharge coeff. for recharge

ksec [m/mm/day]a 0.9 0.095 0.026 0.022 Secondary spring discharge coeff.

α [−]a 0 0.9 0.8 0.55 Quickflow exponent

lhyd [m] 550 1,600 900 960 Mean hydrotope distance to spring

F [mm/day °C] 4 4 4 4 Melt factor in degree-day method

Tf [°C] 0.5 0.5 0.5 0.5 Temperature threshold for snowmelt

Imax [mm] 0 5 5 5 Max. interception of land use

Baseflow storage parameters

kb [m/mm/day]=0.00043 Baseflow discharge coefficient

Eb_ini [mm]=2,900 Initial value of baseflow storage

a Indicates those parameters which were considered in the parameter uncertainty study in Teixeira Parente et al. (2019)
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