Skip to main content
Log in

A modified approach for modelling river–aquifer interaction of gaining rivers in MODFLOW, including riverbed heterogeneity and river bank seepage

Une approche modifiée de la modélisation par MODFLOW de l’interaction rivière–aquifère dans le cas des rivières drainantes, incluant l’hétérogénéité du lit de la rivière et la percolation à travers la berge de la rivière

Un enfoque modificado para modelar la interacción río–acuífero de ríos ganadores con MODFLOW, incluyendo la heterogeneidad del lecho del río y los gradientes de filtración desde las márgenes

MODFLOW软件中一种模拟袭夺河河流–含水层相互作用包括河床异质性和河岸渗流的改进方法

Uma abordagem modificada para modelagem da interação rio–aquífero de rios efluentes no MODFLOW, incluindo a heterogeneidade do leito de rio e a infiltração por bancadas do rio

  • Technical Note
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

There is a need for groundwater modelling approaches that can incorporate both the complexity of riverbeds and the influence of lateral flows through the river banks in the simulation of river–aquifer interaction. A simple and straight-forward approach is proposed for modelling river–aquifer interaction in gaining rivers based on existing building blocks available in MODFLOW. The river water itself is modelled as constant-head cells, while the riverbed is modelled as one or more separate layers. The Horizontal Flow Barrier (HFB) Package is used to simulate the effect of a river bank on lateral exchange fluxes between river and aquifer. This approach has several advantages over conventional MODFLOW streamflow packages: (1) riverbeds can be modelled as several layers with different hydraulic properties; (2) both vertical and horizontal flow through the riverbed can be modelled; and (3) lateral flow through the river banks can be simulated. The capabilities of the new approach are demonstrated in two applications based on a MODFLOW model of the Aa River, Belgium. Application I demonstrates that the approach can be used to model heterogeneous multi-layered riverbeds. Results show that neglecting this heterogeneity can result in an overestimation of river–aquifer exchange fluxes. Application II shows that the approach can be used to simulate the effect of lateral fluxes through river banks. It demonstrates that lateral fluxes can be a major contributor to total river–aquifer exchange fluxes. The proposed approach provides the necessary tools to accurately model river–aquifer interaction for gaining rivers in MODFLOW.

Résumé

Il y a un besoin pour les approches de modélisation des eaux souterraines de pouvoir incorporer à la fois la complexité des lits de rivière et l’influence des écoulements latéraux à travers les berges de la rivière dans la simulation de l’interaction rivière–aquifère. Une approche simple et directe est proposée pour modéliser l’interaction rivière–aquifère dans le cas des rivières drainantes à partir des éléments de base existants et disponibles dans MODFLOW. L’eau de la rivière elle-même est modélisée par mailles à charge constante, tandis que le lit de la rivière est simulé par une couche ou plusieurs couches distinctes. Le module Barrière à Ecoulement Horizontal (BEH) est utilisé pour simuler l’effet de la berge de la rivière sur les flux d’échanges latéraux entre le rivière et l’aquifère. Cette approche a plusieurs avantages par rapport aux modules d’écoulement conventionnels de MODFLOW : (1) les lits de rivière peuvent être modélisés sous la forme de plusieurs couches aux propriétés hydrauliques différentes; (2) l’écoulement vertical et l’écoulement horizontal à travers le lit de la rivière peuvent être modélisés en même temps; et (3) l’écoulement latéral à travers les berges de la rivière peut être simulé. Les possibilités de la nouvelle approche sont démontrées dans deux applications basées sur un modèle MODFLOW de la Rivière Aa, en Belgique. L’application I démontre que l’approche peut être utilisée pour modéliser des lits de rivière multi-couches hétérogènes. Les résultats montrent que négliger cette hétérogénéité peut conduire à une surestimation des flux échangés entre la rivière et l’aquifère. L’application II montre que l’approche peut être utilisée pour simuler l’effet des flux latéraux à travers les berges de la rivière. Elle démontre que les flux latéraux peuvent être une contribution majeure aux flux totaux d’échange rivière–aquifère. L’approche proposée fournit les outils nécessaires pour modéliser de manière précise dans MODFLOW l’interaction rivière–aquifère dans le cas des rivières drainantes.

