CORRECTION

Correction: Solute transport performance analysis of equivalent apertures in a single undisturbed basaltic fracture

Murilo Lucas 1 · Gabriel Dias Cantareira 2 · Edson Wendland 3

Published online: 1 June 2019

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Correction: Hydrogeol J

https://doi.org/10.1007/s10040-019-01960-x

There was an error during production which resulted in the alpha symbol (α) being omitted from the article in some locations. Presented here are the correct Table 2 and text.

Effect of equivalent apetures on solute transport simulation

The solute transport simulation was performed using an analytical solution of the ADE (Eq. 10), where longitudinal dispersivity (α_L) was considered as the adjustable parameter to fit the breakthrough curves. Mean flow

velocity was chosen according to the calculated equivalent apertures (Table 1). The results demonstrated that fitted $\alpha_{\rm L}$ values based on $V_{\rm m}$ did not change abruptly (i.e. same order of magnitude) varying from 0.4 cm in the first experiment ($Q=3.0~{\rm mL~h^{-1}}$) to 0.1 cm in the other three experiments (Table 2). The $\alpha_{\rm L}$ values based on $V_{\rm h}$ and $V_{\rm l}$ converged to 10 cm in most experiments. Overall, $\alpha_{\rm L}$ values tend to get closer to each other, considering the same equivalent aperture even though Q increases (Table 2).

The original article has been corrected.

The online version of the original article can be found at https://doi.org/ 10.1007/s10040-019-01960-x

Murilo Lucas muriloclucas@gmail.com

> Gabriel Dias Cantareira gabrielcatareira@gmail.com

Edson Wendland ew@sc.usp.br

- Department of Civil Engineering, Federal University of Technology – Paraná, P.O. Box 571, Pato Branco 85503-390, Brazil
- Institute of Mathematics and Computer Sciences, University of São Paulo, P.O. Box 668, São Carlos 13566-590, Brazil
- Department of Hydraulics and Sanitary Engineering, University of São Paulo, P.O. Box 359, São Carlos 13566-590, Brazil

2304 Hydrogeol J (2019) 27:2303–2304

 Table 2
 Results of longitudinal dispersivity and statistical performance of the transport simulations

Experiment	Longitudinal dispersivity (cm)			MAE (mg L ⁻¹)			$d_{\mathrm{r}}^{\mathrm{c}}$		
	$\alpha_{\text{L-m}}^{\text{a}}$	$lpha_{ extsf{L-h}}^{ extsf{ a}}$	$\alpha_{\text{L-l}}^{\text{a}}$	MAE _m ^b	MAE _h ^b	MAE ₁ b	$d_{\text{r-m}}^{\text{c}}$	$d_{\mathrm{r-h}}^{}\mathrm{c}}$	$d_{\mathrm{r-l}}^{}\mathrm{c}}$
1	0.4	8.2	10.0	0.14	0.16	0.18	0.94	0.54	0.48
2	0.1	10.0	10.0	0.15	0.17	0.19	0.93	0.47	0.43
3	0.1	8.7	10.0	0.08	0.10	0.11	0.79	0.57	0.54
4	0.1	10.0	10.0	0.10	0.13	0.14	0.79	0.55	0.51

 $^{^{}a}$ α_{L-m} , α_{L-h} and α_{L-l} = longitudinal dispersivity based on a_{m} , a_{h} and a_{l} , respectively.

 $^{^{\}rm b}$ MAE $_{\rm m}$, MAE $_{\rm h}$ and MAE $_{\rm l}$ = Mean absolute error of simulated concentration based on $a_{\rm m}$, $a_{\rm h}$ and $a_{\rm l}$, respectively.

 $^{^{\}rm c}\,d_{\rm r-m},\,d_{\rm r-h}$ and $d_{\rm r-l}$ = index of agreement based on $a_{\rm m},\,a_{\rm h}$ and $a_{\rm l},$ respectively.