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Abstract
There are sparse hydrogeological data and insufficient hydrogeological knowledge in many areas of the world reliant on
groundwater. Nicaragua’s Pacific coast is one such region that is also experiencing water scarcity resulting from increasing
demand on groundwater resources and climate change. The primary source of water in the region is the aquifer system associated
with the Brito Formation, which is a marine sedimentary stratum of mostly sandstone that blankets 75 km of coastline in
southwest Nicaragua. This study focused on the Tola municipality with the objective to advance a conceptual understanding
of the hydrogeology and to support sustainable water development. Results demonstrate a heterogeneous aquifer system with
regional flow characteristics and other factors that influence groundwater availability and water quality. Primary porosity is low,
and secondary porosity is the primary mechanism of aquifer storage and is influenced by geological structure and diagenesis
processes. Groundwater recharge is spatially and temporally heterogeneous and direct recharge is low. Infiltration of streamflow
and runoff, especially early in the rainy season, is thought to be a large component of groundwater recharge. Climate, flow and
recharge dynamics, and low storage capacity make the Brito Formation a sensitive resource and vulnerable to drought, increased
abstraction, and climate change. This assessment provides data and insights useful for informing future studies and investments
within the region and may be applicable in other Central American and Caribbean nations with coastal sandstone aquifers.
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Introduction

Groundwater resources in the Pacific Coastal Plain and Pacific
Hills of SW Nicaragua are scarce and critical due to the cli-
mate, lengthy annual dry season, mountainous topography,
and lack of perennial surface water. Drilling and abstraction
of groundwater by local communities and the tourism sector

continues to increase, exposing regional water challenges such
as dry wells or saltwater intrusion, which have adversely im-
pacted most stakeholders (LaVanchy 2017). The 2014–2016
drought produced three of the driest years since 1968 and
exposed the severity of the issue and lack of water security
in the region. Impacts of the drought were particularly acute in
the Tola municipality, an area of particular tourism value,
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which is both endorsed and subsidized by the national gov-
ernment to bolster the national economy (LaVanchy et al.
2017). Tourism has been shown to use disproportionate
amounts of water relative to local populations (Becken
2014; Tortella and Tirado 2011), thus identification of suffi-
cient and sustainable quantities of groundwater in this region
is necessary to (1) support the economic viability of tourism,
(2) ensure equity of water access for residents, and (3) inform
the over-arching water management aims of the national
government.

Groundwater use in Tola has traditionally been limited to
boreholes equipped with rope pumps, hand pumps, and small
submersible pumps to serve community, residential, and small
commercial demands. Many rural and dispersed populations
rely on shallow hand-dug wells where water tables are shal-
low. Between 2012 and 2018, tourism development surged,
fueled by world-renowned surfing, infrastructure improve-
ments, a sustained period of political stability, and lower in-
vestment costs compared to neighboring Costa Rica
(LaVanchy et al. 2020). Over this period, reliance on and
usage of groundwater increased significantly across the
municipality.

Despite the importance of groundwater and recent drought-
related challenges, there remains a lack of data and knowl-
edge, and conceptual hydrogeological models have not been
advanced for the important aquifer systems. Most of the avail-
able scientific literature on the subsurface of SW Nicaragua is
derived frommining and petroleum-related exploration during
the last century, as well as interoceanic canal planning dating
back to the nineteenth century. Limited hydrogeological stud-
ies have been made on Pacific littoral areas of Nicaragua.
Calderón Palma and Bentley (2007), Corriols et al. (2009),
and Moncrieff et al. (2007) provided conceptual and flow
system insights on the Leon-Chinandega aquifer (further north
and in different geological units than Tola), and Calderón and
Uhlenbrook (2016) characterized the climate water balance
dynamics for a coastal catchment to the south of Tola.

This paper focuses on the Brito Formation (Brito Fm) sed-
imentary strata of Eocene and late Paleocene age that blanket a
majority of the Pacific Coastal Plain and Pacific Hills in SW
Nicaragua. The Brito Fm exceeds 2,500 m in thickness and
hosts important discontinuous aquifer systems of the region.
Although the geology has been well studied (Kumpulainen
1995; Levi et al. 1995; McBirney and Williams 1965;
Parsons Corporation 1972), hydrological research and
regional context data are limited. Studies by Parsons
Corporation (1972) and Krásný and Hecht (1998) provided
baseline mapping in the region; however, the supporting
datasets are unavailable and the resolution is limiting.
Webster et al. (2001) described the overall state of water re-
sources in Nicaragua as abundant, but also noted the ground-
water potential of the Brito Fm is lacking, with unsuitable to
small quantities of groundwater available. The absence of

data, studies, and associated conceptual model development
creates significant challenges and cost barriers to planning and
informed decision-making related to sustainable use of the
aquifers. This paper attempts to synthesize an array of desktop
research, data collection, and observations from several initia-
tives and field missions led by the authors between 2012 and
2016. Many of the data collection efforts were isolated from
one another, supporting small research projects and specific
stakeholders or clients. The resulting cumulative base of data
and knowledge were considered a valuable resource for re-
searchers, practitioners, and the government, thus the authors
aligned to produce a single peer-reviewed paper. The objec-
tives are to (1) present datasets, (2) bring awareness to the
groundwater resources of the region, (3) advance a conceptual
hydrogeological model, and (4) provide a technical basis to
help guide groundwater planning, development, management,
and continuing research.

Study area and setting

Physical setting

The Brito Fm outcrops along the Pacific coast of SW
Nicaragua and NW Costa Rica. Within Nicaragua, outcrops
encompass approximately 1,284 km2 along the coast and ex-
tend inland to the Pacific Hills as far as 25 km (Fig. 1). The
outcrop area in Nicaragua includes approximately 60% of the
Rivas, 40% of the Carazo, and a small portion of the Granada
administrative departments. The municipality of Tola is the
focus area of this study as a large portion of it is underlain
by the Brito Fm (Fig. 1).

