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Abstract
The Manasi riparian zone in northwestern China has become a survival habitat for numerous native plant species and requires
urgent protection owning to rapid expansion of farmland. The critical factor affecting the growth of desert riparian vegetation in
arid regions is recognized to be groundwater, but in this region the threshold of water-table depth for riparian species has been
rarely studied. To determine the association between species and their major growth factors and to ascertain the water-table depth
threshold, this study employed field investigation, a logarithm distribution model and canonical correspondence analysis.
According to the findings, (1) the water-table depth largely regulates the species distribution; (2) from the results of the logarithm
distribution model, the water-table depth appropriate for herbs is 1–1.5 m and for shrubs it is 2–4 m, and a water-table depth of
less than 6 m could satisfy the growth requirement of major species; (3) species diversity peaks at the water-table depths of 2–3,
3–5, and 2–4 m for herbs, shrubs and all species, respectively; (4) the frequency of appearance of Phragmites communis (grass
herb) and Tamarix chinensis (deciduous shrub) was not as sensitive to depth to water table. To reconstruct a riparian zone,
Phragmites communis and Tamarix chinensis could be planted in areas with water-table depth of less than 3 m and 2–5 m,
respectively. These results may contribute to suitable policy regarding vegetation restoration.
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Introduction

The riparian corridor considered in this study is situated at the
interface between the upland terrestrial ecosystems and stream
ecosystems (Rundel and Sturmer 1998b; Gregory Wallace
1997). In relation to the entire landscape, the corridor is small

at the global scale (Rundel and Sturmer 1998b; Ström et al.
2012), whereas its level of species diversity is high (Gumiero
et al. 2015; Rundel and Sturmer 1998b). The riparian species
are critical to the preservation of ecosystem function as they
provide reproduction sites for wildlife (Ellis 1995; Carothers
et al. 1974; Merritt and Bateman 2012; Le Maitre et al. 1999),
preventing desert invasion (Lammerts et al. 2001) and produc-
ing organic matter (Wallace et al. 1997; Hao et al. 2010).
Hence, in order to protect the riparian species while maintain-
ing a high level of species diversity, further insights into the
relationship between species and environmental factors is nec-
essary. Accordingly, the present study is urgently required for
the Manasi riparian corridor (northwestern China) especially,
to ensure the survival of habitat for native vegetation in face of
long-term farm expansion.

In arid regions, stream water, precipitation, and groundwater
are widely regarded as the three major natural water sources for
the growth of the riparian species. The Manasi riparian zone is
situated in the inland basin at the north piedmont of the Tianshan
Mountains and is known for its extreme arid climate. The zone
has scarce rainfall, which may hardly affect vegetation growth
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directly (Yang et al. 2017). Moreover, because of long-term
surface-water allocation, 96.27% of the surface water is trans-
ferred for irrigation purposes. Often there is insufficient surface
water to provide water by periodic overbank flooding for ripar-
ian species (Yang 2017). Accordingly, in the groundwater dis-
charge zone, riparian vegetation is primarily dependent on
groundwater to maintain its growth and function. Across the
flood plain, groundwater can be exploited by deep-rooted plants
and is a vital indirect water source for shallower-rooted vegeta-
tion through the regulation of soil-moisture content (Smith et al.
1998; Hao et al. 2009).

