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Abstract 
This paper re-considers the foundations of particle size statistics. While traditional particle size statistics consider their data as 
samples of random variables and use methods of classical mathematical statistics, here a particle sample is treated as a point 
process sample, and a suitable form of statistics is recommended. The whole sequence of ordered particle sizes is considered 
as a random variable in a suitable sample space. Instead of distribution functions, point process intensity functions are used. 
The application of point process data analysis is demonstrated for samples of fragments from single-particle crushing of glass 
balls. Three cases of data handling with point processes are presented: statistics for oversize particles, pooling of independent 
particle samples and pooling of piecewise particle data. Finally, the problem of goodness-of-fit testing for particle samples 
is briefly discussed. The point process approach turns out to be an extension of the classical approach, is simpler and more 
elegant, but retains all valuable traditional ideas. It is particularly strong in the analysis of oversize particles.

Keywords Particle size · Point process · Intensity function · Goodness-of-fit test

1 Introduction

The statistical analysis of the size (length, surface, cross-
section area, volume, or mass) of members of particle col-
lectives is a classical field of engineering statistics. Usually, 
it starts with a sample of particles, taken by certain rules 
adapted to the particles’ nature. (Often the total number of 
particles in the sample, which may be very large, is ignored.) 
These particles are measured by various methods, for exam-
ple by sieving or by individual particle measurement (e.g. 
by means of image analysis). The data obtained are trans-
formed into an empirical particle size distribution function, 
and finally it is tried to fit this distribution to some stand-
ard distribution such as Rosin–Rammler–Sperling–Bennett 
(RRSB), Gates–Gaudin–Schuhmann (GGS) or logarithmic 
normal (Bernhardt [1], Unland [2]). Of central interest are 
the cumulative size distribution functions Q0(x) and Q3(x) , 

where Q0(x) denotes the proportion of total number of all 
particles smaller than size x and Q3(x) the proportion of total 
volume respectively mass of all particles smaller than x. The 
corresponding probability density functions are q0(x) and 
q3(x).

In the long time of using this methodology frequently 
problems have been observed at the tails of the distributions, 
both for very small and very large particles. This has led to 
various modifications of the classical distributions.

For detailed investigations of the tail behavior it makes 
sense to analyse sub-samples, for example all particles 
of a size larger than a given xu . If for this smaller sample 
an appropriate distribution function is wanted (which is a 
conditional distribution), some additional calculations are 
necessary.

This has led the authors to the decision to change the 
statistical approach. The new standpoint considers the data 
as samples of point sequences on an axis of size, where 
each particle is represented by a point. This leads to the 
use of methods of point process statistics. By the way, this 
approach is not fully new. In literature of particle size analy-
sis the idea of point processes has appeared already implic-
itly in the papers Brown [3], Brown and Wohletz [4] and 
Bernhardt [5], as explained in the Discussion section.

The basic idea is to consider the whole sequence of all par-
ticle size numbers xi in the sample as a single random variable, 
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as a random vector with a random number of components. This 
is quite natural in single-particle crushing or in the analysis of 
rock fragments after a blast. There the whole particle collective 
appears in one physical step, which may be seen as an analogue 
of a throw of a dice in elementary probability theory. Perhaps also 
a sample from a stream of material moving on a conveyor belt 
can be interpreted similarly. This situation is of course not given 
if exactly n particles are taken by some sampling plan in order 
to study particle properties, as in the sampling model of Gy [6].

In mathematics such random sequences are called ‘point 
processes’. It should to be noted that the word ‘process’ does 
not necessarily imply a relationship to time. Indeed, early 
applications studied really events on a time axis and the whole 
terminology in some books on point processes is time-related. 
However, many other applications are possible and the pre-
sent paper demonstrates the use of point process statistics in 
particle statistics. An early example is [3], where points on a 
mass axis are considered. The present paper generalizes this 
by assuming that the points lie on a size axis, where the ‘size’ 
variable is denoted by the general symbol x. The particles are 
ordered with respect to size. ‘Large particles’ are those where 
the size is larger than a given upper level value xu and ‘small’ 
are those below some lower level xl.

The theory of point processes offers various models for 
such processes, which describe various forms of inner cor-
relations of the point positions. The points may appear in 
clumps, where a given point tends to have further points in its 
neighbourhood; or the points may appear regularly, in reduced 
randomness. The simplest model is the Poisson process, which 
belongs to the case of complete randomness of point locations. 
For this model the statistical description is easy: a mean value 
function, called intensity function, suffices. As it seems, just 
this simple model is appropriate for particle size statistics.

The present paper first explains why point process statistics 
may be considered as a natural approach to particle size statis-
tics. Then the necessary fundamentals of the theory of point 
processes are presented. It follows a thorough analysis of data 
from single-particle crushing experiments with glass balls. 
This example is chosen since the samples are given a-priori, 
without any form of special sampling. However, since the pre-
sent paper is a methodical one, no new results in the theory of 
single-particle crushing are aimed. Three typical cases of sta-
tistical calculations are discussed in order to show advantages 
of the point process approach. Finally, a �2-goodness-of-fit test 
for particle size statistics is given.