The Brito Fm consists of marine-origin deep and shallow
water sandstones, siltstones, and claystones of Paleogene age
with a thickness estimated in excess of 2,500 m (Parsons
Corporation 1972). Black shales and silicified limestones have
also been documented within the formation (Astorga 1988;
Astorga 1987; Darce et al. 2000). Depositionally, the Brito
Fm is interpreted to represent stacked channel-levee deposits
of small-scale radial, overlapping submarine fans (Struss et al.
2007; Winsemann and Seyfried 1991). The rock is predomi-
nately volcanogenic, has a high content of quartz and plagio-
clase feldspar, and has experienced a wide range of diagenesis
from early to late stage. The Las Sierras group andMasachapa
Formation unconformably overlie the Brito Fm in some areas
north of Tola (Hoffstetter et al. 1960). In Tola, Quaternary
sediments are the only geological units that overlie the Brito
Fm across an extent of approximately 162 km2, much of
which is associated with three drainages and a coastal plain.
Underlying the Brito Fm is the Rivas Fm of Cretaceous age, as
well as Tertiary intrusions of diorite/andesite (Fig. 1).

Topography and geomorphology result from tectonic pro-
cesses associated with subduction of the Cocos Plate beneath
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the Caribbean Plate at theMiddle American Trench. The uplift
of marine sedimentary rocks is greatest inland to the northeast
where elevations reach approximately 360 m above sea level
(masl). Broad coastward sloping uplands and hills are dissect-
ed by steep structurally controlled drainages that flow south-
west towards the coastal plain.

Drainage and hydrology are characterized by short and
linear ephemeral river systems, which are structurally con-
trolled by geological features. The largest watershed and river
systems include the Brito River (40 km2), Escalante River
(20 km2), and Nagualapa River (45.5 km2). These watersheds
originate in the Pacific Hills, the channels exhibit low sinuos-
ity and drain westerly towards the Pacific Ocean. Most of
these streams and rivers are dry for large portions of the year,
thereby making groundwater the primary source of available
water.

Southwest Nicaragua is part of the Central American Dry
Corridor (CADC) and is characterized as winter dry equatorial
(Aw) within Köppen-Geiger climate types. The tropical dry
forest experiences unevenly distributed rainfall and distinct
wet and dry seasons (Fig. 2). According to Quesada-
Hernández et al. (2019), the CADC has a drier climate than
other areas of Central America and is prone to drought due to a
variety of interacting climatic drivers (El Niño Southern
Oscillation (ENSO), the Caribbean Low-Level Jet, and the
Inter-tropical Convergence Zone). Mean annual temperatures
across Tola range from 23.8 to 26.1 °C, with minimum and
maximum temperatures of 17.6 and 35.5 °C, respectively.
Mean annual precipitation is spatially variable, ranging from
1,292 to 1,618 mm/year (Fick and Hijmans 2017). Nearly all
of the annual rainfall occurs from May to October, with the
canícula (brief summer drought) breaking the rainy season in

Fig. 1 Geological map and geological cross section of the study area illustrating the extent and setting of the Brito Formation (geology and section
modified from Bracci and Gludace 1958; INE 2002; INETER 1988; and Parsons Corporation 1972)

2287Hydrogeol J (2021) 29:2285–2304



July and August. During the 2015 drought, annual rainfall
amounted to only 517 and 569 mm at the Limon and Rivas
meteorological stations, respectively (INETER 2016). During
2014–2016, the study area experienced three of the five driest
year dating back to 1968 (INETER 2016).

The study area is greatly affected by ENSO climate events
(Quesada-Hernández et al. 2019). The monitoring period of
this research captured the El Niño event of 2015–2016, which
classified as very strong on the Oceanic Niño Index. During
the past 40 years, three referenced El Niño events have oc-
curred with “very strong” amplitude. The HadGEM2-ES
(RCP4.5 scenario) global circulation model indicates the
study area could experience as much as a 3% decrease in
precipitation by 2050, and mean temperature increases up to
2.4 °C (Collins et al. 2011). Imbach et al. (2018) found similar
trends in their downscaled simulations (8-km resolution) from
the HadGEM2-ES (RCP4.5 scenario). These predicted cli-
mate change dimensions will negatively affect the availability
of water resources across the study area.

Hydrogeological insights from well records

The Brito Fm is considered the primary geological formation
that supports aquifer systems throughout Tola. The sedimen-
tary rocks of the Rivas Fm also support groundwater usage in
the NE portion of Tola where the Brito Fm is absent.
Groundwater is also locally available in unconsolidated allu-
vium and colluvium.

Based on water point surveys, hand dug wells are located
throughout the municipality and have depths up to 32 m,
which exceeds the 25 m often considered the maximum fea-
sible depth of excavation for a hand dug well (Abbott 2013).
Most of the wells produce water from fractured rock beneath
unconsolidated strata, while some collect water from alluvium
and colluvium. In the higher elevations of the Pacific Hills,
many rural families rely on shallow perched groundwater
found by digging in ravines and drainages.

Drilled wells serve some rural communities, private resi-
dences, schools, churches, businesses, and resort develop-
ments. The town of Virgen Morena and several agricultural
producers also have drilled wells. The town of Tola has mu-
nicipal wells completed in the Rivas Formation. Data avail-
able for drilled wells are scarce; however, a limited set of
records (n = 41) were reviewed and are summarized in
Table 1. Lithological logs indicate variable thickness of top-
soil, weathered sandstone, and unconsolidated deposits up to
15 m in thickness. Some logs described clay or shale overly-
ing the bedrock up to 14 m thick; these are typically closer to
the coast. The Brito Fm is generally described in driller logs as
fractured rock, hard consolidated rock, or semiconsolidated
rock. Some more detailed records documented layered stratig-
raphy of fractured sandstones of variable hardness, clay and
silt, and intercalations of volcanogenic pyroclastic rock. A few
logs reported intercalations of basalt, however, basalt was not
observed during field reconnaissance and is not documented
in the research literature. These hard, consolidated rock layers
are interpreted as graywackes and are locally referred to as
‘bluestone’ or cascayo duro.

Drilled well depths ranged from 30.5 to 260 m and pro-
duced a high range of airlift yields between 1.1 and 56.8 m3/h
(0.3–15.7 L/s; Table 1). Twenty-four wells had pump test data
with specific capacity ranging from 0.2 to 77.4 m3/h-m, with
an average of 1.9 (Table 1). Hydraulic conductivity and stor-
age values from drilling reports fall within a large range that
are consistent with literature values for unfissured sandstone,
fractured sandstone, and semiconsolidated sandstone (Bouwer
1978; Domenico and Schwartz 1990; Heath 1983). The only
known wells in the region drilled deeper than 260 m are pe-
troleum exploration wells, some of which are nearly 4,000 m
deep and penetrate the full thickness of the Brito Fm (Ranero
et al. 2000; Struss et al. 2008).