The riparian corridor ecosystem is complex, and many oth-
er factors besides the availability of water interact to affect the
species distribution and diversity (Ward 2001; Xiong et al.
2003). A considerable number of studies have explained
how species diversity, evolution and coverage are affected
by environmental factors such as water-table depth, chemical
composition of the groundwater, soil-water content and soil-
salt content (Lymbery et al. 2003; Lv et al. 2013; Chen et al.
2014; Yang et al. 2013; Klijn and Witte 1999; Srivastava and
Jefferies 1995; Stromberg 2007; Jansson et al. 2007). To in-
vestigate the effects of each factor on riparian vegetation, and
to ascertain the primary factor affecting species the most, a
number of approaches have been used, including principal
component analysis (PCA), binary discriminant analysis
(BDA), detrended canonical correspondence analysis
(DCCA), canonical correspondence analysis (CCA), regres-
sion tree analysis, etc. Numerous studies in arid regions have
reported that species distribution, diversity and vegetation
cover are regulated by water-table depth (Hao et al. 2010;
Zhu et al. 2013; Zhu et al. 2011). A drop of groundwater level
can reduce the water availability, while a rise in groundwater
level is capable of reducing oxygen levels in the vadose zone
(Hao et al. 2010). The variation of water-table depth will in-
duce species succession (Stromberg et al. 1996). Accordingly,
in terms of species growth, a proper water-table depth must be
maintained within a certain range. Many investigations have
assessed the water-table depth in arid and semi-arid regions
(Hao et al. 2010; Jin et al. 2016). Nevertheless, as there may
be differences in climate, depositional environment and spe-
cies composition, etc. among riparian zones, further investi-
gations are required to delve into the appropriate water-table
depth threshold, particularly in northwestern China.

The groundwater discharge from upland areas is capable of
supporting a stable water resource for riparian species growth
along the middle and lower reaches of the Manasi River.
Nevertheless, the noticeable expansion of farmland and poor-
ly managed water allocation have caused the area of wetland
to become narrowed, and riparian vegetation has been degrad-
ed along the lower reach of the Manasi River due to lowering
of the riparian water table (Wer et al. 2017). Thus, in order to
protect and restore the riparian species, groundwater contribu-
tion to riparian vegetation should be urgently assessed, and its

threshold should be determined. To date, very few investiga-
tions have been undertaken in this area. Accordingly, the pres-
ent study aimed to (1) explore the contribution of water-table
depth as a factor in species distribution; (2) assess the thresh-
old of water-table depth; (3) provide basic data and analytical
results for an assessment of the effects of human activities on
riparian species and restoration of the riparian environment.

Materials and methods

Study area

The Manasi River is located at the southern Junggar Basin;
it is 400 km long in total, arising from the North Tianshan
Mountains and it flows though the Gurbantunggut Desert,
entering Manasi Lake (Fig. 1). Geological and lithological
structure have been changed along the river, and the river
and groundwater systems have undergone significant trans-
formation three times, which has regulated the variation of
groundwater level and vegetation coverage on the regional
scale (Wang et al. 2018). The area has a typical temperate
continental climate, with an annual potential precipitation
of 100–200 mm, and an average annual evaporation of
1,500–2,100 mm (Yang et al. 2017). The riparian aquifer
is a multilayer aquifer with fine-grained particles (Wang
et al. 2018). Soil particle compositions within 0–1 m depth
are listed in Table 1. Inflows of basin groundwater and river
water have played an important role in maintaining the
growth of riparian vegetation. The hygrophyte, xerophyte
and mesophyte, including shrubs and herbs, have all grown
in the Manasi riparian corridor, of which the dominant
species are Tamarix chinensis, Apocynum venetum L.,
Carex spp., Phragmites communis, and Calamagrostis
pseudophragmites (Table 2).

