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Abstract
The spring-dashpot-slider is a common way to include solid friction for discrete element method simulations of granular
matter. However, the most popular model that is currently in use has a number of problems, including the spontaneous
creation of energy. The main cause for these problems is the discontinuous evolution of the spring displacement. In this paper,
we derive a differential equation for the displacement that yields a continuous time evolution, that fixes the problems of the
discontinuous model and is simpler to implement.
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1 Introduction

Whenever one wants to simulate many-body behaviour of
granularmatter, atomistic or continuummodels resolving the
sub-grain physics are usually an overkill, little instructive
and computationally too expensive. Instead, one uses phe-
nomenological grain-based models. In order to render them
predictive, they must be underpinned by a scale-bridging
scheme to represent the microscopic physics accurately on
the grain scale [1]. For the normal force between viscoelastic
spherical particles, this has been achieved [2, 3]. The imple-
mentation of solid friction, however, is less well understood.
It is most commonlymodelled by the so called spring-dashpot-
slider (SDS). Likewise, rolling and twisting torques in
general use the same approach, as, for instance, implemented
in the widely utilised simulation software LAMMPS [4].

The prominence of the SDS does not come as a surprise,
considering the simplicity of the idea and its ability to pre-
dict many observed features of granular matter. The model
describes the contact in one of two states: Either the contact
is sticking – the contact interaction is modelled as a damped
harmonic oscillator (spring-dashpot) – or, if a certain thresh-
old for the force/torque is exceeded, the contact is sliding.

In spite of its wide and largely successful use, the SDS
can produce unphysical results under certain conditions, as
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will be pointed out in the following. This fact has remained
essentially unnoticed, but becomes detrimental, e.g., for sim-
ulations of granular gases.

To understand the problems of the current version of the
SDS, we need to review this model in some detail. We limit
the discussion in this paper to contact forces; however, the
application of these findings to torques is straight forward [5].
We will start with the sticking state. In the SDS model, the
elastic deformation of the material is not spatially resolved,
but represented by the displacement vector ξ of a tangen-
tial spring: The reaction force of the viscoelastic material
deformation, F, corresponds to the force FS of a spring with
stiffness k and damping factor γ . All vectors are understood
to be in the tangential plane of the contact. This implies that
the displacement vector must be rotated back into the contact
plane every time it is updated (cf. [5]).

Special care is required for the discussion of relative veloc-
ities.Wemust distinguish between the relative velocity of the
surface under the assumption that the material is not deform-
ing and the real microscopic slip velocity, which is zero in
the sticking state by definition. The former velocity, typically
called relative tangential velocity or just relative velocity, v,
is currently used in the SDS for the force calculation, i.e.

FS := −kξ − γ v. (1)

As long as the contact is not sliding, the loading velocity ξ̇ is
equal to the relative velocity of the two surfaces in contact,
yielding the spring’s time evolution

ξ̇ := dξ

dt
= v. (2)
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According to the Coulomb friction law, the viscoelastic
deformation of the two bodies in contact can only prevent
sliding as long as the absolute value of the reaction force
F = |F| does not exceed Fmax = μFn, where Fn denotes the
(positive) normal contact force and μ the friction coefficient
(we do not distinguish between static and dynamic friction
coefficients here).Once the contact starts sliding, the absolute
value of the tangential contact force is F = Fmax. A larger
reaction force cannot be transmitted from one side of the
contact to the other. This rules out the simultaneous validity
of (2) and F = FS while sliding.