The depth to the uppermost fracture and production zones
is in the range of 5–40 m, and many boreholes drilled deeper
continue to intersect water yielding fractures. As an example,

Fig. 2 Average monthly precipitation distribution in the Tola
municipality for the period 1970–2000 (derived from WorldClim2, Fick
and Hijmans 2017)

Table 1 Summary statistics from drilled wells in Tola municipality, 24
of which had pump test data and 12 with aquifer analysis

Summary statistics n Range Mean

Well depth (m) 41 30.5–260 71.6

Airlift yield (m3/h) 41 1.1–56.8 6.8

Pump test rate (m3/h) 24 1.2–40.9 8.3

Static water level (m bgs) 24 0.8–53.3 9.0

Drawdown (m) 24 0.2–27.6 6.4

Specific capacity (m3/h-m) 24 0.2–77.4 1.9

Hydraulic conductivity (m/day) 12 0.05–90 1.3

Storativity 12 0.003–0.100 0.008

Note: Four of 41 wells were reported to produce brackish water
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a drilling log from a resort development reported 2 L/s at the
bedrock interface (20 m), diffuse production of 9.5 L/s from
20 to 88 m, and an additional 4.5–7.5 L/s at 88 m. One of the
municipal production wells at Virgen Morena produces over
6 L/s from two fracture zones (15–32 m and 50–60 m) which
are separated by hard consolidated rock (ENACAL 2006).

The Brito Fm has upper and lower hydrostratigraphic dif-
ferentiation. The upper section is typically fractured and
weathered rock beneath a veneer of unconsolidated sediments
and supports most of the hand dug wells throughout Tola. In
contrast, the lower section is more compacted with fracture
zones and semiconsolidated strata that are typically confined
or semiconfined. Some drilled wells located closer to the coast
in alluvial areas produce water from both the alluvium and
underlying bedrock aquifer.

Methods

Fieldwork and data collection were focused in Tola between
2012 and 2016 (Fig. 3), which included the 2015–2016 El
Niño event. Well owners and drillers generously allowed the

authors to review private well records and data. Due to confi-
dentiality requested by several contributors, coordinates of
wells are not published. Climate data include monthly precip-
itation and evapotranspiration (ET) from the Integrated Multi-
Satellite Retrievals for GPM (Huffman et al. 2019). Daily
precipitation data were made available from a privately oper-
ated meteorological station near El Limon Dos. The
WorldClim2 dataset was applied to generate average annual
precipitation values across Tola (Fick and Hijmans 2017).

The March–April 2014 reconnaissance included geology
and hydrogeology transects, with geological observations
and measurements at 51 stations (Fig. 3). Rock samples from
10 outcrops were submitted for mineral assay and porosity
analysis at the Colorado School of Mines laboratory using
Quantitative Evaluation of Materials by Scanning Electron
Microscopy (QEMSCAN).

A water point survey included in-situ measurements of
electrical conductivity (EC), temperature, and pH collected
from wells (n = 32) and springs (n = 2) using an Oakton
PCSTestr 35multiparameter tester.When possible, well depth
and static water levels were measured using a water level
meter. A subset of wells (n = 12) were analyzed for E. coli

Fig. 3 Map of data collection locations within the municipality of Tola, Nicaragua
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bacteria, NO3-N, NO2-N, turbidity, and hardness by the
Universidad Nacional Autónoma de Nicaragua (UNAN). An
additional subset of six drilled wells, two hand dug wells, and
one spring were sampled in December 2015 and analyzed for
stable isotopes and hydrochemistry at Isotech Laboratories
and First Environmental Laboratories (Illinois, USA).
Charge balance error analysis for ions was less than 10% for
all samples and calculated according to Freeze and Cherry
(1979). Using these laboratory results, TDS and EC relation-
ship was applied to samples where TDS results were not avail-
able. This was achieved by multiplying the EC value (μS/cm)
by a regionally calibrated value of 0.64 to derive TDS in mg/
L.

General piezometric mapping for Tola was performed with
kriging and manual methods supported by Surfer and ArcGIS
software. The piezometric analysis incorporated static water
elevations measured between 2014 and 2020 from 25 drilled
wells and 18 hand dug wells. Data were also derived from
various dates documented in drilling reports to strengthen
spatial coverage. Hand dug well measurements were not
strongly weighted in the statistical and manual interpolation
methods, especially if they were interpreted to be shallower
perched groundwater.

A well inventory in 2012 documented 76 hand dug wells in
the Playa Gigante area, and a monitoring program was initiat-
ed to document water levels during the dry season and rainy
season over several years. The wells ranged in depth from 2.5
to 18.7 m and water levels were monitored bi-annually be-
tween 2012 and 2016, capturing five dry and rainy season
sequences. Volunteer citizen scientist approaches were
applied to support the data acquisition in the manner of
Connors et al. (2012) (Fig. 4). Analysis was performed on
water depth variability and dry well occurrences to illustrate
the problem and its socio-economic significance. Water-table
elevation mapping and analysis was performed for two snap-
shot events (December 2013 and November 2015) using
Surfer software to analyze and illustrate the impacts of the
2015 drought.

Three private production wells were monitored for water
level and specific conductance (SC) using Schlumberger
CTD-DIVER data loggers. MW-01 is 7 km NW of Playa
Gigante and was monitored from March 2014 through
June 2017. MW-02 and MW-03 in the El Limon Dos area
were monitored in 2016. Atmospheric correction was applied
from barometric data loggers deployed nearby to monitoring
sites. The three wells were completed in the Brito Fm and had
total depths between 34 and 76 m and pumping rates ranging
from 4 to 8.9 L/s (Table 2).