Resumen

En la simulación de la interacción río–acuífero se necesitan enfoques de modelización del agua subterránea que puedan incorporar tanto la complejidad de los lechos de los ríos como la influencia de los flujos laterales a través de las márgenes. Se propone un enfoque simple y directo para modelar la interacción río–acuífero en ríos ganadores sobre la base de los componentes disponibles en MODFLOW. El agua del río en sí misma se modela como celdas de carga constante, mientras que el lecho del río se modela como una o más capas separadas. El Horizontal Flow Barrier (HFB) Package se utiliza para simular el efecto de la margen de un río sobre los flujos de intercambio lateral entre el río y el acuífero. Este enfoque tiene varias ventajas sobre los paquetes convencionales de MODFLOW para flujo de una corriente: (1) los lechos de los ríos pueden modelarse como varias capas con diferentes propiedades hidráulicas; (2) pueden modelarse tanto los caudales verticales como los horizontales a través del lecho del río; y (3) pueden simularse los caudales laterales a través de las márgenes del río. Las capacidades del nuevo enfoque se demuestran en dos aplicaciones basadas en un modelo MODFLOW del Aa River, Bélgica. La aplicación I demuestra que el enfoque puede ser utilizado para modelar cauces heterogéneos de múltiples capas. Los resultados muestran que ignorar esta heterogeneidad puede resultar en una sobreestimación de los flujos de intercambio río–acuífero. La aplicación II muestra que el enfoque puede utilizarse para simular el efecto de los flujos laterales a través de las márgenes de los ríos. Se demuestra que los flujos laterales pueden contribuir en gran medida a los flujos totales de intercambio río–acuífero. El enfoque propuesto proporciona las herramientas necesarias para modelar en MODFLOW con precisión la interacción río–acuífero para ríos ganadores.

摘要

在模拟河流-含水层相互作用中, 需要包括河床复杂性和通过河床的侧向流影响的地下水模拟方法。基于MODFLOW软件中已有的建筑模块, 这里提出了一个简单直接的方法用来模拟袭夺河中河流-含水层相互作用。河水本身被模拟为恒定水头单元, 而河床模拟为一个或更多个单独的层。水平流动屏障软件包用来模拟河岸对河流和含水层之间侧向交换通量的影响。本方法与常规MODFLOW河流软件包相比有几个优点:1)河床可以模拟为具有不同水力特性的几个层; 2)通过河床的垂直和水平流可以被模拟; 3)通过河岸的侧向流可以被模拟。根据比利时Aa河的一个MODFLOW模型的两次应用展示了新方法的功能。应用一证明了该方法可用来模拟异质多层河床。结果显示, 忽略这个异质性可导致过高估计河流-含水层交换通量。应用二显示, 该方法可用来模拟通过河岸的侧向通量影响。该方法证明, 侧向通量可能是对总河流-含水层交换通量的主要贡献者。这里提出的方法为精确模拟MODFLOW中袭夺河的河流-含水层相互作用提供了必要的工具。

Resumo

Há a necessidade de abordagens de modelagem das águas subterrâneas que possam incorporar tanto a complexidade dos leitos de rio e a influência dos escoamentos laterais através das bancadass de rio na simulação da interação rio–aquífero. Uma abordagem simples e direta é proposta para a modelagem da interação rio–aquífero em rios efluentes baseada na existência de blocos de construção disponível no MODFLOW. A própria água do rio é modelada como células de carga constante, enquanto o leito do rio é modelado como uma ou mais camadas separadas. O Pacote Barreira de Escoamento Horizontal (BEH) é usado para simular o efeito das bancadas do rio nos fluxos de troca laterais entre o rio e o aquífero. Essa abordagem possui várias vantagens sobre os pacotes convencionais de fluxo de rio do MODFLOW: (1) os leitos de rio podem ser modelados como várias camadas com diferentes propriedades hidráulicas; (2) tanto o escoamento vertical e horizontal através do leito de rio pode ser modelado; e (3) escoamento lateral através das bancadas do rio pode ser simulado. Os recursos da nova abordagem são demonstrados em duas aplicações baseadas em um modelo MODFLOW do Rio Aa, Bélgica. A Aplicação I demonstra que a abordagem pode ser usada para modelar multicamadas heterogêneas de leitos de rio. Os resultados mostram que negligenciar a heterogeneidade pode ocasionar uma superestimava da troca de fluxos rio–aquífero. A Aplicação II mostra que a abordagem pode ser usada para simular o efeito dos fluxos laterais através das bancadas do rio. É demonstrado que os fluxos laterais podem ser um contribuinte majoritário para a troca total de fluxos rio–aquífero. A abordagem proposta fornece as ferramentas necessárias para modelar precisamente a interação rio–aquífero para rios efluentes no MODFLOW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Anibas C, Buis K, Verhoeven R, Meire P, Batelaan O (2011) A simple thermal mapping method for seasonal spatial patterns of groundwater–surface water interaction. J Hydrol 397:93–104. https://doi.org/10.1016/j.jhydrol.2010.11.036

