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Abstract
Modern particle size statistics uses many different statistical distributions, but these distributions are empirical approxima-
tions for theoretically unknown relationships. This also holds true for the famous RRSB (Rosin-Rammler-Sperling-Bennett) 
distribution. Based on the compound Poisson process, this paper introduces a simple stochastic model that leads to a general 
product form of particle mass distributions. The beauty of this product form is that its two factors characterize separately 
the two main components of samples of particles, namely, individual particle masses and total particle number. The RRSB 
distribution belongs to the class of distributions following the new model. Its simple product form can be a starting point 
for developing new particle mass distributions. The model is applied to the statistical analysis of samples of blast-produced 
fragments measured by hand, which enables a precise investigation of the mass-size relationship. This model-based analy-
sis leads to plausible estimates of the mass and size factors and helps to understand the influence of blasting conditions on 
fragment-mass distributions.

Keywords  Particle mass distribution · Modelling particle samples · RRSB distribution · Compound Poisson process · Rock 
blasting

1  Introduction

It has been 90 years since Rosin and Rammler published 
their article on the RRSB distribution for the mass of coal 
particles [1]. Here RRSB stands for Rosin–Rammler-Sper-
ling-Bennet, who developed stepwise the modern form of 
this distribution [2]. The paper by Rosin and Rammler [1] 
was a great success, and the RRSB distribution is today 
standard in general particle size statistics. However, many 
other distributions have also been introduced and used since 
then. For example, many distributions concerning rock frag-
mentation by blasting have been developed, such as Kuz-
Ram formula [3, 4], SveDeFo formula [5–7], Kou-Rustan 
formula [8], Chung and Katsabanis formula [9], crush-zone 

formula (CZM) [10, 11], two-component formula [12], Swe-
Brec distribution [13] and KCO (Kuznetsov-Cunningham-
Ouchterlony) formula [14], xP-Frag distribution [15], and 
fragmentation-energy fan [16–20]. The corresponding lit-
erature is reviewed in [21, 22].

Although many distributions have been developed, most 
of them, including the RRSB distribution, are empirical or 
approximations for theoretically unknown relationships, 
with little binding with material properties or crushing 
devices. The problem of finding suitable models that explain 
these forms is still open. Three notable exceptions are Kol-
mogorov [23], Brown and Wohletz [24], and Fowler and 
Scheu [25], who modelled in different extent the fragmenta-
tion process. The first introduced the lognormal distribution 
to particle statistics and the others developed theories that 
lead to the RRSB and gamma distribution, respectively.

The present paper introduces a general stochastic model 
that leads to a wide class of particle mass distributions. It 
does not model the fragmentation process but instead the 
structure of particle samples, the number and the sizes and 
masses of particles. The model does not employ ideas of 
fractal geometry and self-similarity, but it only operates 
with finite random variables. The model components can 
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be observed and statistically analysed in particle samples. 
It may help to understand the appearance of the RRSB dis-
tribution as well as the Gates-Gaudin-Schuhmann (GGS) 
power-law distribution.

The model is based on the point process approach 
introduced by Stoyan and Unland [26]. According to this 
approach, the particles of a sample are assumed to be 
ordered with respect to size (some quantity of the nature 
of a length, as for example, a Feret diameter, see Sect. 2) 
and interpreted as a point process on the real axis. The new 
idea of the present paper is to mark the points with the cor-
responding particle masses. These mass marks are random, 
and their random variability results in a large extent from 
fluctuations of particle shapes, which lead to random rela-
tions between particle size and mass.

This improved approach was inspired by the paper of 
Zhang et al. [27], which offers data of particle masses for 
single particles. The data came from blasting experiments 
in which the fragments larger than 20 mm were individually 
measured and weighted, while the fragments smaller than 
20 mm were sieved.

The present paper first describes the stochastic model, 
which is closely related to the so-called compound Poisson 
process, a classical model of applied probability, see Sect. 2. 
Section 3 shows how known particle mass distributions may 
be classified as belonging to the model. The data from [27] 
are analysed statistically in Sect. 4 in the spirit of the model. 
Finally, the whole approach is discussed thoroughly.