Rainfall samples (n = 17) were collected between
March 2014 and September 2016 and analyzed for low-level
chloride. Samples were collected directly or from roof down-
spouts after allowing for a first flush. Most rain samples were
captured in Playa Gigante, within 1 km of the coast at an

elevation of 17 masl. Other samples were captured near El
Limon Dos, approximately 250 m from the coast at an eleva-
tion of 12 masl. Samples were refrigerated prior to laboratory
analysis.

Results

Groundwater flow

Static water level data generated from reconnaissance efforts
were used to support the creation of a piezometric map (Fig.
5). The mapping is conceptual in nature due to limits in spatial
coverage and temporal variability of water level data and does
not present a ‘snapshot’ in time, nor is it representative of
drought conditions.

The regional SW orientation of groundwater flow is fairly
uniform with steeper hydraulic gradients in the hills and flow
diverging towards the coastal plains and larger valleys where
the gradients decrease. A groundwater divide transects N–S
from Los Sanchez to the coast parallel with the Brito River,
and another groundwater divide may be present in the NW
near the community of Astillero. In the NE of Tola, the Brito
Fm and underlying Rivas Fm may be interconnected
hydrogeologically. The Brito River may also have relevant
hydrogeological influences on the Brito and Rivas Fm
groundwater farther upstream and west of Tola.

The piezometric surface is below most of the river beds in
Tola, except for the lower sections of the Brito and Nagualapa

Fig. 4 Volunteer citizen science data collection at one of the hand dug
wells in Tola
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rivers. The drainages extending into the hills between Playa
Gigante and El Limon Dos are situated well above the piezo-
metric surface and may be a source of recharge when they are
flowing. The coastal plain near El Limon Dos has a large
contributing area of groundwater flow. Coincidentally, this
area has some of the most productive wells in the region.
The area between Playa Gigante and the Brito River has a
limited contributing area of groundwater flow compared to
the rest of the municipality.

Water quality and hydrochemistry

Over 30 wells were inventoried throughout Tola inMarch and
April of 2014. Table 3 includes summary statistics of data
collected. A subset of 12 wells was selected for supplemental
water quality analysis and these are presented in Table 4. Only
three freshwater springs were found in Tola, all of which were
flowing less than 0.25 L/s inMarch–April 2014 and were used
as water supplies for nearby residents. The water quality of the
springs was similar, with temperature range 26.8—27.9 °C,
EC 600–621 μS/cm, and pH 7.0–7.6.

Based on the 2014 dataset, EC had a wide range but did not
exceed World Health Organization (WHO) drinking water

guidelines of 1,500 μS/cm (WHO 2017) at any locations.
Temperature of groundwater was as high as 35.2 °C, correlat-
ing to geothermal areas. None of the wells exceeded WHO
guidelines for nitrate (10 mg/L NO3 as N), however, 11 of 12
tested positive for coliform bacteria. Two of the wells had
turbidity greater than the WHO guideline of 5 NTU (WHO
2017). All 12 wells had water that was considered hard to very
hard, based on analysis performed by UNAN.

Fig. 5 Regional groundwater flow of the Brito Formation aquifer system in the Tola municipality

Table 3 Water quality summary of wells from March–April 2014
reconnaissance

Summary statistics n Range SD Mean

Temperature (C) 31 26.5–35.2 1.46 28.3

Conductivity (μS/cm) 31 391–1,128 156 656

pH 31 6.5–8.1 0.34 7.3

Hardness (mg/L) 31 180–330 37.8 235

NO3-N (mg/L) 12 0–6.3 2.23 2.2

NO2-N (mg/L) 12 0–0.01 0.003 0.003

Turbidity (NTU) 12 0.5–73.2 20.69 8.1

Static water level (m bgs) 20 3.5–30.5 7.3 9.5

2292 Hydrogeol J (2021) 29:2285–2304



Figures 6 and 7 illustrate the hydrochemistry and water
quality of groundwater in Tola (Table 5) based on sampling
in December 2015. Three primary hydrochemical facies are
differentiated. The Ca-SO4 sulfate group (wells P3, P6, P8,
and P2) is generally inland and has increased dissolved solids.

Well P8 may have seawater or geothermal influence as sodi-
um chloride is elevated. The Ca-HCO3 group (wells P1, P7,
S1, and P2) is typically more distal from the coast, closer to
surface water, and exhibits the lowest concentration of dis-
solved solids. Well P2 falls in the transition zone between

Table 4 Water quality results from a subset of 12 wells sampled between 11 and 20 March 2014

Sample ID Latitude
(dd)

Longitude
(dd)

Tempa

°C
Turbidityb

(NTU)
pHa Conductivitya (μS/cm) Hardnessb

(mg/L)
NO3-
Nb

(mg/L)

NO2-
Nb

(mg/L)

Total coliforma

AN-255 11.4584 −86.0380 27.7 0.90 7.09 642 288 0.81 0.00 P

AN-256 11.4621 −85.9793 27.5 0.80 7.20 607 300 0.85 0.01 P

AN-257 11.5089 −85.9613 28.3 0.50 7.43 670 272 2.38 0.00 P

AN-259 11.4433 −85.9508 27.8 10.70 7.09 391 180 4.70 0.00 P

AN-260 11.4442 −85.9128 28.2 1.00 7.66 590 264 6.34 0.00 P

AN-237 11.5293 −86.0517 29.0 73.20 8.06 678 274 0.00 0.00 P

AN-238 11.5093 −86.0520 28.5 2.40 7.32 580 235 3.13 0.00 A

AN-239 11.5141 −86.0785 29.7 1.00 7.46 720 278 0.05 0.00 P

AN-240 11.5257 −86.1467 – 0.80 7.53 816 267 0.14 0.00 P

AN-274 11.3890 −85.9229 28.4 2.90 7.22 880 330 1.08 0.00 P

AN-275 11.4571 −85.9503 27.9 2.00 7.52 558 251 5.52 0.01 P

AN-276 11.4545 −86.0150 27.6 0.90 7.21 660 301 1.33 0.00 P

aMeasured in the field
b Laboratory analysis

Notes: Total coliform analyzed with HACH PathoScreen methods: P present, A absent

Fig. 6 Piper plot of groundwater
samples from the Brito Formation
(Tola municipality, Nicaragua)
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the Ca-SO4 and Ca-HCO3 groups. The Na-Cl group (wells P4
and P5) is likely influenced by seawater. TDS is higher at
locations that are distal to rivers compared to the Ca-HCO3

group. Elevated boron concentrations are observed in the Na-
Cl and Ca-SO4 groups and not the Ca-HCO3 group. Chloride
concentrations in groundwater are inversely correlated with
elevation.