    Article  Google Scholar 

  • Anibas C, Schneidewind U, Vandersteen G, Joris I, Seuntjes P, Batelaan O (2016) From streambed temperature measurements to spatial-temporal flux quantification: using the LPML method to study groundwater–surface water interaction. Hydrol Process 30:203–216. https://doi.org/10.1002/hyp.10588

    Article  Google Scholar 

  • Anibas C, Tolche AD, Ghysels G, Nossent J, Schneidewind U, Huysmans M, Batelaan O (2018) Delineation of spatial-temporal patterns of groundwater/surface-water interaction along a river reach (Aa River, Belgium) with transient thermal modeling. Hydrogeol J 26:819–835. https://doi.org/10.1007/s10040-017-1695-9

    Article  Google Scholar 

  • Barlow PM, Harbaugh AW (2006) USGS directions in MODFLOW development. Groundwater 44:771–774. https://doi.org/10.1111/j.1745-6584.2006.00260.x

    Article  Google Scholar 

  • Batelaan O, De Smedt F (2007) GIS-based recharge estimation by coupling surface–subsurface water balances. J Hydrol 337:337–355. https://doi.org/10.1016/j.jhydrol.2007.02.001

    Article  Google Scholar 

  • Baya Veliz G (2017) Influence of riverbank seepage on river–aquifer interactions at the Aa river. MSc Thesis, Vrije Universiteit Brussel (VUB) and KU Leuven, Belgium

  • Benoit S, Ghysels G, Gommers K, Hermans T, Nguyen F, Huysmans M (2018) Characterization of spatially variable riverbed hydraulic conductivity using electrical resistivity tomography and induced polarization. Hydrogeol J. https://doi.org/10.1007/s10040-018-1862-7

  • Brunner P, Simmons CT, Cook PG, Therrien R (2010) Modeling surface water-groundwater interaction with MODFLOW: some considerations. Groundwater 48:174–180. https://doi.org/10.1111/j.1745-6584.2009.00644.x

    Article  Google Scholar 

  • Brunner P, Therrien R, Renard P, Simmons CT, Hendricks Franssen HJ (2017) Advances in understanding river–groundwater interactions. Rev Geophys 55:2017RG000556. https://doi.org/10.1002/2017RG000556

    Article  Google Scholar 

  • Cardenas MB, Zlotnik VA (2003) Three-dimensional model of modern channel bend deposits: 3D model of channel bend deposits. Water Resour Res 39. https://doi.org/10.1029/2002WR001383

  • Chen X (2000) Measurement of streambed hydraulic conductivity and its anisotropy. Environ Geol 39:1317–1324

    Article  Google Scholar 

  • Constantz J (2016) Streambeds merit recognition as a scientific discipline. WIREs Water 3:13–18. https://doi.org/10.1002/wat2.1119

    Article  Google Scholar 

  • Deutsch CV, Journel AG (1998) Geostatistical software library and user’s guide, 2nd edn. Oxford University Press, New York

  • DOV (2018) Databank Ondergrond Vlaanderen. https://dov.vlaanderen.be/. Accessed 18 Jul 2018

  • Ebel BA, Mirus BB, Heppner CS, VanderKwaak JE, Loague K (2009) First-order exchange coefficient coupling for simulating surface water–groundwater interactions: parameter sensitivity and consistency with a physics-based approach. Hydrol Process 23:1949–1959. https://doi.org/10.1002/hyp.7279