2 � The model including particle masses

This paper develops the theory in Stoyan and Unland [26] 
by including the particle masses into the theory. It uses the 
notation of that paper (which is in the same journal and in 
free access) and starts with its basic idea: to consider the 
particle sizes as points on the positive real line or x-axis.

Following the classical approach of sieving statistics, 
“sizes” are here one-dimensional geometrical characteristics 
of particles. In the example considered in Sect. 4, size is the 
maximum Feret diameter. In [26], where the particles were 
measured by means of image analysis (CPA), size was the 
diameter of the circle of equal projected area. And a third 
choice of size could be the diameter of a volume-equivalent 
sphere.

If arranged in an increased order, the size-points form a 
random sequence, which is interpreted as a one-dimensional 
point process. Following [26] we assume that this point pro-
cess is an inhomogeneous Poisson process.

The notion of a Poisson process is explained in [26, 
28, 29]. An inhomogeneous Poisson process is a random 
collection of points (in the case here considered: of par-
ticle sizes) on the positive x-axis. The numbers of points 

in disjoint intervals are independent, and the point den-
sity is controlled by a so-called intensity function λ0(x), 
which here has the name size intensity. The random num-
ber N((a,b)) of points in the interval (a, b) has a Poisson 
distribution with mean.

meaning that the probability p(n) to find n particles in (a,b) 
is

where λ = E(N((a, b))).
The index ‘‘0″ at λ0(x) indicates that zero-dimensional 

numbers are counted. The shape of λ0(x) depends on the 
process by which the particles were produced. In the pre-
sent paper as well as in [26] the size intensity is decreasing 
in x since there are more small particles than large ones; 
of course, other forms are possible.

Now, in addition to particle size, also particle mass m 
(measured in grams) is included in the modelling. First, the 
cumulated mass of all particles which are smaller than x is 
considered. The mean of this random variable is denoted 
in [26] by Λ3(x) called cumulative mass intensity function, 
considered as a function of x. The index “3” indicates that 
three-dimensional quantities are counted and added.

The mean Λ3(x) can be calculated starting with the fol-
lowing statistical assumption: the masses of the particles 
in the point sequence (ordered with respect to size) are 
independent but, of course, not identically distributed (In 
point process statistics one speaks of “independent, location-
dependent marking”). Indeed, for fixed size x the mass can 
be greatly variable due to variability of shape. It can happen 
that a particle of large size may have low mass because of a 
special shape. Fortunately, for the calculation of Λ3(x) only 
the mean mass of particles of size x (and not the correspond-
ing distribution) is needed, which is denoted by μ(x).

This deterministic mean-mass function �(x) is an impor-
tant model characteristic, with µ(0) = 0 and µ(∞) = ∞. Its 
form heavily depends on the shape of the particles consid-
ered. In the case of spherical particles of identical mate-
rial, it holds

Here � is density, e.g., in the unit of g/mm3, and x is the 
diameter. In this special case of identical particle shapes 
the masses for size x are constant, not random, given by 
(3). While �(x) may monotonously increase with increas-
ing x, other forms may also apply, for example when small 
particles have high density.

(1)E(N((a, b))) = ∫
b

a

�0(x)dx

(2)p(n) = λne−λ∕n!

(3)�(x) =
�x3

6
�.
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Both functions, size intensity�0(x) and mean-mass func-
tion �(x) , determine Λ3(x) as well as the corresponding 
derivative �3(x) with respect to x. Indeed, �3(x) satisfies 
the equation.

The product formula (4) can be proved as follows. Let 
Δx be the length of a small size interval. The probability 
that in the size interval (x, x + Δx) a particle size is present 
is approximately �0(x)Δx . Consequently, the increment of 
Λ3(x) in the size interval is �0(x)Δx ⋅ �(x) and it holds.

Λ3(x + Δx) = Λ3(x) + �0(x)Δx ⋅ �(x).
Then

and division by ∆x and the limit ∆x → 0 yields Eq. (4).
Note that �3(x) is fully determined by the mean-value 

functions �0(x) and µ(x), which is natural since Λ3(x) is 
also a mean value.