Figure 7 illustrates TDS concentrations in groundwater
based on kriging analysis of recent datasets and other sources
(Adamson 2014; Krásný and Hecht 1998). The concentration
of TDS in groundwater generally increases westward towards
the coast. The areas with the highest TDS also correspond to
areas where significant temporal variation of EC in ground-
water between dry and rainy seasons has been reported. The
elevated boron concentrations can exceed drinking water
guidelines, which may be explained by seawater intrusion
and/or the marine origin of rock formations, as oceans have
an average concentration of 4.6 mg/L (Woods 1994). Borate
zones could be present within the Brito Fm layers deposited
under shallow marine conditions and saline water bodies

exposed to evaporation. Boron is also common in geothermal
waters (Tomaszewska and Szczepański 2014), which are pres-
ent in the study area. Arsenic is a contaminant of concern in
volcanic and geothermal regions of Nicaragua (Gonzalez
Rodriguez et al. 2018); however, it was not evaluated as part
of this research.

Monitoring

Hand dug wells

In 2012, all 65 originally surveyed hand dug wells had water,
however, 53% of the wells were dry during the El Niño event
in 2015. In 2016, only 28% of the wells were dry despite the
prolonged drought (Fig. 8). This can be explained in that
many well owners had deepened their (dry) wells in 2015.
All wells deeper than 8 m were recorded as dry in at least
two out of the five dry seasons over the reconnaissance period.
Fluctuations in water tables at individual wells between the
dry season and wet season ranged from 2.5 to 14 m, with

Fig. 7 Map showing (1) spatial extrapolation of total dissolved solids
concentrations in groundwater, (2) groundwater type of eight wells and
one spring, and (3) zones documented to have boron concentrations that

exceed WHO water quality guidelines (adapted from Krásný and Hecht
1998 and Adamson 2014)
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magnitude correlating with well depth. The median water
depth for all wells is plotted in Fig. 8. (For this statistic, water
levels at dry well locations were assumed to be 0.5 m below
well depth).

Water-table elevation contours were plotted from
December 2013 and November 2015 (Fig. 9). The
December 2013 data represent a period at the end of the rainy
season when no wells were reported dry. November 2015 data
were collected during the 2015–2016 drought when over 40
wells went dry. The water table dropped significantly (as
much as 7 m and averaging 3.5 m) across the Playa Gigante
area (Fig. 9).

Drilled wells

MW-01 (near Playa Gigante) was monitored starting on 24
March 2014 (Fig. 3; Table 2). The SC sensor of the logger
malfunctioned on 14 June 2015 and was not replaced; how-
ever, the water level logger was maintained through 03
June 2017. During the period of monitoring, the groundwater
elevation ranged from 7.05 to 0.58 masl (Fig. 10). The water
table was in a steady decline and reached its lowest point just
above sea level in late March 2016 during the drought.
Following the peak of the drought, the water table recovered,
but did not recover higher than 4.6 masl through the next year.
SC ranged from 873 to 16,284 μS/cm during the year from
which there were data. In December 2015, the well owners

reported degradation of water quality, which corresponded to
a water-table elevation of 3.5 masl and SC of 2,800 μS/cm.
Over the subsequent nine months, the water table continued to
decline to its lowest point of 0.58 masl and SC increased to
greater than 16,000 μS/cm, indicating saltwater intrusion.
While the decrease of the water table was more gradual, the
increase in SCwas sharp and occurred over a 3-week period in
December 2015 when the water table fell below 3.5 masl.
Following the drought, EC was measured in November
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Table 5 Hydrochemistry and stable isotope results from eight wells and one spring sampled in December 2015

Parameter Detection Limit Units Sample ID

P1 P2 P3 P4 P5 P6 P7 P8 S1

Date 13-Dec 15-Dec 12-Dec 14-Dec 13-Dec

Elevation masl 87 18 24 65 32 20 68 14 87

Alkalinity, total (CaCO3) 5 mg/L 64 62 42 50 28 56 56 64 52

Alkalinity, bicarbonate (CaCO3) 5 mg/L 64 62 42 50 28 56 56 64 52

Alkalinity, carbonate (CaCO3) 5 mg/L <5 <5 <5 <5 <5 <5 <5 <5 <5

Chloride 1 mg/L 31 46 59 26 134 81 12 195 13

Sulfate 15 mg/L <15 42 79 115 15 36 22 57 21

Boron 0.05 mg/L <0.05 0.45 0.50 0.88 2.61 1.43 0.07 0.37 0.12

Calcium 0.5 mg/L 93.6 110 116 49.8 6.2 103 100 160 78.2

Magnesium 0.5 mg/L 14.5 7.1 4.3 2.3 0.9 4.3 6.9 11.1 12.9

Potassium 0.5 mg/L 0.8 <0.5 0.8 0.9 5.3 0.7 0.8 1.3 1.1

Sodium 0.5 mg/L 20.4 39.9 30.5 127 128 72.6 20.5 86.0 22.5

pH @ 25 °C – 7.09 7.22 7.14 7.51 8.68 7.20 7.02 7.12 7.72

Conductivity 5 μS/cm 552 715 673 742 680 780 551 1230 515

Total dissolved solids 10 mg/L 326 484 470 510 380 520 320 788 363

δD H2O – ‰ −44.6 −47.1 −47.6 −46.3 −46.0 −46.8 −47.6 −47.1 −44.5
δ18O H2O – ‰ −6.56 −6.94 −6.79 −7.02 −6.78 −6.90 −7.09 −6.83 −6.50

Notes: P1–P6 are drilled wells; P7 and P8 are hand dug wells; S1 is a spring. Refer to Table 2 and Fig. 3
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2016 at 4,233 μS/cm, which corresponded to a water table of
3.8 masl.