2  Particle size analysis in research 
and industry

Particle size statistics have different aims and methods 
in research and industry. The diversity of problems is 
expressed by the various cumulative size distribution 

functions used: Q0(x) , Q1(x) , Q2(x) and Q3(x) , which denote 
the proportions of number, total length, surface, cross-sec-
tion area, and volume resp. weight of all particles smaller 
than size x. Their application depends on machines, pro-
cesses and materials which have to be assessed, sized and 
controlled. In some cases surfaces and volumes are inter-
esting, particles’ surface and volume distribution functions 
Q2(x) and Q3(x) and by them the volume-specific surfaces 
of particles determine drying or combustion processes 
among other parameters.

In other cases the number and volume distributions 
Q0(x) and Q3(x) are important. In mining the number of 
big rocks determines the type, size and operation of crush-
ers. The amount of very small particles influences the dust 
development and the necessary dedusting equipment.

In the following problems in mining and comminution 
applications are briefly sketched.

In research many investigations study the comminution 
behavior of single particles or limited numbers of particles 
in order to gain characteristics of comminution processes, 
like breakage functions or specific power consumption. 
Figure 1 shows a typical situation of such an experiment. 
A stone (Greywacke) is crushed by compression with a 
relative displacement of 15% in order to gain data of the 
breakage function.

In industrial processes, typically in minerals engineering, 
representative samples of comminuted material are taken 
from piles, hoppers, chutes or conveyor belts. The samples 
consist of a huge number of particles. The aim of statistical 
size analyses is to get information on the size distribution 
in order to adjust industrial processes or to assess product 
qualities. Figure 2 shows blasted rocks with an oversized 
boulder from the copper mine Los Pelambres in Chile.

In both cases the particles occur in a wide range of 
sizes. In particular, in mineral processing the biggest 
boulders come from blasted mining faces and go then into 
crushers in order to be comminuted. They may show sizes 
up to more than 2 m. Depending on the kind and size of 
crusher those boulders can endanger the crusher operation. 
On the other hand, the smallest particles appear in very 
fine clays. Clay minerals like illite or montmorillonite may 
be smaller than 100 nm. These mineral components have 
to be removed from ore slurries by desliming devices prior 
to flotation; otherwise flotation will not work properly.

There is no single method of measurement for the 
whole range of particle sizes [1, 7]. It depends on size and 
material, which technique is most suitable to gain reliable 
results. Therefore, there are various measuring systems 
that apply different physical effects to detect directly or 
indirectly particle sizes. Electron or atomic force micros-
copy, dynamic light scattering, centrifugal sedimentation 
or laser diffraction are used for particles in the nanometer 
and micrometer range. Sieve and image analysis systems 
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cover the coarser part of the size range. Some techniques 
can work online, others have to work offline.

The measuring results are structured as well as pro-
cessed and finally recorded in tables, histograms, graphs 
and statistically analysed. It is tried to fit theoretical dis-
tribution functions to the data, in order to characterize the 
material by a small number of parameters.

However, there is a principal difficulty in the analysis of 
particle distributions, which is particularly relevant in the 
industrial context. Typically, the samples contain a huge 
number of small particles and only a low number of big 
ones with a wide size gap in between. Since it is impos-
sible to precisely count the number of small particles, for 
small particles the distribution is based on the mass of 
particles within the relevant size classes. On the other 
side, it is often interesting, which numbers and sizes of 
big particles can be expected. A typical situation is given 
by occasionally occurring, but detrimentally very large 
boulders after blasting a mining face. For plant operation 
it is important to assess the number and size of those over-
sized rocks. Here the classical methods of statistics seem 
to come to their limit.

3  Classical statistics 
and single‑particle‑crushing statistics

For understanding the basic idea of this paper, it may 
be useful to remind the reader of the classical idea of a 
‘random sample’ (Montgomery and Runger [8], p. 286): 
There is a random variable X with cumulative distribution 

Fig. 1  Greywacke particle (equivalent diameter of 50 mm) from Breitenau (Saxony) before and after compression test

Fig. 2  Pile of blasted copper ore with an oversized boulder (Los 
Pelambres mine in Chile)
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function F(x), F(x) = P(X ≤ x) . One wants to estimate 
F(x) or some corresponding parameters like mean or vari-
ance. With this aim n independent observations are made 
under fixed conditions, which leads to n results Xi , with 
i = 1, 2,… , n . The n random variables Xi have all the same 
distribution function as X and they are independent; they 
form a random sample. For the analysis of such data there 
exist many well-known statistical methods.

A simple example is as follows. In an experiment the 
strength of (identical) glass balls is studied. A sample of n 
balls is taken and the strengths of all these balls are meas-
ured. It can be assumed that the data form a random sam-
ple if all balls were produced in the same process. Then, 
the sample can be analysed by the classical methods of 
statistics as in [8] and at the end, if wanted, the hypothesis 
can be tested that strength follows a logarithmic normal 
distribution.

Formally similar is the situation in the classical 
approach in the case of single-particle crushing if the size 
of fragments is of interest. There the set of all fragments 
from one particle is considered as a sample. The fragments 
are characterized by size characteristics such as weight, 
volume or equivalent diameter and classical statistics is 
applied. This leads to cumulative particle size distribution 
functions Q0(x) and Q3(x) as mentioned in the introduction. 
Formally, these distribution functions are empirical distri-
bution functions of the sample of fragment sizes.