Therefore, the question arises, how the spring displace-
ment is updated while the contact is sliding. Unfortunately,
there exists no satisfying answer in the literature. In most
cases, it is either said that the spring displacement is updated
according to (2) without specifying a different formula for
sliding contacts (e.g., Jiang et al. [6], Marshall [7]), giving up
the physical interpretation of the spring force, or the spring
displacement update is not mentioned at all. Simply inte-
grating the spring displacement according to (2) without any
physical meaning is not convincing, though. Luding [5] and
Silbert et al. [8], on the other hand, discard (2) and deter-
mine the spring displacement in such a way that FS = Fmax

is satisfied. Silbert et al. propose to truncate the magnitude
of the displacement, i.e. ξ := |ξ |; however, by only chang-
ing the magnitude of the vector, it is, in general, not possible
to satisfy the condition FS = Fmax, e.g. if γ |v| > Fmax. In
contrast, Luding proposes to set the displacement to

ξD = −1

k

(
Fmax

FS

FS
+ γ v

)
, (3)

keeping the definition of FS as given in (1). We will
call this model the discontinuous spring-dashpot-slider (D-
SDS), which is the common implementation, used, e.g., in
LAMMPS [4].

While the spring displacement ξD indeed satisfies FS =
Fmax, there are a couple of problems related to this approach.
For the discussion of these problems, we consider a newly
formed contact, i.e. a contact that has no finite spring dis-
placement yet, and a large relative velocity so that γ |v| >

Fmax, as an example. This means that the contact must be
sliding from the beginning, as the viscous shear stress (repre-
sented by the damping force opposing the build-up of elastic
deformation) would exceed what a sticking contact could
bear. We want to emphasize that this is not a particularly
exotic case; it is quite the opposite: Every new contact starts
with Fn = Fmax = 0 and is, therefore, always sliding, as
long as v > 0 (cf., e.g., Schwager et al. [9]). Thus, the D-SDS
instantly sets the spring displacement of every new contact
to ξ = −γ v/k.

We have identified three problems with this model, which
we briefly address at this point and will return to them later in

Section 3. First, as the spring displacement term in (1) must
partially compensate the large velocity term (as specified in
(3)), it may happen that the spring is loaded in the opposite
direction of the velocity, as in our example. However, this
goes against the physical interpretation of what this spring
should represent. Second, adjusting the spring displacement
instantaneously to fulfill (3) does, of course, not correspond
to a continuous change in general. This has a negative impact
on higher order integration schemes.

And most importantly, instantaneously loading the spring
also instantaneously increases the potential energy of the
system. This increase is, however, not met with a sufficient
reduction of kinetic energy, whichmeans that the total energy
of the system spontaneously increases! In this work, we pro-
pose a simple model for a continuous spring-dashpot-slider
(C-SDS), which fixes all three problems mentioned above.

2 Continuous spring-dashpot-slider (C-SDS)
model

In Section 2.1, we derive the C-SDS based on a consequent
discrimination between the relative tangential velocity, the
loading velocity and the microscopic slip velocity. Then, we
discuss three sanity checks to confirm that our model meets
the physical expectations in Section 2.2.

2.1 Derivation of the C-SDS

In the sticking state, the only contribution to v results from the
build-up or release of elastic deformation within the adjacent
materials. It is represented by the spring loading velocity ξ̇ .
Both have to be distinguished from a slip velocity s between
the actual surfaces, which must be zero in the sticking state.
In the sliding state, s is non-zero and given by:

s = v − ξ̇ . (4)

It is this slip velocity which determines the direction of the
friction force via

F = −Fmax
s
s

= −Fmax ês, (5)

as prescribed by the Coulomb friction law. Therefore, the
temporal evolution of the spring displacement is given by

kξ + γ ξ̇ = Fmax ês, (6)

where the left-hand side is the viscoelastic response of the
material to any applied surface force, which, in the present
case, is the Coulomb friction. Inserting (4), we find

kξ + γ v = (Fmax + γ s) ês, (7)
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from which we infer the slip direction as

ês = kξ + γ v

|kξ + γ v| . (8)

Hence,

ξ̇ = 1

γ

(
Fmax

kξ + γ v

|kξ + γ v| − kξ

)
(9)

follows for the spring displacement’s time evolution, when-
ever the contact is sliding. In our model, the C-SDS, (9)
functionally replaces (3) in the D-SDS. Note that while slid-
ing, the spring force FS is a test force and no longer the actual
force that the spring exerts.