3 � The utility of Eq. (4)

3.1 � Product‑form of particle mass probability 
density

The cumulative mass intensity function Λ3(x) is closely 
related to the cumulative particle mass distribution func-
tion Q3(x),

if there is a finite maximum size xmax . In the following 
we mainly consider the infinite case. Note that Q3(x) here 
denotes the theoretical distribution function, whereas in the 
usual engineering literature it often denotes the empirical 
distribution function resulting from one (finite) particle 
sample.

Equation (4) implies that the corresponding mass den-
sity function q3(x), the derivative ofQ3(x) with respect to 
x, is proportional to �0(x) ⋅ �(x),

This has two important statistical consequences:

(a)	 The influences of the two determinants ‘frequency’ 
(given by �0(x) ) and ‘size’ (given by �(x) ) are separated 
and they appear as factors in (6),

(4)�3(x) = �0(x)μ(x)

Λ3(x + Δx) − Λ3(x) = �0(x) ⋅ �(x)Δx

(5)Q3(x) = Λ3(x)∕Λ3(∞) for x ≥ 0

orQ3(x) = Λ3(x)∕Λ3

(

xmax

)

for 0 ≤ x ≤ xmax

(6)q3(x) ∝ �0(x) ⋅ �(x).

(b)	 Many forms of �0(x) and �(x) may lead to particle mass 
distribution functions. Mathematically it is sufficient 
that the integral over �0(x)�(x) is finite.

Point (a) may help to find relations of Q3(x) to material 
properties and crushing conditions, while (b) may direct 
the search for forms of Q3(x).

3.2 � Particle mass distributions following the model

Some well-known particle mass distribution functions can 
be obtained by suitable choices of �0(x) and �(x). This 
may inspire researchers to find new distributions in their 
applications.

3.2.1 � The RRSB distribution

Assume

and

with positive parameters b, m, n, u and v in suitable dimen-
sions. Both functions are plausible and nice starting points, 
with decreasing number of particles and increasing mean 
mass of particles for increasing size x in a form similar to 
that in the case of spheres.

Then, if the model is accepted, the relation (6) yields 
that the particle mass probability density function q3(x) is 
proportional to axm ⋅ exp (−bxn), with a = uv, that is,

This relation is nearly the same result which Rosin and 
Rammler had before the interaction by Karl Sperling (the 
“S” in “RRSB”), see Eq. (1) in [2].

The standard form of the RRSB distribution is

where r is a positive parameter (called ‘uniformity param-
eter’) and x′ a further positive parameter (called ‘character-
istic size’). The corresponding mass density function q3(x) 
is the derivative of Q3(x) , i.e.,

The following choices of the parameters a, b, m, and n 
transform the relation (7) into (9):

�0(x) = u ⋅ exp(−bxn)

�(x) = vxm

(7)q3(x) ∝ axm ⋅ exp(−bxn).

(8)Q3(x) = 1 − exp
(

−
(

x

x�

)r)

for x ≥ 0,

(9)
q3(x) =

(

1

x�

)r

⋅ r ⋅ xr−1 ⋅ exp
(

−
(

x

x�

)r)

=
r

x

(

x

x�

)r

⋅ exp
(

−
(

x

x�

)r)

.
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3.2.2 � The Gates‑Gaudin‑Schuhmann distribution

The Gates-Gaudin-Schuhmann distribution has the distribu-
tion function

where k is a positive parameter. The corresponding prob-
ability density function is

q3(x) =
k

xkmax
⋅ xk−1 = k

xkmax
⋅ x−l ⋅ xk+l−1 for 0 ≤ x ≤ xmax,

where an additional parameter l is introduced. Also, this 
function has the product form (6), and the term k

xk
max

⋅ x−l may 
play the role of �0(x).

It is similar with the Gaudin-Meloy distribution [30],

3.2.3 � The Gamma distribution

The gamma distribution is not so frequently used as RRSB 
and GGS, perhaps because of the appearance of the gamma 
function. Its probability density function is

with positive parameters c and p. It has the product form (6) 
with �0(x) proportional to exp(-cx) and µ(x) proportional to 
xp . Note that this is not RRSB for r = 1!