However, do the fragment sizes really form a random 
sample? No, this is not the case!

First, but not that important, the number n of elements 
in the sample is also random. It is difficult to predict. Note 
that if a sub-sample of large fragments is considered, the 
number may be in the order of some dozens, while the 
total number of fragments may be in the order of 105 and 
of little interest. Second, the fragment size characteristics 
are not statistically independent. Indeed, consider the frag-
ment volumes. Their total sum is exactly equal to the vol-
ume of the crushed particle, i.e. a constant value. However, 
if the fragment volumes formed a random sample, they 
would be statistically independent and their sum would be 
a random variable too and not constant.

In this situation the authors recommend to re-interpret 
the sampling situation and to assume that a statistician who 
studies fragments of single-particle crushing does not ana-
lyse classical random samples—but point process samples.

Many particle samples contain a lot of very small parti-
cles with sizes which cannot be measured precisely. Count-
ing and measuring is impossible. A classical way to circum-
vent this problem is to assume some theoretical distribution 
laws for the sizes, for example logarithmic normality. Then, 
it is possible to apply statistics for the particles larger than 
the critical size, which is denoted here by xcrit . The results 
obtained may be used for extrapolation to values of x smaller 

than xcrit . This can be justified by super-precise pilot meas-
urement or by the plausibility of the distributional assump-
tion. Otherwise, only the safe data larger than xcrit should 
be analysed and presented in histograms with absolute fre-
quencies or in closely related continuous functions, to avoid 
speculations. (Relative frequencies are questionable since 
the total number of particles in the sample is unknown.)

Finally, there is a more formal, mathematical problem in 
the context of very small particles. Sometimes it is elegant 
and natural to assume that xcrit = 0 . For example, in statistics 
with Q3(x) , i.e. related to volumes or masses, the equation

is natural, since the total weight of all particles smaller than 
some low limit may be negligible. The popular GGS distri-
bution, which is suitable in this context, satisfies equation 
(1). Unfortunately, for such a distribution the transforma-
tion to the number distribution function Q0(x) is not possible 
since it does not exist. However, when working with point 
processes, this difficulty is circumvented, see Section 4.

4  Point processes and their statistics

4.1  Fundamentals of the theory of point processes

Point processes are used to describe data sequences that are 
located in space and/or time. In the case considered here 
such data are generated in a natural way: We consider the 
particle sizes of a sample as points on the real line or x-axis. 
If arranged with respect to size the points form a sequence, 
which is interpreted as a one-dimensional point process.

These random points are located in a bounded interval I 
with deterministic ends xmin and xmax , I = [xmin, xmax] . In our 
setting these limits are usually given in a natural way, often 
it is xmin = 0 , and when equivalent diameters of fragments 
of glass balls of constant diameter d are considered, then 
xmax may be just d.

The random points between these limits are denoted by xi 
with i = 1, 2,… , n . The whole random sequence {xi} of the 
xi is the point process.

The theory of one-dimensional point processes as used 
here is presented in detail in the textbook Snyder and Miller 
[9], for the multi-dimensional case in [10, 11].

For understanding the present paper, the following may 
be sufficient.

A point process is a random variable which generates 
point sequences, here in the interval I. The total number of 
points of such a sequence is random and finite and denoted 
by N(I) = n . For any deterministic subset A of I the random 
number of points of {xi} in A is denoted by N(A).

(1)Q3(0) = 0
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The mean behaviour of a point process is determined by 
the intensity function λ0(x) and the cumulative intensity func-
tion Λ0(x) , which are related by

The term Λ0(x) denotes the mean number (or expecta-
tion) of points in the interval [xmin, x] , in general probabil-
istic notation written as E(N([xmin, x])) , where “E” is the 
mathematical expectation operator. The mean total number 
is E(N(I)) = Λ0(xmax) ; in the following often the simpler 
symbol NT is used. The term λ0(x) ⋅ dx can be interpreted 
as the mean number of points in the infinitesimal interval 
[x, x + dx] . (The use of the subscript “0” will soon be under-
stood, when the subscript “3” appears.)

In the particle size context, both intensity functions are 
closely related to the cumulative distribution function Q0(x) 
and the corresponding density function q0(x):

and

Therefore, Q0(x) could be called ‘normalized cumulative 
intensity function’ and q0(x) ‘normalized intensity function’.

When working with point processes, often random quan-
tities play a role that are constructed as follows. The mem-
bers xi of the point sequence {xi} are transformed by a func-
tion f(x) to obtain f (xi) and then the sum of all these values 
is considered. It is written as

If, for example, f (x) = 1 for all x, then the sum is the total 
number N(I) of all particles. If f (x) = kvx

3 with a form factor 
kv [12], then the sum in equation (5) is the total volume of 
all particles and denoted by V(I); its mean is denoted by VT.

And if the summation is restricted to all x smaller than 
some limit x0 , then the sum is written as

For the means of such sums there are formulas known, 
yielded by the so-called Campbell’s theorem [13]:

and

(2)Λ0(x) = �
x

xmin

λ0(x)dx for xmin ≤ x ≤ xmax.

(3)Q0(x) = Λ0(x)∕Λ0(xmax)

(4)q0(x) = λ0(x)∕Λ0(xmax).

(5)
∑

xi

f (xi).