Finally, we conclude that

ξ̇ = − 1

γ

(
min(FS, Fmax)

FS

FS
+ kξ

)
(10)

is the combined differential equation for sticking and slid-
ing: For FS < Fmax, the right-hand side evaluates to v, and
in the other case we recover (9). Therefore, our model is
in perfect agreement with the Coulomb friction law, as the
only thing that differentiates sticking from sliding is the lim-
itation of the force’s magnitude. This also demonstrates the
simplification of the model’s implementation compared to
the D-SDS: Instead of two separate treatments for the spring
displacement update in the sticking and sliding states, respec-
tively, the C-SDS only requires the limitation of the acting
force, which is already required in the SDS in general.

2.2 Sanity checks

At this point, we discuss three important physical results
which are guaranteed by the C-SDS.

2.2.1 Energy balance

We show that the C-SDS never generates energy from noth-
ing, in contrast to the D-SDS. The work done by the friction
force per unit time (by decelerating the relative velocity) is
F · v. Part of it, F · s, is dissipated due to the slip. The rest is
used to deform the adjacent viscoelastic material. It consists
of the conservative power of changing the potential energy,

−kξ · ξ̇ , and the viscous loss,−γ ξ̇
2
. Energy balance requires

kξ · ξ̇ + γ ξ̇
2 − F · s = −F · v, (11)

which is obviously fulfilled if one inserts (4) and (9). This
equality shows that no energy is created and no energy is
lost to anything other than the specified dissipation channels,
spring damping and slip dissipation.

2.2.2 Limitation of the loading velocity

While the contact is sliding and the spring is loading, i.e.
while FS > Fmax and ξ · ξ̇ > 0 hold, the loading rate ξ̇ = |ξ̇ |
is always smaller than the relative velocity v = |v|. This is
shown in the following. The first two terms on the left-hand
side of (11) are positive under the present conditions; hence,

0 < −F · (v − s) = Fmax ês · (v − s). (12)

This means that

v‖ := ês · v > |s| =: s > 0. (13)

According to (4), the components of ξ̇ that are parallel and
perpendicular to s are

ξ̇‖ = v‖ − s and ξ̇⊥ = v⊥, (14)

respectively. Hence, using (13),

ξ̇ =
√

ξ̇2‖ + ξ̇2⊥

=
√

(v‖ − s)2 + v2⊥

=
√

v2‖ + v2⊥ − (2v‖ − s)s ≤ v (15)

proves our claim.

2.2.3 Sticking condition

In addition to FS ≤ Fmax, there is another condition thatmust
be met for a sticking contact: The slip velocity s has to be
zero. In theC-SDSmodel, these twoconditions automatically
coincide, as we will discuss now. According to (1), (6) and
(4), the test force is FS = F − γ s which is valid both in
the sticking state (s = 0) and in the sliding state (s �= 0).
The transition from sticking to sliding happens, as soon as
the absolute value of the test force becomes larger than Fmax.
At this moment, a non-zero slip velocity s occurs:

s = − 1

γ

(
FS + Fmax ês

)
, (16)

where (5) has been used. As the test force and the slip are
antiparallel to each other, (8), this equation implies

FS = γ s + Fmax, (17)

which instantly shows that

FS > Fmax ⇔ s > 0.
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In particular, we find that the absolute value of the test force
drops to the maximum force if the slip velocity vanishes, i.e.
FS → Fmax if s → 0. Therefore, the contact starts sticking
again as soon as FS = Fmax. Thus, with our model, it is
sufficient to check the absolute value of the test force to know
if a contact sticks or slides.

3 Numerical comparison

In this section, we present the results of the application of
our model to a simple test case and compare them to the
results produced by the D-SDS. Furthermore, we discuss the
problems connected to the latter approach.

3.1 Simulated system

For simplicity, we restricted the test to a one dimensional
problem; we simulated two planar surfaces, experiencing a
constant normal force Fn and afinite tangential force F due to
a finite relative tangential velocity. Note that for the remain-
der of this section, all vectors have been replaced by signed
numbers, e.g. the tangential force F , the spring displacement
ξ and the relative velocity v are the one dimensional pendants
to the vectors F, ξ and v. The damping coefficient is γ = 2 in
the natural units (n. u.) obtained from reducedmassm, spring
stiffness k and critical force Fmax. For the chosen v(0) = 4,
the contact is sliding instantly.