Data collection

Between August 2018 and September 2019, data were collected
at 13 sites in the middle and lower reaches along the Manasi
River riparian zone (Fig. 1). Each site consisted of a transect
perpendicular to the major steam spanning the riparian zone
(including floodplains and terraces) without adjacent upland
farmland. Five plots (10 × 10 m) were sampled at eight sites
along the transect line at a distance of 10–30, 50–70, 100–120,
200–250 and 500–650 m, and four plots (10 × 10 m) were sam-
pled at five sites at distances of 10–30, 50–70, 100–120, and
200–250 m away from the river. Shrub and trees were investi-
gated in each plot (10 × 10 m) and five herb plots of 1 × 1 m
were taken within the shrub and tree plot (10 × 10 m). The
geographical location for each plot, covering elevation, longi-
tude and latitude, was recorded using a global positioning sys-
tem (GPS). The vegetation investigation took place in August
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2018 andAugust 2019. For each respective plot, the plant name,
numbers of each plant, its height and the vegetation coverage
were recorded. Estimation of the vegetation coverage of
Phragmites communis and Tamarix ramosissima was in accor-
dance with the principles put forward by Liu et al. (2012). In the
plot, each side was divided into ten equal parts, and 20 ropes
crossed vertically to form 100 nodes counting how many times
the plant contacted the nodes, defining the contact times of 100
nodes as the vegetation coverage of this plant. In a 1 × 1 m plot,
each node was spaced 10 cm apart, and the contact times of
Phragmites communis in 100 nodes were calculated as the cov-
erage of Phragmites communis. In regard to the 10 × 10 m plot,
the spacing of each node was 10 m, and the contact times of
Tamarix ramosissima in 100 nodes were calculated as the cov-
erage of Tamarix ramosissima. Since therewere five herbaceous
plants plots, the average value is denoted as the coverage of
Phragmites communis. The value of species abundance was
acquired using statistics, which was the number of each herb
species in a 1 × 1 m plot as well as each shrub species in a 10 ×
10 m plot. One well was drilled in the center of each plot (10 ×
10 m) with a depth of 7–12 m and groundwater was sampled in
60wells. The total dissolved solids content was determined with
a water quality detector in the field. The depth to groundwater
level was measured once a month during August 2018 to
September 2019 by a wooden rule or rope. The average water-
table depth was used in the following analysis.

Soil sampling was performed alongside the vegetation in-
vestigation of each plot. A pooled sample was derived from
three random cores at a depth of 0–1 m in each 10 × 10 m plot

using a 4.5 cm diameter soil auger. The soil samples were
sealed in an aluminum specimen box and weighed in the field,
then they were dried at 105 °C for 24 h. The percentage var-
iation in mass could be used to calculate the soil-water con-
tent. The soil chemical constituents, such as HCO3

−, SO4
2

−,Cl−, Ca2+, Mg2+, Na+, and K+, as well as the corresponding
pH values, were measured by the China Coal Xi-an Design
Engineering Co., Ltd. Each anion was analyzed via titration
following the standard method for geotechnical tests.
Additionally, pH values were measured using a PHSJ-5 pH
meter. The soil-moisture content, soil-salt content, and soil pH
values were obtained from the 0–1 m layer.

Data analysis

The linear combination of two groups of variables,
X = [x1, x2,..., xm], Y = [y1, y2,..., ym], can be expressed as X
′ = ax1x1 + ax2x2 + …axmxm = aTX, Y = bx1y1 + bx2y2 + …
bxmym = bTY. X′ and Y′ are referred to as the canonical variables.
The aim of CCA was to find the canonical variable with the
largest correlation coefficient, and the correlation of the original
variables can be expressed by the correlation of the canonical
variable. Accordingly, sorting the quadrat, environmental factors
and species may be done on the same graph (see Fig. 3), and the
relationship between species distribution, community distribu-
tion and environmental factors may be intuitively observed.
The quadrant where the arrow is pointed to represents the posi-
tive or negative correlation between environmental factors and
the sorting axis. The length of the arrow represents the degree of

Fig. 1 Location of the Manasi River catchment and research site. Digital elevation (DEM) in m above mean sea level
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correlation between an environmental factor and the species dis-
tribution. The angle between the arrow and the sort axis repre-
sents the correlation between an environmental factor and the
sorting axis. Canonical correspondence analyses (CCA) were
conducted to reveal the relationships between vegetation com-
position and environmental factors. In this study, six environ-
ment factors were considered in the data matrix comprised of
environmental factors, namely, water-table depth, total dissolved
solids, groundwater pH, soil-moisture content, soil-salt content,
and soil pH. CANOCO 4.5 executed the CCA, which was de-
signed by Ter Braak and Šmilauer (2002) for ordination analy-
ses. In the ordination diagram (Fig. 3), the abbreviations repre-
sent the species name (see Table 2), and the arrows indicate the
environmental variables (Ter Braak and Colin Prentice 1988).
The Monte Carlo permutation test was done in conjunction with
499 random permutations so as to test the significance of each
axis.