∑

xi<x0

f (xi).

(6)E(
∑

xi

f (xi)) = ∫
∞

xmin

f (x)λ0(x)dx

For the particular case of f (x) = 1 this yields Λ0(∞) and 
Λ0(x0) , respectively. The result for f (x) = kvx

3 is denoted 
by Λ3(x) with

This leads for particle statistics to

and

where the form factor kv cancels out.
Finally, equation (9) yields together with (4) the following 

relationship between q0(x) and Q3(x),

see e.g. [1], p. 256, [12], and [14]. The latter paper contains 
particle data for this relationship.

4.2  Basics of point process statistics

The two intensity functions λ0(x) and Λ0(x) are statistically 
estimated as follows. One takes n samples of particles and 
determines the sample sizes ni and their particle sizes or 
points {xij} with i = 1, 2,… , n and j = 1, 2,… , ni . Then the 
estimator Λ̂0(x) of Λ0(x) is

where �[xmin,x]
(z) = 1 if xmin ≤ z ≤ x and = 0 otherwise. The 

inner sum in (12) is just the number of points respectively 
particle sizes of the ith sample in the interval [xmin, x].

For the estimation of λ0(x) histogram-based methods may 
be used: Dividing the x-axis into class intervals or bins and 
counting of numbers of xij in the class intervals or bins to 
obtain a frequency distribution, absolute frequencies, not 
relative. An alternative is the use of kernel estimators, i.e. 
estimators of the form

(7)E(
∑

xi<x0

f (xi)) = ∫
x0

xmin

f (x)λ0(x)dx.

(8)Λ3(x) = E(
∑

xi≤x
kvx

3
i
).

(9)

Q3(x) =Λ3(x)∕Λ3(xmax)

=�
x

xmin

t3λ0(t)dt∕VT for xmin ≤ x ≤ xmax

(10)
q3(x) =x

3λ0(x)∕Λ3(xmax)

=x3λ0(x)∕VT for xmin ≤ x ≤ xmax,

(11)Q3(x) = ∫
x

xmin

t3q0(t)dt∕∫
xmax

xmin

t3q0(t)dt,

(12)Λ̂0(x) =
1

n

n
∑

i=1

ni
∑

j=1

�[xmin,x]
(xij) for xmin ≤ x ≤ xmax,
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where k(z) is a kernel function, a suitable probability density. 
These estimators yield automatically smooth curves, their 
results are just continuous counterparts of histograms. This 
paper uses the Gaussian kernel, where k(x) is the probabil-
ity density function of a Gaussian distribution with mean 0 
and a suitable variance � . The � controls the smoothness of 
the curve for λ̂0(x) : Large values of � yield smooth curves, 
while for small the curves may be spiky. The choice of � 
is perhaps a weak point of the method, since it introduces 
a subjective factor into the estimation, which is, however, 
also given by the choice of bin size when histogram-based 
methods are used.

Note here that the value of λ̂0(x) is given by the points 
close to x. In contrast, any estimator of the probability den-
sity q0(x) at x also needs information from the whole sample, 
in particular of the total number of points, since relative 
frequencies are considered.

The estimators of Λ3(x) and λ3(x) are analogous,

and

or

and

where vij is the volume of the jth particle of the ith sam-
ple. (The kernel functions k(⋅) in the equations above are of 
course different.)

If there is a lower limit xcrit below which size data x are 
questionable, then λ̂0(x) and λ̂3(x) can be determined for all 
x ≥ xcrit by the estimators in the equations (13) and (15). In 
contrast, the probability density q0(x) (defined for the whole 
interval [xmin, xmax] ) cannot be estimated in this situation 
since the number of particles between xmin and xcrit is ques-
tionable and consequently also the total number of particles 
between xmin and xmax . In contrast, the intensity estimator 
λ̂0(x) uses only the local data around x, while any probability 
density estimator needs also global information, namely the 

(13)λ̂0(x) =
1

n

n
∑

i=1

ni
∑

j=1

k(x − xij),

(14)Λ̂3(x) =
1

n

n
∑

i=1

ni
∑

j=1

kvx
3

ij
�[xmin,x]

(xij),

(15)λ̂3(x) =
1

n

n
∑

i=1

ni
∑

j=1

kvx
3

ij
k(x − xij)

(16)Λ̂3(x) =
1

n

n
∑

i=1

ni
∑

j=1

vij�[xmin,x]
(xij),

(17)λ̂3(x) =
1

n

n
∑

i=1

ni
∑

j=1

vijk(x − xij),

total sample size, which is questionable. The same also holds 
for the distribution function Q0(x).

4.3  The inhomogeneous Poisson process

The simplest non-trivial example of a point process on I 
is the Poisson process, more precisely the inhomogeneous 
Poisson process.

4.3.1  Definition of the process

The inhomogeneous Poisson process has two characteristic 
properties:

• the numbers of points in disjoint subintervals of 
[xmin, xmax] are independent random variables,

• the probability distributions of these numbers are Poisson 
distributions.

The latter means, in particular, that for an interval [a, b] 
(with xmin ≤ a < b ≤ xmax ) the probability to have i points 
in the interval is

where

The function λ0(x) is the intensity function of the process. 
If λ0(x) is constant and the process is defined on the full 
real line, the point process is called homogeneous Poisson 
process.