In order to demonstrate its importance, two quite different 
applications are mentioned here. It appeared in a statisti-
cal analysis of cubic quartz sand particles reported in [31], 
where the distribution is called Martin-Andreasen distribu-
tion. The shape parameter p has the fixed value 4, and the 
distribution is therefore a one-parameter distribution.

The gamma distribution plays an important role in 
[25] in which a mass distribution function with variable 
� = −log2(x) was empirically found by statistical analysis 
of fragments from laboratory explosion of volcanic rocks, 
where x is particle size as in the present paper. This statisti-
cal result was then theoretically explained.

3.3 � A problem of indefiniteness

When the model is accepted, it is natural to know the mean-
mass function µ(x) and the size intensity function �0(x) 
when the density function q3(x) is known. Unfortunately, the 

n = r, m = r − 1, a = r ⋅
(

1

x�

)r

, and b =
(

1

x�

)r

.

(10)Q3(x) =
xk

xk
max

for 0 ≤ x ≤ xmax,

(11)Q3(x) = 1 −

(

1 −
x

xmax

)k

for 0 ≤ x ≤ xmax,

(12)q3(x) =
cp

Γ(p)
xp−1 exp (−cx) for x ≥ 0

relation (6) shows that this wish cannot be fulfilled. When 
µ(x) is multiplied by some positive function z(x) and �0(x) 
is divided by the same function, the same q3(x) is obtained.

This idea can be used to construct suitable functions �0(x) 
and µ(x) for standard distributions. Consider, for example, 
the case of the RRSB distribution with r = 0.5. Then

A choice of µ(x) as

would be nonsense since μ0(x) is decreasing in x, 
which means ‘mass is decreasing in size’. However, a 
z(x) = sx3would yield a µ(x) proportional to x2.5 and a

which makes sense.

4 � Statistics for fragments of rock blasting

All data of particles (called here “fragments”) used in this 
section come from blasting experiments of nine granite cyl-
inders with a diameter of 240 mm and a length or height of 
300 mm [27]. There was one drill hole charged with explo-
sive PETN at the drill hole bottom. The detailed param-
eters of the cylinders and the explosive charges are shown 
in Table 1. Figure 1 shows all fragments of the granite cyl-
inders S1–S9 after blasting. The classical result of particle 
mass statistics is shown in Fig. 2: the empirical Q3 distribu-
tion functions for the nine cylinders. The accumulated mass 
passings of S6–S9 are clearly larger than those of S1–S5.

Now follows the analysis of the same data in the spirit 
of the present paper. Only the larger fragments are consid-
ered since the data for fragments smaller than 100 mm form 
unstructured dense clouds of points. Note that these data, 
size = maximum Feret diameter x (mm) and mass m(g) , were 
measured by hand [27]. Figure 3 presents the empirical rela-
tion between m(x) and x. Figure 3a shows the measurement 
data of mass and size of all fragments for the cylinders in 
different colours. Very impressive is the great variability of 
the masses for large fragments.

Before the statistical results are presented, the basic 
assumptions are considered: (1) the size points form Pois-
son processes and (2) the mass marks are independent. 
Both were tested with the best statistical tests available: 
Poisson with χ2 goodness-of-fit test as described in [26], 
Section 4.3.3 and end of 6.3, and independence with the 

q3(x) =
0.5

x

(

x

x�

)0.5

⋅ exp

(

−
(

x

x�

)0.5
)

.