Gaussian regression has been extensively used to reflect
the species and environmental relationship (Zhang 2004);
however, the relationship between the vegetation and the en-
vironment is too sophisticated to guarantee full compliance
with Gaussian regression. Certain related studies in
Northwest China reported that the lognormal distribution is
capable of describing the species occurrence frequency distri-
bution as the variation in water-table depth (Hao et al. 2010).
The probability density function is expressed as follows:

f xð Þ ¼ 1

xσ
ffiffiffiffiffiffi

2π
p e − ln xð Þ−μ½ �2

2σ2

� �

ð1Þ

X pm ¼ eμ−σ
2 ð2Þ

E Xð Þ ¼ eμþ
σ2
2 ð3Þ

σ Xð Þ ¼ eσ
2
−1

� �

e2μþσ2 ð4Þ

where x denotes the water-table depth; μ is the mathematical
expectation of ln x; and σ refers to the standard deviation of ln
x; pm is a label and Xpm represents water-table depths corre-
sponding to the peak value of the species appearance
frequencies.

Three indices were adopted to calculate species diversity.
The Shannon-Wiener diversity index (H):

H ¼ − ∑
s

i¼1
piln

�

pi
� ��

ð5Þ

Patrick’s index of richness:

R ¼ S ð6Þ

Simpson’s diversity index:

D ¼ 1− ∑
s

i¼1
p2i ð7Þ

where pi denotes the ratio of the plant number of species i to
the total plant number of all species in the plot, and S repre-
sents the total number of species in the plot. The Shannon-
Wiener diversity index and Simpson’s diversity indices were
then computed for the herbs and shrubs, which were based on
the Eqs. (5) and (7) respectively. When calculating the
Shannon-Wiener diversity index and Simpson’s diversity in-
dex for the entire species, the indices of herbs and shrubs were
weighed according to the vertical structure of the community,
as proposed by Fan et al. (2006), Gao et al. (1997) and Zhu
et al. (2013). The proposed equation wasHtotal =WherbHherb +
WshrubHshrub + W t reeH t ree and, D to ta l = WherbDherb +

Table 1 The results of soil particle analysis (unit: mm)

Site Rock Gravel Sand

>40 20–40 10–
20

5–10 2–5 0.5–2 0.25–0.5 0.075–0.25 <0.075

1 0 11.86 ± 23.72 0 59.08 ± 17.84 13.44 ± 7.94 6.75 ± 4.46 3.14 ± 1.49 5.16 ± 5.67 0

2 0 0 0 0 0 6.30 ± 5.87 14.08 ± 3.54 25.76 ± 5.18 54.34 ± 4.34

3 0 0 0 0 0 3.92 ± 3.97 10.72 ± 5.91 12.90 ± 6.54 72.46 ± 11.67

4 0 0 0 0 0 18.68 ± 18.2 19.35 ± 3.67 37.20 ± 11.65 24.78 ± 10.48

5 0 0 0 0 0 0 0 14.12 ± 1.08 84.8 ± 1.53

6 0 0 0 0 0 0.7 ± 0.80 9.44 ± 7.14 11.66 ± 1.33 78.2 ± 5.75

7 0 0 0 0 0 0 9.76 ± 3.25 8.02 ± 2.86 83.66 ± 2.42

8 0 0 0 0 0 0 0 18.26 ± 10.92 81.74 ± 10.92

9 0 0 0 0 0 0 0 12.7 ± 0.2 87.3 ± 0.2

10 0 0 0 0 0 0 0 11.9 ± 1.96 88.1 ± 1.96

11 0 0 0 0 0 0 0 24.6 ± 2.17 75.4 ± 2.17

12 0 0 0 0 0 0 0 23.1 ± 2.75 76.9 ± 2.75

13 0 0 0 0 0 0 0 73.42 ± 2.91 26.58 ± 2.91
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WshrubDshrub +WtreeDtree; where Wi = (cic þ hi
h )/2 (i = 1 repre-

sents the herb layer; i = 2 represents the shrub layer; and i = 3
represents the tree layer); c refers to the total vegetation cover
in a 10 × 10 m plot; ci stands for the vegetation cover for each
layer; h represents the average height for all the species; and hi
signifies the average height for each layer. Statistics were used
to calculate Patrick’s index of richness as the number of all
species that occurred within the 10 × 10 m plot.