The definition shows that the distribution of the inhomo-
geneous Poisson process is completely given by the inten-
sity function λ0(x) . Therefore, it is a model without addi-
tional features. It plays, also in our context, the role of a 
‘null model’: if the Poisson process hypothesis is rejected, 
then a model more complicated has to be employed–if a 
model is wanted. Only then there is interaction between the 
points, which are in the case of a Poisson process completely 
random, following only the trend given by the intensity 
function.

4.3.2  Simulation

A possible way to understand the inhomogeneous Poisson 
process is to learn how it is simulated, i.e., how to simu-
late samples of the process, irregular sequences of points 
between xmin and xmax that follow suitable laws. The standard 
method for this purpose has two steps: At first a Poisson-
distributed random number is generated, a sample of the 

(18)P(N([a, b]) = i) =
�i

i!
exp(−�) for i = 0, 1,… ,

(19)� = ∫
b

a

λ0(x)dx.
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total number of points N(I) in the final point sequence. The 
corresponding parameter �0 of the Poisson distribution is

The literature offers various methods for ‘generating Poisson 
variates’. The obtained realization of N(I) is denoted by nP , 
it is the number of points to simulate.

In a second step nP random points are gener-
ated, independently, with probability density function 
q0(x) = λ0(x)∕Λ0(xmax) . The literature offers again various 
methods for ‘generating random variates’.

Note that the second step is just the method of simulating 
a random sample of deterministic size nP for a distribution 
function Q0(x) . This shows that in the case of a Poisson pro-
cess the point process statistics is close to classical statistics. 
The point process standpoint considers just a higher degree 
of variability, since the sample size is random too and has 
to be statistically analysed.

4.3.3  Testing the Poisson process hypothesis

A test of the hypothesis that a sample of n point sequences 
belongs to an inhomogeneous Poisson process consists usu-
ally of two sub-tests. At first it is tested whether the total 
numbers of points ni per sequence follow a Poisson distribu-
tion. Second it is tested whether the point positions behave 
as expected for an inhomogeneous Poisson process.

The first step can be carried out by classical goodness-
of-fit tests for the Poisson distribution, applied to the par-
ticle numbers ni . For very small n comparison of sample 
mean x and variance s2 of the ni we recommend the fol-
lowing ‘better-than-nothing’ solution: Since for a Poisson 
random variable mean and variance are equal, the Poisson 
hypothesis may be rejected if the difference between x and 
s2 is large.

The second step is carried out separately for the n sam-
ples, conditional to the numbers ni . It is helpful to eliminate 
the special form of the intensity function by a trick, called 
here ‘size transformation’. (In the time-related literature it is 
called ‘time transformation’.) It uses the cumulative intensity 
function Λ0(x) , which is assumed to be known.

By the transformation the original sizes xij are trans-
formed into values zij by the relation

If the xij for fixed j belong to an inhomogeneous Poisson 
process with cumulative intensity function Λ0(x) , then the 
zij form a piece of a homogeneous Poisson process in the 
interval [0, 1], i.e., the points zij are distributed as independ-
ent uniformly distributed points in [0, 1].

(20)�0 = ∫
xmax

xmin

λ0(x)dx = Λ0(xmax).

(21)zij = Λ0(xij)∕Λ0(xmax).

For testing the hypothesis of independence and uniform-
ity various methods exist. A simple �2-test is described in 
Subsection 5.3.

5  Probability density functions 
and intensity functions

Classical particle size statistics uses the distribution func-
tions Q0(x) and Q3(x) and the corresponding density func-
tions. In point process terms these functions are given by 
the equations (3) and (9), they are simply multiples of the 
cumulative intensity functions Λ0(x) and Λ3(x) . Therefore, 
there is no reason not to work with them also in the point 
process approach.

In particle statistics various forms of Q3(x) are used [1] 
[2]. Two important cases are:

• the RRSB (Rosin–Rammler–Sperling–Bennett) distri-
bution function, 

 where r and x′ are positive parameters
• the GGS (Gates-Gaudin-Schuhmann) distribution func-

tion, 

 where k and x′ are positive parameters.
Note that (23) is an approximation of (22) for very small 
x∕x� with k = r . In both cases it is xmin = 0.

Sometimes so-called three-parameter or shifted distri-
butions are used. For RRSB it is

for use for particle collectives of size larger than xmin > 0.
Since the present paper is particularly interested in q0(x) 

and Q0(x) , the transformation of Q3(x) into Q0(x) is consid-
ered now. The transformation formula is for particle sizes 
in the range 0 < xmin ≤ x ≤ xmax

which is a consequence of equation (11).
In case of xmin = 0 known difficulties arise: Assume that 

Q3(x) is the GGS distribution function with a parameter k 
smaller than 3. Then the corresponding probability density 
function is

(22)Q3R(x) = 1 − exp
(

−(
x

x�
)r
)

for x ≥ 0,

(23)Q3G(x) =
(

x

x�

)k

for 0 ≤ x ≤ x�,

(24)Q3R(x) = 1 − exp
(

−(
x − xmin

x�
)r
)

for x ≥ xmin,

(25)Q0(x) = ∫
x

xmin

t−3q3(t)dt

/

∫
xmax

xmin

t−3q3(t)dt,



 D. Stoyan, G. Unland 

1 3

115 Page 8 of 15

and the integrand in (25) has the form ct−m with m larger 
than 1 and some constant c. Thus the integral takes, caused 
by xmin = 0 , the value ∞ and no Q0(x) and q0(x) do exist. 
Rumpf and Ebert [12] and Alderliesten [15] demonstrated 
the same effect for the RRSB distribution. The lognormal 
distribution is free of this disadvantage [12].