MW-02 and MW-03 near Limon Dos are within 3 km of
the coast and were monitored for 1 year (2016). Figure 11
presents a moving average of the water-table elevations which
was applied to the plots to support visualization of the dataset
due to daily pumping influences. Water-table elevations at
MW-02 and MW-03 fluctuated 12.1 and 21 m (respectively)
during 2016. MW-02 water elevations ranged from 3.9 to 16

masl andMW-03 ranged from −2.5 to 18.6 masl. Water levels
in the wells were already in decline whenmonitoring started in
January 2016, the lowest levels were observed during the peak
of the drought in March–April 2016. MW-02 and MW-03
water levels recovered 10 and 17 m (respectively) within a
few weeks upon the commencement of the rainy season.
MW-03 experienced a sudden and unexplained 10-m water
level drop in March and again in May, which resulted in a
significant decrease in pumping yield. It is hypothesized that

Fig. 9 Groundwater flow based on measurements of hand dug wells in Playa Gigante, a water-table elevation in December 2013 at the end of the rainy
season and November 2015 during the drought, b difference in water table between the two snapshots
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this may have resulted from depleted storage in a fracture
system, or perhaps well interference from other pumping
well(s) in the area.

Specific conductance data are incomplete for the year and
unfortunately do not capture the peak of the 2016 drought.
(Manual measurements were not taken to document how high
SC values may have reached). The SC ranged from 517 to
1,160 μS/cm at MW-02 and 617 and 1,273 μS/cm at MW-03
(Fig. 11). The higher SC does appear to be associated with the
dry season and lower water tables, and there is an inverse
correlation between SC and water-table elevation.

In both Playa Gigante and El Limon Dos, hydraulic gradi-
ents, as calculated between well locations and the coast,
ranged significantly from near zero to 0.01 during the period
of monitoring. The gradient associated with MW-01 (in Playa
Gigante) was inversely correlated to SC, exhibiting the rela-
tionship with water tables and seawater mixing.

Chloride and mass balance

Chloride concentrations of rainfall samples collected (n = 16)
were between 2.7 and 24.3 mg/L, averaging 11.4 mg/L
(Table 6). The volume weighted mean concentration of chlo-
ride in rainfall was 8.12 mg/L. A moderate inverse correlation
exists between chloride concentrations and daily rainfall
totals.

A chloride mass-balance (CMB) was applied to derive a
planning-level estimate of groundwater recharge in the study
area. The CMB equation is defined in Eq. (1), where R is
recharge (mm/year), P is rainfall (mm/year), Cl−p is average
chloride concentration in rainfall (mg/L), and Cl−gw is average
chloride concentration in groundwater (mg/L).

R ¼ P � Cl−p
Cl−gw
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Fig. 11 Water-table elevation and specific conductance at MW-02 and MW-03 during 2016

Table 6 Chloride concentrations of rainfall in Tola municipality,
Nicaragua

Date Cl−

(mg/L)
Precipitationa

(cm)

20-Mar-2014 19 0.90

26-Aug-2014 4.6 11

23-Sep-2014 22 1.36

15-Nov-2014 17.4 1.86

09-Jun-2015b 5 1.0

10-Jun-2015b 16 1.76

11-Jun-2015b 12.4 3.8

26-Sep-2015 7.7 4.2

08-Oct-2015 15.2 0.04

22-Oct-2015 5.2 4.3

20-Nov-2015 2.7 1.12

12-Jan-2016 13.3 0.76

06-May-2016 5.62 5.96

11-Jun-2016 7.1 2.84

18-Jul-2016 24.3 0.60

29-Aug-2016 5.5 3.88

Note: Samples collected in Playa Gigante at 17 masl within 1 km of the
coast
a Total daily precipitation as recorded at private rain gauge at El Limon
Dos
b Samples collected near El Limon Dos, at 12 masl, 250 m from the coast
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Chloride data were available for nine groundwater samples,
three of which were omitted from analysis (P8 is a hand dug
well with higher EC (1,230 μS/cm) than the other samples,
and P4 and P5 exhibit Na-Cl hydrochemistry and are
interpreted to have seawater influence). Applying the volume
weighted average chloride concentration of rainfall (Table 6)
and 52.5 mg/L as the average chloride concentration of
groundwater, CMB results indicate mean annual groundwater
recharge is 17% of average annual precipitation, or 258 mm/
year.

Stable isotopes

The stable isotope values measured from wells (n = 8) and a
spring (n = 1) in Tola form a narrow range from −7.09 to −6.5
per mil ∂180, and − 47.6 to −44.5 per mil ∂D. These data are
plotted in Fig. 12 with the Global Meteoric Water Line (∂D=
8∂18O + 10) and two meteoric water lines representative of the
Nicoya Peninsula (∂D= 6.65∂18O - 0.131) and Pacific Coast
(∂D = 7.6∂18O + 7.95) regions in Costa Rica (Sánchez-
Murillo et al. 2013). Across the Tola municipality, the waters
mostly lie beneath meteoric water lines, indicating evapora-
tion exposure before or during recharge. Well P1 and spring
S1 are farthest inland and more enriched than the other sam-
ples. Wells P4 and P7 could be more representative of direct
recharge as they plot closer to the meteoric lines. P7 is the
most depleted of the samples and P4 falls slightly above the
Nicoya Peninsula meteoric water line but below the others
(Fig. 12). ∂18O values were plotted against discharge or
water-table elevations and showed a lack of linearity and
slight trend of elevation dependency among lower elevation

sample subsets. This lack of linearity indicates that discharge
elevations are lower than mean recharge elevations.

Petrology and rock properties

The rocks of the Brito Fm observed at outcrops in Tola are
predominately sandstones; however, they exhibit significant
diversity. Primary porosity is low based on samples (n = 10)
collected from outcrops and bottom of dry hand dug wells
with results ranging from 0.22 to 3.14% (Table 7). The highest
porosity value of 3.14% represented a semiconsolidated sand-
stone with a scan that showed minimal interconnectedness
between voids (Fig. 13). Samples with increased porosity re-
sulted from microchannels and/or zeolite voids.