A generalized additive model (West 2012) takes the form
of a regression model, where some or all independent vari-
ables are smooth spline functions, kernel functions or local
regression smooth functions. This model can be expressed
as g[E(y)] = β0 + f1(x1) + f2(x2) + f3(x3) +…fm(xm). Here, g is
a link function, y is an independent variable and fi(xi) is a
smooth spline function, kernel function or local regression
smooth function. The generalized additive model can unify
the minimum residual and lowest possible degree of freedom.
The generalized additive model was employed to explore the
response curve of several vegetation diversity indices to
water-table depth.

Results

Response of soil-water content and soil-salt content
to water-table depth

In the study area, precipitation was low throughout the
study duration. The soil moisture is dependent on the
supply of groundwater. According to the results, the soil
moisture content declined with an increase in water-table
depth (Fig. 2a). At water-table depths of less than 1, 1–2,
2–3, 3–4 m and over 4 m, the average soil-moisture con-
tent was 27% ± 10%; 12% ± 5%; 11% ± 6%; 6% ± 2%;
and less than 3% ± 1%. Soil-salt content demonstrated a
decreasing trend according to the increase in water-table
depth (Fig. 2b). When the water-table depth surpassed
5.0 m, the soil-salt content tended to be constant and
may have been primarily affected by the parent material.

The relationship between vegetation and
environmental factors

In regard to factors primarily affecting vegetation growth from
existing studies, six environmental factors were selected to
study their effects on plant species distribution. The position
of each plant in Fig. 3 was the weighted average of all quadrats
and species sequence values, representing the optimal envi-
ronmental conditions for plant growth in the sequence dia-
gram. The plants having an appearance frequency under
10%were not part of the analysis as canonical correspondence

Table 2 List of species in the riparian along middle and downstream of
Manasi River

Plant type Species

Herbs Phragmites australis

Cirsium japonicum

Calamagrostis pseudophragmites

Sophora alopecuroides L.

Equisetum hyemale L.

Cynanchum sibiricum

Cynodon dactylon

Glycyrrhiza inflata
Salsola collina

Carex spp.

Scirpus yagara

Dactylis glomerata

Agropyron cristatum

Suaeda glauca

Typha orientalis

Artemisia selengensis
Dactylis glomerata

Agrostis alba L.

Seriphidium terrae-albae

Calamagrostis epigeios

Achnatherum splendens

Karelinia caspia

Aeluropus littoralis

Cyperus difformis L.
Artemisia lancea

Juncus effusus L.

Leymus secalinus

Arrhenatherum elatius

Erigeron canadensis

Salsola brachiata

Petrosimonia sibirica

Salsola tragus
Eleocharis yokoscensis

subsp. Viridis

Shrubs Suaeda physophora

Tamarix chinensis

Alhagi sparsifolia

Halimodendron halodendron

Kochia prostrata

Apocynum venetum L.
Calligonum mongolicum

Poacynum hendersonii

Anabasis salsa

Caragana sinica

Apocynum venetum L.

Ephedra przewalskii

Trees Elaeagnus angustifolia Linn.

Ulmus pumila L.
Populus alba
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analyses is sensitive to rare species. All of the initial four
ordination axes were found to be highly significant

(p < 0.05), as indicated by a Monte Carlo permutation test.
The water-table depth was significantly positively associated
with the first axis (p < 0.01), while the soil-water content was
significantly negatively related to the first axis (p < 0.01;
Tables 3 and 4). This revealed that as the water-table depth
increased, soil-moisture content decreased along axis 1 from
the left to the right. Therefore, the first axis represented the
moisture gradient. Furthermore, the TDS and soil salt content
were positively correlated with the second axis (p < 0.05);
hence, the second axis represented the salt gradient. The pre-
viously mentioned results suggest that the availability of water
was the critical factor in controlling the species spatial
distribution.

Gaussian regression analysis for vegetation and
water-table depth

According to the frequency of plant species occurrence,
spatial distribution and dominant species, eight species
were selected in order to plot regression curves based on
the data regarding water-table depth and vegetation
composition in each plot. Figure 4 and Table 5 illustrate
the findings of the lognormal distribution analysis
between vegetation occurrence frequency and water-table
depth.