    Article  Google Scholar 

  • Fox A, Laube G, Schmidt C, Fleckenstein JH, Arnon S (2016) The effect of losing and gaining flow conditions on hyporheic exchange in heterogeneous streambeds. Water Resour Res 52:7460–7477. https://doi.org/10.1002/2016WR018677

    Article  Google Scholar 

  • Furman A (2008) Modeling coupled surface–subsurface flow processes: a review. Vadose Zone J 7:741–756. https://doi.org/10.2136/vzj2007.0065

    Article  Google Scholar 

  • Ghysels G, Benoit S, Awol H, Jensen EP, Tolche AD, Anibas C, Huysmans M (2018) Characterization of meter-scale spatial variability of riverbed hydraulic conductivity in a lowland river (Aa River, Belgium). J Hydrol 559:1013–1027. https://doi.org/10.1016/j.jhydrol.2018.03.002

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Harbaugh AW (2005) MODFLOW-2005: the U.S. Geological Survey modular ground-water model: the ground-water flow process. US Geological Survey, Reston, VA

  • Hsieh PA, Freckleton JR (1993) Documentation of a computer program to simulate horizontal-flow barriers using the U.S. Geological Survey’s modular three-dimensional finite-difference ground-water flow model. US Geol Surv Open-File Rep 92-477

  • Irvine DJ, Brunner P, Franssen H-JH, Simmons CT (2012) Heterogeneous or homogeneous? Implications of simplifying heterogeneous streambeds in models of losing streams. J Hydrol 424:16–23. https://doi.org/10.1016/j.jhydrol.2011.11.051

    Article  Google Scholar 

  • Kalbus E, Schmidt C, Molson JW, Reinstorf F, Schirmer M (2009) Influence of aquifer and streambed heterogeneity on the distribution of groundwater discharge. Hydrol Earth Syst Sci 13:69–77. https://doi.org/10.5194/hess-13-69-2009

    Article  Google Scholar 

  • Kurtz W, Hendricks Franssen H-J, Brunner P, Vereecken H (2013) Is high-resolution inverse characterization of heterogeneous river bed hydraulic conductivities needed and possible? Hydrol Earth Syst Sci 17:3795–3813. https://doi.org/10.5194/hess-17-3795-2013

    Article  Google Scholar 

  • McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference ground-water flow model. US Geol Surv Tech Water Resour Invest 06-A1

  • Mehl SW, Hill MC (2005) MODFLOW-2005, The U.S. Geological Survey modular ground-water model - Documentation of shared node Local Grid Refinement (LGR) and the Boundary Flow and Head (BFH) Package. USGS Numbered Series 6-A12

  • Mehl SW, Hill MC (2007) MODFLOW-2005, The U.S. Geological Survey modular ground-water model - Documentation of the Multiple-Refined-Areas Capability of Local Grid Refinement (LGR) and the Boundary Flow and Head (BFH) Package. USGS Numbered Series 6-A21

  • Mehl SW, Hill MC (2013) MODFLOW-LGR—Documentation of Ghost Node Local Grid Refinement (LGR2) for Multiple Areas and the Boundary Flow and Head (BFH2) Package. US Geol Surv Tech Methods 6-A44

  • Mohammed GA (2009) Groundwater-surface water interaction along a lowland river. PhD Thesis, Vrije Universiteit Brussel (VUB), Belgium

  • Mutua SM (2013) Analysing the influence of groundwater-surface water interaction on the groundwater balance in the Aa river. MSc Thesis, Vrije Universiteit Brussel (VUB) and KU Leuven, Belgium

  • Niswonger RG, Prudic DE (2005) Documentation of the streamflow-routing (SFR2) package to include unsaturated flow beneath streams: a modification to SFR1. US Geol Surv Tech Methods 6-A13

  • Osman YZ, Bruen MP (2002) Modelling stream–aquifer seepage in an alluvial aquifer: an improved loosing-stream package for MODFLOW. J Hydrol 264:69–86. https://doi.org/10.1016/S0022-1694(02)00067-7