The categories of sandstone include lithic wackes,
felspathic arenites, lithic arenites, and sublitharenites
(Table 7). The rocks are of volcanogenic origin with tuffa-
ceous fabric, zeolites, glass, and pumice fragments. Hand
samples and scans exhibited cross-bedding, microchannels,
and zeolite voids. The dominant minerals are quartz (11.55–
83.4%), plagioclase feldspar (2.74–32.58%), calcite (0.03–
23.08%), carbonate-clay interphase (0.53–13.80%), chlorite
(1.08–12.94%), smectite, (0.49–10.05%), dolomite (0.04–
0.81%), and illite (Table 7; Fig. 13). A lithic wacke (ID 6)
had significantly less quartz and more chlorite, plagioclase,
and illite than any of the other samples. The results show
variable grades of diagenesis based on analysis of thin sec-
tions and mineral content, which may have an influence on the
presence, availability and quality of groundwater.

Geological attitude

Strike and dip measurements of Brito Fm beds were made at
51 locations throughout the Tola municipality (Fig. 3).
Regionally, the Brito Fm strikes SE and beds are uniformly
dipping and planar in the SW direction towards the coast
(x  = 226°, SD = 62°). Beds dip at angles ranging from 5 to
30° (x  = 16°, SD = 5°; Fig. 14). Fifteen percent of measure-
ments exhibited localized folding and offsets due to jointing
and faulting, resulting in dip azimuths ranging from 14 to 365°
(Fig. 14a). The uniform and planar geological attitude of the
Brito Fm aligns with the direction of groundwater flow and
orientation of major lineaments (198–235°).

Discussion

Aquifer and groundwater system

In the Tola municipality, the Brito Fm supports two primary
aquifer zones which include an unconfined upper section in
fractured and weathered rock, and a lower confined section in
deeper fracture networks. Based on drilling logs and well test
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Fig. 12 Relationship between deuterium (D) and oxygen-18 with global
and local meteoric water lines. Regional meteoric water lines of Costa
Rica from Sánchez-Murillo et al. (2013)
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data, the shallow portion, where present, is up to 30 m below
land surface and supports most of the hand dug wells in Tola.
The deeper section is documented with boreholes up to 260m,
with production from fracture porosity at variable depths. The
formation thickens westerly towards the coast and is bounded
below and to the north and east by the Rivas Formation of
Cretaceous age. Volcanic intrusions of Tertiary age are be-
lieved to underlie the Brito Fm; however, the only mapped
outcrop is in NE Tola where the Brito Fm is absent. The
regional flow system suggests an interconnection with the
Rivas Formation along the Brito Valley and in the NE of study
area. Unconsolidated sediments up to 15 m thick overlie the
Brito Fm in valleys and coastal areas. These sediments may
serve an important role in capturing streamflow and runoff,
and buffering inflow to the bedrock aquifer system.

The hydraulic gradient is westerly towards the coast, steep-
er in the hills, and lower in the coastal plain and valleys.
Regional groundwater flow mirrors the true dip direction of
the beds, and topographic influence is evident in the larger
valleys. During most of the year, the piezometric surface is
lower than the streams and rivers, except in closer proximity
to the coast. Water-table depths in the upper section are typi-
cally less than 30 m and monitoring results indicate seasonal
fluctuations ranging between 2.5 to 14 m. The magnitude of
fluctuations is more significant at wells with shallow water
tables. The deeper zone as represented by records from drilled
wells have piezometric surfaces recorded as deep as 53 m in
the upland hills, and as shallow near the sea elevation in prox-
imity to the coast. Fluctuations in the piezometric surfaces
were documented to be 6.5, 12, and 21 m at three drilled wells
(with corresponding increases in EC). These fluctuations were
magnified by the 2015–2016 drought.

There is spatial and vertical heterogeneity of the aquifer
system that influences availability of groundwater, flow dy-
namics, recharge, and water quality. The specific yield of hand
dug wells averaged 0.21 and ranged from 0.04 to 0.3 based on
analysis of 61 hand dug wells in Tola (Unpublished data). The
deeper zone exhibits hydraulic conductivity that ranges by 3
orders of magnitude (0.05–90 m/day) and storativity that
spans 2 orders of magnitude (0.003–0.001). The highest quar-
tile of hydraulic conductivity of drilled wells has piezometric
surface elevations less than 10 m and is in areas with topo-
graphic expressions of geological structure. The water quality
illustrates spatial variability primarily based on position in the
regional flow system, and by the varying permeability of the
aquifer. Weathering processes and ion releases from the rocks
to the groundwater are higher in areas with lower permeability
due to longer residence times. Gypsum and marine aerosols
present in less permeable sedimentary rocks may explain the
sulfate hydrochemistry in some areas. There are also seawater
and geothermal influences on the water quality near the coast
and in the northern coastal plain, respectively.
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Aquifer storage and porosity

Secondary porosity has significant influence on groundwater
flow and availability. Results revealed that primary porosity of
near surface Brito Fm rocks is low (0.22–3.14%) and 1–2
orders of magnitude less than values applied in various
private-sector consulting reports that have been reviewed by
the authors. Groundwater storage and associated availability is
thus significantly less than previously assumed for the study
area and is more dependent on secondary porosity by way of
fracture networks and structural features (e.g. faults and
joints). Water level data, chemical and isotopic characteristics
of sampled groundwater, and aquifer properties are indicative
of a heterogenous fractured aquifer system. This storage char-
acteristic may contribute to vulnerability of the aquifer to
overexploitation and drought, as demonstrated by monitoring
data from the areas of Playa Gigante and El Limon Dos where
there is a higher density of pumping wells.

The variable petrology of near surface rocks within a
small area suggests complex diagenesis processes have
influenced the porosity and permeability of the aquifer.
Spinelli et al. (2006) documented changes in rock proper-
ties resulting from diagenesis processes in neighboring
Costa Rica and noted the magnitude of changes depend
on factors such as sediment makeup, fluid pressures, heat,
and compaction. The sandstone facies documented in
Tola are recrystallized, of later stage diagenesis with a
low proportion of zeolites, typically have no primary po-
rosity, and are more brittle and prone to fracturing and the
development of secondary porosity. Earlier stage diagen-
esis rocks with a high proportion of clays and feldspars
have volcanic parentage with abundant zeolites, glass, and
pumice fragments. These rocks are typically softer and
more ductile and promote lower secondary porosity, as
these types of rocks are less likely to house the open
fractures which promote recharge and storage.