Table 5 states that the water-table depths corresponding to
the peak value of the species appearance frequencies for
Tamarix ramosissima , Alhagi sparsi fol ia Shap. ,
Halimodendron halodendron, Kochia prostrata (L.) Schrad.
were 2.88, 3.98, 3.75, and 3.69 m, respectively; while those of
the species appearance frequencies for Phragmites communis,
Cirsium japonicum, Calamagrostis pseudophragmites,
Sophora alopecuroides L. were 1.21, 1.23, 0.95, and
1.48 m, respectively. Accordingly, the appropriate water-
table depth for herbs was found to be 1.0–1.5 m, whereas
the depth for shrubs was nearly 2.5–4.0 m. The average
water-table depths [E(X)] for Tamarix ramosissima, Alhagi
sparsifolia Shap., H. halodendron and Kochia prostrata were
5.59, 5.06, 4.17, and 4.11 m, respectively, while those for
Phragmites communis, Cirsium japonicum, Calamagrostis
pseudophragmites, and Sophora alopecuroides L. were 5.59,
3.59, 2.37, and 4.35 m, respectively. Hence, water-table depth
less than 6 m may satisfy the requirements for most herb and
shrub growth. σ(X) represents the tolerance of species to the
fluctuation of the groundwater level. The value for herbs was
obviously higher than that of shrubs, indicating that shrubs
were more sensitive to variation in water-table depth. The
σ(X) value for Phragmites communis was observed to be the
largest among the herb species, suggesting that Phragmites
communis may serve to effectively resist drought. In the
meantime, Tamarix ramosissima may be the shrub that most
effectively resists drought.

Fig. 2 Relationship between water-table depth and soil attributes: a soil-
water content, b soil-salt content

Fig. 3 Canonical correspondence analysis (CCA) ordination between
species abundance and environmental factors in 60 plots (species name
is represented by the first five letters and whole names are listed in
Table 2)
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The response curve of the species diversity indices to
water-table depth

In view of the findings from the generalized additive model,
species richness for herbs was observed to be the highest at a
water-table depth of 1.5–3.5 m, followed by depths 0–1.5 m
and 3.5–5.5 m; while the lowest species richness was at the
water-table depth greater than 5.5 m. In regard to shrubs, the
species richness was found to be the highest at the depth of
2.5–5.5 m, followed by 5.5–8 m, though it was the lowest at
the water-table depth of less than 2 m. In relation to both the
herbs and shrubs parameters, the Shannon-Wiener diversity
index and Simpson’s diversity index demonstrated a similar
trend along the water-table depth gradient. For herbs, the spe-
cies diversity was seen to be greatest at a water- table depth of
1.5–3.5 m, followed by 0–1.5 and 3.5–5 m, but lowest at a
water-table depth larger than 5 m. For shrubs, the species
diversity was greatest at a water-table depth of 2.5–5 m,
followed by 5–8 m, but lowest at a water-table depth of less
than 2.5 m. In regard to all the species, both species diversity
indices attained their largest values when the water-table depth
range was 2–4 m, followed by 1–2 and 4–6 m. At a water-
table depth over 6 m or less than 1 m, the species diversity was
found to be low (Fig. 5).

Changes in coverage of Phragmites communis and
Tamarix ramosissima with water-table depth

Phragmites communis and Tamarix ramosissima are two typ-
ical vegetation species in this region able to survive a wide

range of water-table depths. The coverage of the two species
in the different plots increased with an increase in water-table
depth, but fell when water-table depth rose to a certain thresh-
old. The average coverage of Phragmites communiswas 40%
at a water-table depth shallower than 2m; it was 50% at water-
table depth of 2–3 m and 10% at water-table depth larger than
4 m. The average coverage of Tamarix ramosissima was less
than 20% at water-table depth shallower than 2 m or deeper
than 6 m but increased to 60% at water-table depth of 3–5 m.
(Fig. 6).