μ0(x) =
0.5

x

(

x

x�

)0.5

�0(x) = exp

(

−
(

x

x�

)0.5
)

∕sx3,



A stochastic model leading to various particle mass distributions including the RRSB…

1 3

Page 5 of 12  67

Table 1   The parameters of the rock specimens, explosive, stemming and charge conditions [27]

Specimen no Original 
weight 
(kg)

Collected 
weight 
(kg)

Diameter 
of blasthole 
(mm)

Length of 
blasthole 
(mm)

PETN (g) 
excluding 
detonator

Stem length/
diameter 
(mm)

Stem weight 
(g)

Specific 
charge (kg/
m3)

Stemming

S1 36.2 35.6 17.0 205 3.0 108/14 117.2 0.22 Partial steel 
stem without 
air bag

S2 36.0 35.8 16.5 210 3.0 125/14 133.7 0.22 Partial steel 
stem without 
air bag

S3 36.2 34.6 16.9 213 3.0 88/14 88.2 0.22 Partial steel 
stem with air 
bag

S4 36.0 36.0 17.0 210 3.0 84/14 85.0 0.22 Partial steel 
stem with air 
bag

S5 36.2 34.1 16.9 210 3.0 89/14 95.6 0.22 Partial steel 
stem with air 
bag

S6 35.4 32.9 17.1 206 3.0 90/17.1 25.5 0.22 Full sand stem 
with air bag

S7 34.7 35.5 17.0 210 4.0 115/17 56.8 0.29 Full sand stem 
without air 
bag

S8 36.2 36.0 16.6 208 3.0 112/16.6 58.0 0.22 Full sand stem 
without air 
bag

S9 35.7 32.8 16.6 207 3.0 116/16.6 66.5 0.22 Full sand stem 
without air 
bag

Fig. 1   The fragments (particles) 
produced by blasting of granite 
cylinders (after [26])
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phase-frequency test of Wallis and Moore [32]. In the latter 
the up-jumps and down-jumps in the series of masses are 
considered. While the critical z-value of the test for error 
probability � = 0.05 is 1.96, the test statistics for all cases 
without S9 were lower than 1.56. Only for S9 the value 
2.03 was obtained, which is lower than the critical value for 
� = 0.01 . The Poisson test is described in detail in [26] and 
carried out exactly in the same way as there, of course with 
the corresponding intensity functions. While the critical χ2 
values are 2.9 and 19.0, the test statistics are all between 
6.2 and 18.5 with exception of S4, where it was 19.4, which 
is below the upper χ2-value for � = 0.01 . Thus, the basic 
assumptions is considered to be satisfied by these data.

Figure 3b shows the measurement data of masses and 
sizes of the fragments of all rock cylinders S1-S9 and the 
curve of the corresponding non-linear regression as an esti-
mate of �(x) . Note that this is an approximation for the mean 
function of a stochastic process and not the empirical form 
of a functional relationship. The corresponding estimation 
equation is

Figure 4 shows all nine empirical mean-mass curves 
together with the datasets of mass measurement, which are 
interpreted as estimates of the corresponding mean-mass 
function µ(x) where the curves end at the largest measured 
fragment size. The corresponding regression parameters 
R-squared, RSE and coefficient c are collected in Table 2.

(13)m(x) = cx3. Figures 3 and 4 indicate that the fragment masses tend 
to increase with increasing size, which is consistent with 
common blast results, i.e., big fragments have larger masses. 
However, the variability of masses is great, and there is 
no monotone growth of masses with increasing size. It 
looks that the variability increases with increasing x. This 
is reasonable since the size and shape of a large fragment 
is dependent on several factors such as the material and 
length of stemming, the geometrical shape of rock sample, 

Fig. 2   Empirical Q3(x), accumulated mass passing vs. fragment (par-
ticle) size x (based on the data in [26])

Fig. 3   Empirical mean-mass function µ(x) vs. particle size x, based 
on measurement data of [27]. a Scatterplot of all fragment sizes and 
masses. The colours refer to the nine cylinders. b Fragment mass vs. 
fragment size for all samples S1-S9. The solid curve represents the 
regression equation of the relation between mass and size
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Fig. 4   Fragment mass vs. fragment size for the nine samples S1-S9. The solid curves represent the regression equation
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the specific charge, etc. For example, as shown in Fig. 4 
and Table 2, the curves of four cylinders S6–S9 with full 
stemming have mostly low value of parameter c (0.00029, 
0.00026, 0.00027 and 0.00036 for S6, S7, S8 and S9 respec-
tively), while the curves of five cylinders S1–S5 with partial 
steel stemming have relatively high value of parameter c 
(0.00038, 0.00044, 0.00043, 0.00023 and 0.00052 for S1, 