We remark that Bernhardt [1] gives the transformation 
formulas with xmin = 0 , while Stieß [16] correctly has a posi-
tive lower limit of integration.

The authors consider the problem with the transformation 
just discussed not a weak point of the classical theory: The 
RRSB and GGS distributions were originally introduced for 
Q3(x) , where they have worked well, while Q0(x) was out of 
consideration. In contrast, Alerliesten [15] points out that 
the RRSB (and GGS) distribution should not expected to 
describe correctly the small particles outside the range of 
measurement.

However, if one works with intensity functions, all goes 
smoothly. Intensity functions do not need to satisfy an equa-
tion of the form

as a probability density function f(x) has to fulfil. An inten-
sity function

with the q3(x) in equation (26) (with dummy variable t 
replaced by x) is finite for all x > 0 , i.e. a regular object. 
Integrals of the form ∫ z

u
λ0(x)dx with this λ0(x) and z > u 

are finite for u > 0 , giving the mean number of particle sizes 
between u and z. And ∫ z

0
λ0(x)dx = ∞ means simply that 

there are many small particles.
The smooth operation with poles at x = 0 is a mathemati-

cal argument for the use of point process methods in particle 
statistics as already sketched at the end of Section 3.

6  Statistics for fragments of glass balls

6.1  General

Now an example demonstrates the application of meth-
ods of point process statistics for real particles. For this 
purpose experimental results from the Diploma thesis 
Lehmann [17] are used, which studied the fragmenta-
tion of glass balls. The aim is to show how point pro-
cess statistics works, not to find new results in the field 

(26)q3(t) = k(
t

x�
)k−1∕x�

∫
∞

0

f (x)dx = 1

(27)λ0(x) = q3(x)x
−3VT for 0 ≤ x ≤ ∞

of single-particle crushing. Therefore, only a small set of 
data is considered and only one method of particle size 
measurement is used.

Lehmann made systematic crushing experiments with 50 
glass balls of diameter 50 mm. The balls were destroyed 
by the blow of a hammer, with different offered energies 
between 70 and 100 J. Not all glass balls were completely 
destroyed, but only these are of interest here. The following 
reports about the six balls completely destroyed by offered 
energy 75 J. (The results for the other energies are similar.) 
Here the fragment-size parameter is the equivalent diameter, 
therefore xmax = 50 while xmin is assumed to be 0. The equiv-
alent diameters are measured by means of image analysis.

Imaging Particle Analysis is a suitable approach for the 
measurement of collective samples of broken glass parti-
cles, as it enables each particle to be assessed individually. 
Lehmann used a HAVER CPA 4-2 for this task. This device 
uses dynamic imaging particle analysis to measure the size 
and various shape properties of bulk material in the size 
range from approx. 34 μ m to 90 mm. The CPA takes photos 
of the single particles that fall from a vibrating chute and 
uses these particle projections for evaluation. The results can 
then be further processed with the corresponding HAVER 
CpaServ V2.0.2 software. It is possible to assess statistical 
diameters of irregular particles, such as the Feret’s, Martin’s 
or the maximum linear diameters as well as diameters of 
reference circles with equal perimeters or projected areas. 
In this paper the diameters of circles with equal projected 
areas are used.

6.2  Classical statistical analysis

Figure 3 shows the empirical distribution function Q̂3(x) for 
one of the six samples. For small x it has a nearly continuous 
behavior, and it makes sense to write Q̂3(0) = 0 . In contrast, 
for large x the graph shows steps, already for x larger than 
10 mm. The corresponding fragments may be considered as 
‘large’ particles. The distribution function curve is smoothed 
when calculated for six particles, as the red curve shows.

Now turning to number statistics, Fig. 4 shows in blue the 
number histogram of logarithmized sizes (equivalent diam-
eters) ln xi for the same sample as in Fig. 3. The total number 
of fragments in the sample is 109.128. Note that the sizes 
were logarithmized first and then the obtained numbers are 
processed. The histogram is interpreted as an estimate of the 
probability density q0(x) for x > 0.08 mm.

The problems with ultra-fine fragments become vis-
ible. Obviously, for values smaller than ln x = −2.5 , i.e. 
x < 0.082 mm, the histogram is questionable. The last col-
umn at ln x = −3.2 represents 1576 fragments, the next at 
ln x = −2.88 has 1608. It is unknown how many fragments 
are so small that they were not registered.
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Nevertheless, on first view the distribution is close to 
logarithmic normal, some of the readers may consider this 
as a result expected.

The black curve in Fig. 4 is the corresponding empirical 
intensity function or probability density function obtained 
with a kernel estimator with � = 0.1 . Its shape is indeed 
similar to a probability density function of a normal distri-
bution, i.e., in classical thinking the equivalent diameters 
may be considered approximately logarithmic normally 
distributed. Under this assumption the parameters of the 
normal distribution were estimated. Because of the miss-
ing data at the left tail, the standard methods of statistics 
cannot be applied. Therefore, the right side of the histo-
gram was the starting point of parameter estimation.