Discussion

In the present study, results showed that the water-table depth
serves as a major factor in controlling plant species
distribution and diversity, consistent with the conclusions of
Zhu et al. (2011, 2013) and Hao et al. (2010). The maximum
value for herb and all species diversity index was at a water-
table depth of 2–4 m, followed by 1–2 and 4–6 m. However,
in regard to the shrub diversity index, the maximum value
appeared at water-table depth of 3–5 m. At water-table depth
less than 1 m, due to strong evaporation and capillary action,
soil salt accumulated, resulting in the largest level of the soil
salt content. Such a large content of soil salt may trigger a low
osmotic potential, reducing the availability of water to plants
via root uptake, even for salt-tolerant species like Phragmites
communis (Gorai et al. 2010). Subsequently, the vegetation
diversity would be reduced. At the water-table depth over 4 m,
the soil-water content may not be affected by water-table

Table 4 Correlation coefficients
of CCA ordination axes and six
environmental factors

Parameter Axis

1 2 3 4

Water-table depth (WTD) 0.8483** 0.0059 −0.1085 −0.1528
Total dissolved solids (TDS) of groundwater 0.5359* 0.3879 0.0289 0.2929

Soil water content (SMC) −0.7285* −0.1663 −0.1631 −0.0552
Soil salt content (SAC)

Groundwater pH (pHG)

Soil pH (pHS)

0.1789

0.4758

0.0516

−0.2959
−0.1338
0.0419

−0.0493
−0.0209
0.3591

0.5393

−0.1980
−0.0167

*Represents significance level of 0.05, **Represents significance level of 0.01

Table 3 Results of CCA
ordination Parameter Axis

1 2 3 4

Eigenvalue 0.452 0.159 0.106 0.073

Diversity-environment correlations 0.907 0.743 0.553 0.632

Cumulative percentage variance of species data 10.6 14.3 16.8 18.5

Cumulative percentage variance of species-environment relation 52.5 71.0 83.3 91.7
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depth. At the water-table depth larger than 6 m, herb vegeta-
tion could hardly exist; however, both the diversity and cov-
erage of shrub vegetation decreased to a certain degree and
slightly changed at water-table depth over 7.5 m. The roots of
the herb species were generally shallower than those of
shrubs, and they primarily consumed soil water, while the
roots of shrubs may reach a length of 3–10 m (Jackson et al.
1996). Accordingly, herb species diversity would rapidly de-
crease at water-table depth more than 4 m, while the shrubs
would respond to the variation in water-table until it decreased
to 6 m below the land surface. As most herb species in the
study area were perennial species, perennial herb species were
suggested to be more sensitive to drought. Limitations in
groundwater availability would reduce species richness,
which was also observed by Lite et al. (2005) and
Stromberg et al. (2010) and this was consistent with the find-
ings of Liu et al. -Liu et al. 2006 in cited in the text but not
found in the ref list. Please provide appropriate publishing
details for this ref.–>(2006) and Hao et al. (2010). However,
Lv et al. (2013) yielded noticeably different results and found
that shrub species were sensitive to water-table depth, while
herb species were not easily affected by a decline in the water
table in Hailiutu River catchment. Differences in climate or
vegetation species and characteristics between the two study
areas may have resulted in these discrepancies. The Hailiutu

River is located in a semi-arid region and has an annual pre-
cipitation of 350–500mm, and its soil water is able to recharge
from rainfall; hence, herb species with shallow roots may not
be easily affected by fluctuations in groundwater level. The
Manasi River, on the other hand, is located in an arid region
with an annual precipitation of less than 200 mm, and the soil
water is adjusted primarily via groundwater level. Various
studies have put forward that, in arid regions, the amount
and frequency of rainfall may hardly satisfy requirements in
vegetation growth (Chen et al. 2004; Elmore et al. 2006).
Given this, in the present study, the herbs were found to be
readily affected by groundwater-level decline. The response
curve of all species was quite similar to that of the herb spe-
cies, suggesting that a decrease in herb species diversity could
lead to a decrease of all-species diversity. Therefore, the ap-
propriate water-table depth for maintaining species diversity is
found to be 2–4 m.