At time t = 0, the system starts with a zero spring dis-
placement ξ . The time evolution is calculated by the Euler
integration scheme, using time steps of Δt ∈ {10−1, 10−3}.

3.2 Comparison of Dynamics

The time evolution of the spring displacement, the relative
velocity and the tangential force are depicted in Fig. 1. We
notice significant differences between both models. Let us
discuss the D-SDS first. Its most startling feature is the rapid
oscillation between sticking (FS = F > −1) and sliding
(FS truncated to F = −1) in the beginning. The rather large
Δt = 0.1 was chosen for visibility purposes, because the
amplitude of the oscillation in F is proportional to Δt , while
its frequency starts of proportional to 1/Δt . This shows that
this “stick-slip” is not of physical origin.

The explanation for this artefact is rather the following:
Let us denote the velocity and spring displacement in the i-
th time step as vi and ξi , respectively. Furthermore, let us
assume that vi > 0 and |FS|(ξi , vi ) > Fmax hold. This
means that the contact is sliding; therefore, as the force
F = sign (FS(ξi , vi )) Fmax and the velocity vi have opposite

Fig. 1 Shown is the time evolution of the spring displacement ξ , relative
velocity v and contact force F (all tangential) for the D-SDS and the
C-SDS. For the latter, the results for Δt = 10−3 are omitted, because
they are virtually indistinguishable

signs, 0 < vi+1 < vi holds. Additionally, we know that the
spring displacement for the next step ξi+1 is given by (3) for
the D-SDS,

ξi+1 = −1

k
(γ vi − Fmax) . (18)

Using these updated quantities to calculate the spring force
for the next time step, we find

|FS|(ξi+1, vi+1) = Fmax − γ (vi − vi+1) < Fmax; (19)

hence the contact immediately stops sliding (we can obvi-
ously assume that vi − vi+1 is small).

Because the time evolution of the spring displacement is
now governed by (2) again, and because the spring displace-
ment and velocity have opposite signs, the spring will be
relaxed for the next time step. Thus, as long as the velocity
is still large enough, the new spring displacement ξi+2 is not
able to compensate the velocity term in the spring force so
that the contact starts sliding again. For

v <
γ Fmax

mk
, (20)

this is no longer possible, as the force can only decrease.
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Note that the oscillation of ξ visible in Fig. 1 does not
simply originate from integrating F twice with respect to
time. Rather, it is the cause of the oscillation in F due to
the instantaneous setting of ξ . Moreover, this instantaneous
setting of a degree of freedom is in conflict with the general
spirit of integration schemes for differential equations (cf.
Appendix A).

In contrast to the points made above, the simulation using
the C-SDS shows exactly the behaviour we expect: For the
whole time that the contact is sliding, the spring displace-
ment increases continuously with the correct sign, while the
relative velocity is damped. Then, as soon as the resulting
spring force becomes smaller than the critical force, the sys-
tem smoothly transitions into the sticking state.

3.3 Comparison of the kinetic energies

In Fig. 2, we compare the time evolution of the kinetic energy
difference between the D-SDS and our C-SDS. This compar-
ison illustrates the most serious problem with the former: A
significant part of the energy created by the instantaneous
loading of the spring is converted to kinetic energy. In fact,
the amount of created energy scales quadratically in the ini-
tial relative velocity – the spring displacement, (3), enters
linearly in the relative velocity –, making this problem espe-
cially dramatic in high velocity collisions.

The energy oscillations result directly from the oscilla-
tions of the spring displacement, shown in Fig. 1. We want to
add that even an implicit implementation of the D-SDS, i.e.
setting the spring displacement such that the force’s magni-
tude in the following time step is equal to Fmax, would only

Fig. 2 Comparing the time evolution of the kinetic energy difference
ΔEkin = E (D)

kin − E (C)
kin between D-SDS and C-SDS reveals that a sig-

nificant amount of the energy which is created by the former ends up
as kinetic energy. The step size is Δt = 0.1 for both

remedy the observed oscillations but not the energy creation
nor the physical interpretation.