S2, S3, S4 and S5 respectively). The above description 
indicates that stemming condition influences the relation 
between fragment size and fragment weight. In addition, 
from Fig. 4 and Table 2 it can be found that cylinder S7 
has the least parameter c (= 0.00026) and smallest maxi-
mum fragment mass (about 2000 g) among all of four cyl-
inders with sand stemming. The reason is that S7 has higher 

Fig. 4   (continued)

Table 2   The estimated 
regression parameters a, b, c 
and residual standard error 
(RSE) 

Parameter S1 S2 S3 S4 S5 S6 S7 S8 S9

c 0.00038 0.00044 0.00043 0.00023 0.00052 0.00029 0.00026 0.00027 0.00036
RSE 607.5 544.5 453.6 495.2 644.2 287.4 283.6 358.2 390.4
R-squaerd 0.7420 0.6819 0.8169 0.5137 0.7813 0.8062 0.6167 0.6980 0.6465
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specific charge than other cylinders, meaning that specific 
charge effects the relation between fragment size and frag-
ment weight. This result refines the measurement result for 
the accumulated mass passing vs. fragment size of the nine 
samples, as shown in Fig. 1. Figure 3 shows that the mean 
mass of all cylinders increases with increasing fragment size 
in the form of x3.

Now the estimates of size intensity �0(x) are presented. 
Remember that �0(x) is the density of size points on the 
x-axis at size x, note Eq. (1). As recommended and explained 
in [26], a kernel estimator was used for the estimation of 
�0(x) . The estimator is.

where the summation goes over all fragment sizes xi . The 
symbol k(⋅) denotes the kernel function, which is taken as a 
Gaussian probability density function,

The parameter σ controls the smoothness of the estimate, 
the function �0(x) . After experimentation we decided to 
choose σ = 30 mm.

Figure 5a shows the empirical size intensities �0(x) for 
x ≥ 100mm ; for smaller x the values are very large because 
there are many small fragments. As expected, the curves 
decrease with increasing fragment size x. They look like 
decreasing exponential functions k ⋅ exp (−�x) , with simi-
lar � in all cases and largest k for S6. Additionally, Fig. 5b 
shows again the curve for S6 plus the standard deviation of 
the errors. The standard deviation values were obtained by 
bootstrapping, following the ideas of [33]. This means that 
Poisson processes with the empirical �0(x) were simulated 
1000 times and their intensity functions were re-estimated.

The above description indicates that for large x the mass-
size relation of the granite fragments is similar to that of the 
case of a RRSB distribution.

5 � Discussion

This paper is inspired by a quite unusual form of particle 
size statistics, where many large particles were measured 
individually by hand, both in size and in mass. This resulted 
in a unique data set and led to the new form of modelling the 
variability of particle samples and to a deeper understanding 
of particle mass distributions. Of course, it is not recom-
mended to carry out such time-consuming measurements 
for daily use. For research purposes, they may, if applied to 
an interesting material, provide valuable information some-
times. Furthermore, when particle samples are sieved, very 

(14)�0(x) =
∑

xi

k
(

x − xi
)

,

(15)k(z) =
1

√

2��
exp

�

−
z2

2�2

�

.

big particles that cannot be sieved should appear in the siev-
ing report. And the total mass of the sample should always 
be reported.

The model proposed in this paper is closely related to a 
classical model of applied probability, the so-called com-
pound Poisson process. Figure 6 shows a sample of such a 
process, which is a standard model in financial mathematics. 