    Article  Google Scholar 

  • Panday S, Langevin CD, Niswonger RG, Ibaraki M, Hughes JD (2017) MODFLOW–USG Version 1: an unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finite-difference formulation. US Geol Surv Tech Methods 6-A45

  • Partington D, Therrien R, Simmons CT, Brunner P (2017) Blueprint for a coupled model of sedimentology, hydrology, and hydrogeology in streambeds. Rev Geophys 55:287–309. https://doi.org/10.1002/2016RG000530

    Article  Google Scholar 

  • Prickett TA, Lonnquist CG (1971) Selected digital computer techniques for groundwater resource evaluation. Bull Ill State Water Survey 55, 62 pp

  • Prudic DE (1989) Documentation of a computer program to simulate stream-aquifer relations using a modular, finite-difference, ground-water flow model. US Geol Surv Open-File Rep 88-729

  • Prudic DE, Konikow LF, Banta ER (2004) A new streamflow-routing (SFR1) package to simulate stream–aquifer interaction with MODFLOW-2000. US Geol Surv Open-File Rep 2004-1042

  • Remy N, Boucher A, Wu J (2009) Applied geostatistics with SGeMS: a user’s guide. Cambridge University Press, Cambridge, UK

  • Rhodes KA, Proffitt T, Rowley T, Knappett PSK, Montiel D, Dimova N, Tebo D, Miller GR (2017) The importance of bank storage in supplying baseflow to rivers flowing through compartmentalized, alluvial aquifers. Water Resour Res 53:10539–10557. https://doi.org/10.1002/2017WR021619

    Article  Google Scholar 

  • Rosenberry DO, Pitlick J (2009) Local-scale variability of seepage and hydraulic conductivity in a shallow gravel-bed river. Hydrol Process 23:3306–3318. https://doi.org/10.1002/hyp.7433

    Article  Google Scholar 

  • Salehin M, Packman AI, Paradis M (2004) Hyporheic exchange with heterogeneous streambeds: laboratory experiments and modeling. Water Resour Res 40:W11504. https://doi.org/10.1029/2003WR002567

    Article  Google Scholar 

  • Schneidewind U, van Berkel M, Anibas C, Vandersteen G, Schmidt C, Joris I, Seuntjens P, Batelaan O, Zwart HJ (2016) LPMLE3: a novel 1-D approach to study water flow in streambeds using heat as a tracer. Water Resour Res 52:6596–6610. https://doi.org/10.1002/2015WR017453

    Article  Google Scholar 

  • Schubert J (2002) Hydraulic aspects of riverbank filtration: field studies. J Hydrol 266:145–161. https://doi.org/10.1016/S0022-1694(02)00159-2

    Article  Google Scholar 

  • Stewardson MJ, Datry T, Lamouroux N, Pella H, Thommeret N, Valette L, Grant SB (2016) Variation in reach-scale hydraulic conductivity of streambeds. Geomorphology 259:70–80. https://doi.org/10.1016/j.geomorph.2016.02.001

    Article  Google Scholar 

  • Therrien R, McLaren RG, Sudicky EA, Panday SM (2010) HydroGeoSphere: a three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport. Groundwater Simulation Group, Univ. Waterloo, Waterloo, ON

  • Ulrich C, Hubbard SS, Florsheim J, Rosenberry D, Borglin S, Trotta M, Seymour D (2015) Riverbed clogging associated with a California riverbank filtration system: an assessment of mechanisms and monitoring approaches. J Hydrol 529:1740–1753. https://doi.org/10.1016/j.jhydrol.2015.08.012

    Article  Google Scholar 

Download references

Funding

This research was financially supported by a Research Grant of the Research Foundation – Flanders (FWO) on “High resolution characterization of spatially variable riverbed hydraulic conductivity for a better assessment of river–aquifer interactions”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Ghysels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghysels, G., Mutua, S., Veliz, G.B. et al. A modified approach for modelling river–aquifer interaction of gaining rivers in MODFLOW, including riverbed heterogeneity and river bank seepage. Hydrogeol J 27, 1851–1863 (2019). https://doi.org/10.1007/s10040-019-01941-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-019-01941-0

Keywords

Navigation