4 Summary

We have shown that the SDS, which is a paramount tool for
simulations of granular matter inmany fields of research, had
to be revisited in order to avoid unphysical results. Especially,
itsmost detailed andmostwidely used realisation, theD-SDS
[5], can result in problematic behaviour – most importantly
in the creation of energy. We recall that this occurs whenever
the contact starts to slide before the spring is fully loaded.
Moreover, only for contacts that form without a relative tan-
gential velocity, v = 0, no energy is created. This is because
the normal contact force and, thus, the critical force Fmax is
zero at the moment when the two surfaces come into con-
tact. Therefore, in the case of particle collisions, e.g. in a
granular gas, the D-SDS creates, depending on the granular
temperature, significant amounts of energy for all but central
collisions – which are statistically negligible for most sys-
tems. Thus, measured cooling rates, as an example, will have
a temperature dependent error, underestimating the correct
value for the chosen damping parameters.

The C-SDS, proposed in this work, is a simple rework of
the D-SDS for sliding contacts which needs no additional
parameters, makes no assumptions that are not already part
of the SDS for sticking contacts or the Coulomb friction law.
We have shown analytically that it fixes all the afore men-
tioned problems of the D-SDS, and have provided the case
of two sliding plates as a numerical example (cf. Figs. 1 and
2). Moreover, the implementation of the C-SDS is simpler
than that of the D-SDS: The spring displacement integration
scheme does not need to distinguish between the two states,
no sticking/sliding-flag is needed.

AHigher order integration schemes

Numerical integration schemes for ordinary differential
equations

d

dt
	u = 	f (	u) (21)

evolve the state vector 	u by constructing an approximation
to 	u((n+1)Δt) − 	u(nΔt) and adding it to the current state
	un , i.e. they apply a change of order Δt solely according to
	f . Additional adjustments of some components of 	u (two
in the case of the D-SDS: �ξ ) are not included. Actually, it’s
not evident whether those can be uniquely incorporated into
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every scheme. The classical Runge-Kutta 4th order scheme
[10], for example, has to be written as

	u1 = 	un + 	f (	un) Δt

2
	u2 = 	un + 	f (	u1) Δt

2
(22)

	u3 = 	un + 	f (	u2)Δt 	u4 = 	un + 	f (	u3) Δt

2
(23)

	un+1 = 1

3

(	u1 + 2	u2 + 	u3 + 	u4 − 2	un) (24)

in order to be able to adjust the auxiliary states 	ui to a con-
straint after each of their regular assignment (22)-(23). The
midpoint scheme

	u1 = 	un + 	f (	un) Δt

2
(25)

	un+1 = 	un + 	f (	u1)Δt (26)

and the Heun method

	u1 = 	un + 	f (	un)Δt 	u2 = 	un + 	f (	u1)Δt (27)

	un+1 = 1

2
(	u1 + 	u2) (28)

are more straight forward in this respect.
Unfortunately, the usage of higher order schemes for the

D-SDS is ineffectual, as shown in Fig. 3: The deviation of
v(t) from its analytical solution is 1st order in Δt , also for
the Heun scheme (2nd order) and the Runge-Kutta scheme
(4th order). The reason is that the adjustments of ξ according
to (3) introduce perturbations of the order Δt . (Actually, the
mathematically rigorous way to tie �ξ to 	v during the D-SDS
sliding phase would be to describe the SDS as a so called
DAE, a Differential-Algebraic system of Equations.)