Fig. 13 Mineral assay results of
Brito Formation rocks using
QEMSCAN

Fig. 14 Rose diagrams of
geological attitude from 51
stations throughout Tola. In both
plots, segments are proportional
to the percentage of
measurements that fall within
each 5° interval
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Recharge and discharge processes

Isotopic signatures indicate that groundwater in most drilled
and hand dug wells was exposed to evaporation before or
during recharge, suggesting infiltration from rivers and con-
centrated runoff events are a large source of recharge. Direct
recharge is likely limited due to the low infiltration capacity of
Brito Fm soils (Calderón and Uhlenbrook 2016).

The planar and uniform coastward dipping geological atti-
tude of the Brito Fm and the orientation of structural linea-
ments generally promote short residence times and efficient
transmission of groundwater flow from recharge areas to the
ocean. The anticline axis associated with the ridge of the
Pacific Hills near the eastern edge of Tola (Fig. 1) may limit
recharge as the Brito Fm dips easterly and away from the
Pacific Coast east of this axis.

This study indicates long-term mean annual recharge is on
the order of 258 mm/year; however, the range of chloride and
isotopic signatures in groundwater indicates high spatial var-
iability in recharge occurrence, which may be perhaps as low
as 60 mm/year in some areas. A larger proportion of recharge
is believed to occur in low-lying areas and drainages where
streamflow and runoff has the opportunity to be infiltrated.
These areas also correspond to where the bedrock has higher
porosity and permeability, further enhancing the localization
of recharge during rainfall events sufficient to generate runoff.

Recharge is also temporally variable. A significant propor-
tion may result from large precipitation events early in the
rainy season when soil moisture is low, water tables are
deeper, and ET is lower. At MW-01 in Playa Gigante, high
precipitation and low ET early in the 2016 rainy season cor-
related to the only rise in the water table over the preceding
14months (Fig. 15). Figure 15 also illustrates water-table rises
only occurring when monthly precipitation was greater than
250 mm. It is worth noting that MW-02 and MW-03 near El
Limon Dos also had a similar relationship between monthly
precipitation and water-table fluctuation.

In the study area, water-table elevations are lower than the
ephemeral and intermittent streams for most of the year and
little groundwater discharges to these channels. The larger
rivers are believed to receive groundwater discharge for some
portions of the year, especially towards the coast, and during
the rainy season when groundwater levels are higher.
Perennial discharge occurs from the aquifers to the lower sec-
tions of the Brito and Nagualapa rivers and brackish ecosys-
tems near the coast. Groundwater discharge also occurs at
wells throughout the study area and some small springs. The
Pacific Ocean is the largest discharge component for the aqui-
fer system.

Vulnerabilities

Several factors contribute to the water security vulnerabilities
in Tola. First, groundwater recharge is limited and lacking
spatial and temporal homogeneity. Despite a mean annual
precipitation range of 1,292–1,618 mm/year, renewable
groundwater for Tola is perhaps on the order of 2,300 L/s,
or 8 L/s per square kilometer. Secondly, the low bulk aquifer
storage and coastal discharge precludes a savings account to
buffer the system from drought, increased abstraction from the
tourism sector, and climate change. This factor is particularly
salient given the tendency of strong El Niño events, predicted
climate change, and likely increase in tourism development.
Thirdly, the orientation of the regional groundwater flow sys-
tem strongly influences groundwater chemistry, thus render-
ing both groundwater quantity and quality at risk from
drought, increased abstraction, and climate change.

Some of these vulnerabilities were strongly demonstrated
during the 2015–2016 El Niño drought when groundwater
elevations in both shallow and deep aquifer zones dropped
significantly (up to 21 m). Over 50% of monitored hand dug
wells went dry, and drilled wells had water levels below pump
depths, or required significantly reduced pumping rates.
Water quality impacts were also pronounced, with EC
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doubling at two wells, and increasing nearly 16-times at an-
other monitoring well. For nearly 1 year, the quality of
groundwater in many wells near Playa Gigante was not pota-
ble until the arrival of the 2016 rains. Water quality impacts
were also reported inland where water temperatures, salinity,
and sulfur odors increased in the Nagualapa Valley during the
drought. Given that flowing hot springs are present at the
lower end of the valley near the coast, this may indicate the
displacement of fresher groundwater with geothermal waters.
The higher boron concentrations mapped in this area and
Nagualapa valley (Fig. 7) may also indicate geothermal influ-
ence on the aquifer waters (Tomaszewska and Szczepański
2014).

Conclusion

Lack of groundwater data and aquifer characterization are a
key challenge to sustainable development in SW Nicaragua,
and indeed to many global regions growing in reliance upon
groundwater. Although the national water law of Nicaragua
(Ley 620 of 2007) established water as a public good and
provided a framework for the state to ensure its role in social,
environmental, and economic well-being, limited
hydrogeological knowledge exists in SW Nicaragua to sup-
port these aims. The goal of this study has been to advance
characterization of the Brito Fm aquifer system to provide a
stronger base to support tourism development, rural commu-
nities, and the capacity of the government to manage water
amidst complexities of growing demand and climate change.
The challenges and vulnerabilities associated with the ground-
water resources have been documented and interpreted in this
paper and its Open Access publication enables dissemination
to stakeholders, researchers, and practitioners. As the hydro-
geology of the aquifer systems are better understood, the in-
valuable resources can be more sustainably developed and
managed.

Increased abstraction and climate change will continue to
stress the Tola region, thus resiliency planning is necessary at
all scales to avert drought induced crises. In the interim, wa-
tershed and local-scale practices should be considered to en-
hance groundwater recharge in the region. Further study and
monitoring are essential given the diverse hydrogeological,
climatic, and social factors that make groundwater resources
extremely vulnerable to drought. Regional-scale studies
should avoid administrative boundaries as study areas and
evaluate hydrogeological interconnections between the Brito
and Rivas formations in Pacific Nicaragua. Inland
groundwater/surface-water interactions between the bedrock
aquifer systems and perennial rivers such as the Brito are also
important to evaluate to determine if there are more significant
sources of streamflow infiltration occurring in the region. In
the absence of (1) continued knowledge building, (2)

informed groundwater management, and (3) relevant govern-
ment involvement, groundwater availability in Tola will likely
be a progressively limiting factor in physical and economical
human development.
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