The Gaussian model reported that the optimum water-table
depth was 1–4 m for several species found with a relative
higher occurrence. At the water-table depth of more than
6m, various herbs and shrubs would be subject to water stress.
A conclusion is that the critical water-table depth at which the
herb and shrub species would be subject to water stress was
determined to be 6 m. Moreover, to optimally protect and
restore the ecosystem in the Manasi River riparian belt, a
water-table depth of 1–4 m should be maintained.

For stable water availability, the riparian zone where the
river and groundwater have a direct hydraulic connection was
found to be the ideal habitat for vegetation along the river
(Wang et al. 2018), while large natural riparian species in this
area were lost to farmland by excess agricultural reclamation
(Yang et al. 2017; Yang 2017). Since the recovery of native
vegetation is critical to the conservation of biodiversity and
ecosystems (Lomelí et al. 2017), the authors support the con-
cept put forward by Boonekauffman et al. (1997) that agricul-
tural reclamation should be promptly stopped in order to give
sufficient time for vegetation recovery. Simultaneously, mod-
ifying agriculture practices to raise or maintain groundwater
levels is necessary, such as taking measures to increase irriga-
tion efficiency. However, because the regeneration of native
species in converted farmland may be very slow (Loster

Table 5 Parameters of the
lognormal distribution fitting
curves of eight main plant species
unit: meters

Plant type Species μ Σ Xpm E(X) σ(X)

Herbs Phragmites australis 1.21 1.01 1.21 5.59 7.44

Cirsium japonicum 0.92 0.85 1.23 3.59 3.67

Calamagrostis pseudophragmites 0.56 0.78 0.95 2.37 2.17

Sophora alopecuroides L. 1.11 0.84 1.48 4.35 4.40

Shrubs Tamarix chinensis 1.50 0.67 2.88 5.59 4.18

Alhagi sparsifolia 1.54 0.40 3.98 5.06 2.11

Kochia prostrata 1.38 0.27 3.69 4.11 1.12

Fig. 4 Lognormal distribution curve between the appearance frequency
of representative species and water-table depth
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1997), vegetation planted by humans has been common in
many regions (Zhang et al. 2016). Based on the foregoing
analysis, Phragmites communis and Tamarix ramosissima
may be extensively planted due to their broad distribution as
well as their ability to resist droughts. Phragmites communis
should be planted in areas with water-table depth of less than

3m, and Tamarix ramosissima should be planted in areas with
water-table depth 2–5 m, and this action may increase the
native vegetation biomass (Macdonald et al. 2012; Cho et al.
2007), resulting in the enlargement of bird habitats (Merritt
and Bateman 2012) and enhancement of ecology richness,
though they are not directly associated with the recovery of
species diversity (Jiménez et al. 2017; Stromberg et al. 2010).
The effect of planting Phragmites and Tamarix ramosissima
on other species should also be further studied.

Conclusions

Because of arid climates and intensive river water allocation to
irrigation, plant distribution in the Manasi riparian zone is
primarily regulated by groundwater and soil water.
Moreover, salt stress conferred effects on species distribution.
As the source of soil water is groundwater, the water-table
depth determines species composition and diversity in the
riparian zone.

Fig. 5 The response curves of the species diversity indices along the
water-table depth gradient: a Patrick’s richness index; b Simpson’s
diversity index; c The Shannon-Wiener diversity index

Fig. 6 The relationship between vegetation cover and water-table depth.
a Phragmites communis; b Tamarix ramosissima
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Given the results of the Gaussian model and generalised
additive models, the optimal water-table depth in maintaining
a high level of species diversity and for meeting the growth
needs of major species should be 1–4 m. The critical water-
table depth was found to be nearly 6 m. These results might be
beneficial in interdisciplinary studies and risk analyses such as
the assessment of the effects of groundwater pumping on ri-
parian species.

Phragmites communis and Tamarix ramosissima are two
typical species of herb and shrub, respectively, that can grow
in conditions that have a variety of water-table depths. In
regard to the effective reconstruction of Manasi River riparian
vegetation, Phragmites communis should be planted in areas
with water-table depths less than 3 m, while Tamarix
ramosissima should be planted in areas with water-table depth
range 2–5 m.
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