Fig. 3 The rescaling of the error of the velocity in theD-SDS by a factor
c shows that it is essentially of orderO(Δt1) for all three schemes. vexact
is the analytical solution to the D-SDS. Parameters are the same as in
Fig. 1

Fig. 4 The spring displacement ξ , relative tangential velocity v and
contact force F for the D-SDS, integrated using the midpoint scheme
with Δt = 0.2, behave very differently compared to the Euler integra-
tion in Fig. 1. Each graph also contains the values for the auxiliary state
at half-integer t/Δt

The midpoint scheme is an example where the conse-
quences of these adjustments are even more severe. Here,
the auxiliary state 	u1 only enters via 	f (	u1) in the next full
step to 	un+1. For that reason, any adjustment performed on 	u1
does not carry over to 	un+1 and is lost. This is clearly visible
in Fig. 4: As the Coulomb criterion is violated in the states
	un for up to t ≈ 8, the spring displacements ξ are adjusted
according to (3) in all auxiliary states. These displacements
depend solely and linearly on the velocity v in the current
state 	un , hence the linear lower envelope of ξ(t) in Fig. 4.
The spring displacements in the states 	un , on the other hand,
are integrated according to (2), starting from zero, as they
have not been set according to (3) at any time. Because of
the linear behaviour of the velocity v, the upper envelope of
ξ(t) in Fig. 4 is a parabola. Note that the curves presented in
Fig. 4 differ drastically from the ones that the Euler scheme
produced for the D-SDS (cf. Fig. 1). Even for Δt → 0 they
would not converge to the analytical solution.

Acknowledgements The presented research is funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) - Pro-
jektnummer(458889524).We acknowledge support by theOpenAccess
Publication Fund of the University of Duisburg-Essen.

Author Contributions All three authors made substantial contributions
to the analysis of the shortcomings of the D-SDS and the development
of the correct C-SDS. F.F. drafted the manuscript, L.B. prepared the
revised figures, F.F. and L.B. performed the numerical analysis of both
models, and D.E.W. revised it critically. All three authors approved the
version to be published and agree to be accountable for all aspects of
the work in ensuring that questions related to the accuracy or integrity
of any part of the work are appropriately investigated and resolved.

Funding Open Access funding enabled and organized by Projekt
DEAL.

123

53 Page 6 of 7



Correction of the spring-dashpot-slider model

Data Availability To reproduce the presented simulations, no a-prior
data is necessary and the numerical effort is low.

Declarations

Competing interests D.E.W. is member of the editorial board of the
journals Granular Matter and Computational Particle Mechanics. Oth-
erwise, the authors declare that they have no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Antonyuk, S. (ed.): Particles in Contact: Micro Mechanics, Micro
Process Dynamics and Particle Collective. Springer International
Publishing (2019). https://doi.org/10.1007/978-3-030-15899-6

2. Kuwabara, G., Kono, K.: Restitution coefficient in a collision
between two spheres. Jpn. J. Appl. Phys. 26, 1230 (1987). https://
doi.org/10.1143/JJAP.26.1230

3. Ramírez, R., Pöschel, T., Brilliantov, N.V., Schwager, T.: Coeffi-
cient of restitution of colliding viscoelastic spheres. Phys. Rev. E
60, 4465 (1999). https://doi.org/10.1103/PhysRevE.60.4465

4. Thompson, A.P., Aktulga, H.M., Berger, R., Bolintineanu, D.S.,
Brown, W.M., Crozier, P.S., in ’t Veld, P.J., Kohlmeyer, A., Moore,
S.G.,Nguyen, T.D., Shan,R., Stevens,M.J., Tranchida, J., Trott, C.,
Plimpton, S.J.: LAMMPS - a flexible simulation tool for particle-
based materials modeling at the atomic, meso, and continuum
scales. Comput. Phys. Commun. 271, 108171 (2022). https://doi.
org/10.1016/j.cpc.2021.108171

5. Luding, S.: Cohesive, frictional powders: contact models for ten-
sion. Granul. Matter 10(4), 235 (2008). https://doi.org/10.1007/
s10035-008-0099-x

6. Jiang, M., Shen, Z., Wang, J.: A novel three-dimensional contact
model for granulates incorporating rolling and twisting resis-
tances. Comput. Geotech. 65, 147 (2015). https://doi.org/10.1016/
j.compgeo.2014.12.011

7. Marshall, J.S.: Discrete-element modeling of particulate aerosol
flows. J. Computat. Phys. 228(5), 1541 (2009). https://doi.org/10.
1016/j.jcp.2008.10.035
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