It is plausible to choose for the mean � the value −1.8 . 
Then, the standard deviation � was chosen with � = 0.625 , 
which guaranties a value of the probability density func-
tion at ln x = −1.8 equal to the value of the black curve at 
ln x = −1.8 . As Fig. 4 shows this leads to a realistic fit for 
the distribution for ln x > −1.8.

Finally two critical remarks against the normal distribu-
tion are given. (1) Even if the values smaller than ln x = −2.5 
are ignored, some asymmetry of the histogram with respect 
to ln x = −1.8 is obvious: On the right-hand side the decrease 
is slower than left. (2) There are too many xi in the right tail 
of the empirical distribution, which are not visible in Fig. 4. 
In order to demonstrate this discrepancy, the expected num-
ber of values ln xi larger than � + 3� = 0.075 or of xi larger 
than 1.08 mm is approximately determined assuming normal 
distribution: The number of values ln xi larger than −1.8 is 
62.154, thus the total number of relevant values is assumed 
to be 2 × 62.154 = 124.308 . The probability that a normally 
distributed random variable with parameters � and � is larger 
than � + 3� is 0.00135. Consequently, the expected number 
is 124.308 × 0.00135 = 167.8 , while the empirical number 
is 718. This shows that the log-normal distribution fails to 
represent the large fragments.

6.3  Point process statistics

Figure 5 shows the empirical intensity function λ̂0(x) . The 
main difference to Fig. 4 is the scale at the ordinate, which 
shows now numbers and not mm−1.

Now the tails of the intensity function are considered in 
detail.

The number distribution for the small fragments cannot 
be determined for very small fragments, because the data 
obtained are doubtful. Maybe the sizes larger than 0.1 mm, 
i.e. ln x > 2.30 merit analysis. Their total number is 96.641. 
A distributional description in the spirit of point process 
statistics is the black curve in Fig. 5 for ln x > −2.30 . This 
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Fig. 3  Empirical distribution function Q̂3(x) for equivalent fragment 
diameters of one glass ball with offered energy 75 J in black. The 
steps of the curve for x > 10 mm correspond to large fragments. Note 
that the number of fragments larger than 10 mm is 40, while the total 
fragment number is 109.128. The empirical Q̂3(x) for six particles 
shown in red is already smooth (colour figure online)

Fig. 4  Histogram of logarithmized equivalent fragment diameters 
of a glass ball with offered energy 75 J, kernel estimate of the prob-
ability density function q0(x) (in black), and fitted normal probability 
density with variance 0.625 (in red) (colour figure online)

Fig. 5  Empirical intensity function λ̂0(x) of logarithmized equivalent 
fragment diameters of a glass ball with offered energy 75 J, in form of 
a histogram and as kernel estimate (black curve)
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curve is shown in a way that the integral over λ̂0(x) from 
−2.30 to 4 is 96.641, as it is expected for an estimate of the 
intensity function λ0(x).

More interesting is the statistical analysis of large frag-
ments. Figure 6 shows the empirical intensity function λ̂0(x) 
for the fragments with x ≥ 9 mm of the same glass ball as 
above, which results from the 1000 largest glass fragments.

When turning to large fragments, the long right-hand side 
tail of the distribution in Fig. 5 becomes visible, which theo-
retically can go until xmax = 50 mm. And just this tail is the 
point of interest, when large fragments are studied. Figure 6b 
shows the corresponding intensity function, a zoomed part 
of the curve in Fig. 6a, which is based on only the 40 frag-
ments with equivalent diameter larger than 10 mm.

For all offered energies the value x = 10 mm turned out 
to be a natural limit for defining ‘large fragments’, i.e., it is 
assumed xu = 10 mm.

Figure 7 shows the empirical intensity functions λ̂0(x) for 
the large fragments for all six completely destroyed glass 
balls for offered energy 75 J. There is a general similarity 
tendency but also some natural variability of the fragment 
distributions of large fragments. Additionally the corre-
sponding averaged intensity function is shown in blue.

In order to demonstrate a possible influence of offered 
energy, Fig. 8 shows the empirical intensity functions for the 
fragments of three glass balls for offered energy 95 J. These 
few data do not support a hypothesis of some dependence 
of the distribution of large fragments on offered energy. For 
all cases of offered energy, [17] comes to the same result, 
which is in agreement with [18], who also did not observe 
an effect for squeezed glass balls when the strain rate was 
varied. Therefore, in the following only the 75 J samples 
are considered.

Finally, the hypothesis is tested that the six black curves 
in Fig. 7 can be understood as they belong to independent 
samples of an inhomogeneous Poisson process with a fixed 
intensity function. Only fragments larger than xu = 10 mm 
are considered.