Fig. 5   The empirical size intensity λ0(x) vs. fragment size x for all 
nine cylinders (a); the standard deviation vs. fragment size x for spec-
imen S6 (b). The errors are not symmetric with respect to the inten-
sity function curve since intensities are always positive
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The points on the x-axis may be instants of insurance claims 
or of bankrupts, while the jumps are the corresponding val-
ues of claim or loan. In the context of the present paper the 
points are particle sizes and the jump heights are particle 
masses. The points belong to a Poisson process and the jump 
heights are independent random variables. The compound 
Poisson process is then the cumulative sum of jumps as a 
function of x as shown in Fig. 6 (in classical applications 
x is time). The theory of the compound Poisson process is 
presented in detail in Last and Penrose [29]. This book gives 
formulas that characterize the variability of such processes. 
However, our Eq. (3) belonging to the particular model with 
an inhomogeneous Poisson process and size-dependent mass 
distributions cannot be found there.

Of a quite different nature is the model in [24], which 
also leads to the RRSB distribution. It uses physical ideas, 
in particular branching trees of cracks. There the exponent r 
is related to the fractal dimension of a self-similar branching 
tree of cracks.

Note there is an interesting difference between the fac-
tors of the RRSB and the gamma distribution. Whereas for 
gamma the size intensity �0(x) is proportional to exp(− cx) 
and the mean-mass function µ(x) is proportional to xp and 
there is no connection between the two factors, the factors of 
the RRSB distribution are coupled by the exponent r, which 
appears in both factors. This may mark the gamma distribu-
tion as belonging to a simpler model.

The mean-mass function µ(x) of both distributions, 
RRSB and gamma, is controlled by a power term, xr and 
xp , and the empirical µ(x) in Sect. 4 has such a form. This 
is also the case for spherical particles as in Eq. (2). This 
leads to the recommendation in the case of searching a 

new distribution for a particle sample to start with a mean-
mass function proportional to a power of size x with posi-
tive exponent.

The size intensity �0(x) controls in a large extent the 
shape of q3(x) . For example, the existence of a maximum 
particle size xmax is indicated by �0(x) = 0 for x > xmax , 
see Fig. 5. Furthermore, if �0(x) has a pole at x = 0 (i.e., 
�0(0) = ∞), then q3(x) has also such a pole.

The exponent r in the RRSB distribution controls the 
variability of sizes and masses. Its value is frequently 
considered to be between 0.7 and 1.5. For the large frag-
ments in Sect. 4 the parameter c plays a role similar to r. 
The values of c given in Table 2 are between 0.00023 and 
0.00052. This large range of c value may depend on mul-
tiple factors such as stemming condition, specific charge, 
rock properties, etc. For example, the value c of S1–S5 is 
in a large range from 0.00023 to 0.00052, while the value 
c of S6–S9 is in a smaller range from 0.00026 to 0.00036. 
Since S4 has shortest stemming length (meaning highest 
gas ejection) among five cylinders with steel stemming, S4 
can be excluded from S1 to S5. If so, it can be found from 
Table 2 that the value c of S1, S2, S3 and S5 is in a large 
range from 0.00038 to 0.00052, which is much larger than 
the value c of S6–S9. This result indicates that the partial 
steel stemming yields much higher c value than full sand 
stemming. One of main reasons for this result is that the 
partial steel stemming resulted in more gas ejection than 
the full sand stemming [27]. Considering that complex 
stemming conditions were used and only small rock cyl-
inders employed in the blasts of S1–S9, more blasts with 
measured particle sizes and weights are needed to further 
develop this stochastic model.

Fig. 6   A piece of a sample of 
a compound Poisson process, 
in the particle size and mass 
interpretation. Here x is particle 
size and M(x) is the cumulative 
mass of all particles of mass 
≤ x . xn and Mn are the size and 
the mass of the n-th particle, 
respectively. Note that this is 
not a curve based on sieving 
results. The jump points are 
random particle sizes
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6 � Conclusion

A general stochastic model, which is closely related to 
an established model of applied probability, the so-called 
compound Poisson process, is introduced in this paper for 
particle mass distributions. It explains the appearance of 
the RRSB distribution, of the gamma distribution and of 
the GGS and GM distributions. The model has the poten-
tial to lead to new particle mass distributions by adapted 
choices of the factors �0(x) and µ(x). Future investigations 
of these functions may shed new light on various fragmen-
tation processes, in particular stemming.
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