For this purpose the size transform is used, i.e. equation 
(21), which generates six samples of numbers between 0 and 1, 
which should be uniform in the interval [0, 1]. As cumulative 

Fig. 6  a Plot of the empirical 
intensity function λ̂0(x) for all 
fragments larger than 1.5 mm 
for a single glass ball with 
offered energy 75 J. b Subplot 
for the fragments larger than 
approximately 9 mm. The small 
black segments stand for the 
fragments of sizes larger than 9 
mm. Note the different scales at 
the ordinates
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Fig. 7  Plot of the empirical intensity functions λ̂0(x) for the large 
fragments for all six glass balls with offered energy 75 J. The blue 
curve is the averaged intensity function (colour figure online)
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intensity function the empirical mean cumulative intensity 
function Λ̂0(x) was used, approximated by a smooth function. 
For this purpose the shifted RRSB distribution was used as a 
formal ansatz, for a number distribution, i.e.

With the parameters r = 1.03 , x� = 6.67 and c = 34.04 esti-
mated by a least squares method a good result was found. 
Figure 9 shows the empirical cumulative intensity function 
Λ̂0(x) and the graph of

(28)Λ0(x) = c
[

1 − exp
(

−(
x − 10

x�
)r
)]

for x ≥ 10.

By the way, since the exponent r is so close to 1, one could 
also speak about a shifted exponential distribution. (One 
is close to a ‘heavy tail’, as said by statisticians if r were 
smaller than 1.)

The size transformation led to six sets of points between 
0 and 1, which were tested for uniform distribution. For this 
the index-of-dispersion test was used, see [19], p. 87, which 
is suitable for the small numbers of points in the samples. 
In the test, the interval [0, 1] was divided into k = 10 subin-
tervals of length 0.1, the numbers of points within these 
intervals were counted and for each ball the dispersion index

was calculated, where x is the mean of the ten numbers and 
s2 the sample variance. If c is between �2

k−1,�∕2
 and �2

k−1,1−�∕2
 , 

the uniformity hypothesis is not rejected. For the error prob-
ability � = 0.05 the critical �2-values are 2.9 and 19.0. For 
all balls values of c between 4.1 and 17.4 were observed.

Since for all six balls the Poisson hypothesis is not 
rejected, it is assumed that the inhomogeneous Poisson pro-
cess is an acceptable model for the large fragments of the 
glass balls.

7  Goodness‑of‑fit testing

In many branches of engineering statistics, goodness-of-
fit tests are frequently used. An example is the test of the 
Weibull distribution, which is, by the way, mathematically 
the same as the RRSB distribution.

In contrast, the authors do not know any paper on for-
mal goodness-of-fit testing in particle statistics. Figures of 
a nature as Fig. 8 above are a popular equivalent. (The book 
[1] considers some tests in the particle context, but only 
parameter tests such as t- and F-tests and not goodness-of-fit 
tests.) Three facts may explain this: (a) particle statistics has 
no random samples in the classical sense, (b) often the data 
are of a minor quality, contain outliers and long tails, and (c) 
the application of tests for Q3(x) is not obvious.

In the following an approximate goodness-of-fit �2-test 
for Q0(x) in the Poisson process case is proposed. This fol-
lows the example of the test described in [11] for the homo-
geneous Poisson process.

Assume that there is a sample of N particles. The test is 
made conditionally, for the number N. The null hypothesis 
is that the data follow some theoretical distribution func-
tion Q0(x) . The form of the distribution is determined by p 
parameters, which are estimated from the sample data.

(29)Λ̃0(x) = 34.04
[

1 − exp
(

−(
x − 10

6.67
)1.03

)]

for x ≥ 10.

(30)c =
(k − 1)s2

x
,
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Fig. 8  Plot of the empirical intensity functions λ̂0(x) for the large 
fragments for three glass balls for offered energy 95 J

10 20 40 50

0
10

20
30

40

30
x mm

Λ

Fig. 9  Plot of the mean empirical cumulative intensity function Λ̂0(x) 
for the large fragments of all six glass balls with offered energy 75 J, 
in blue. Furthermore, the approximating function Λ̃0(x) is shown in 
black (colour figure online)
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For the test, the interval [xmin, xmax] is divided in k classes 
or bins I1,… , Ik , Ii = [ai−1, ai] . (These intervals may belong 
to classes defined by sieving.) For each class a theoretical 
frequency mi is determined and compared with the empirical 
class frequency Ni . The mi are calculated by

with

Then

is the test statistic.
If X2

0
 is larger than the �-percentage point of the Chi 

square distribution with k − p − 1 degrees of freedom, 
denoted by �2

�,k−p−1
 , then the null hypothesis is rejected with 

error probability �.
In the case of an inhomogeneous Poisson process exactly 

the situation in the classical �2-test is given: Ni follow a so-
called multinomial distribution. The standard condition that 
the parameters are estimated with the maximum likelihood 
method is often not satisfied in particle statistics; remember 
the graphical methods in RRSB-statistics. However, with 
‘good’ estimates the test may work nevertheless.

Probably, for Q3(x) a similar test can be constructed. 
However, this problem has not been solved yet. An alterna-
tive could be a simulation test, but this should be the theme 
of another paper.

8  Three cases of statistical calculations

In order to compare the classical distribution-function 
approach (DF approach) with the point-process approach 
(PP approach), now three typical cases of statistical calcula-
tions are considered: pooling some samples to a larger sam-
ple, pooling two sub-samples to a full sample and statistics 
for very large particles.

8.1  Case 1: pooling of samples

Assume that there are n statistically independent samples of 
particles and it is wanted to describe the union of all these 
as one unit by distribution and intensity function. (In point 
process terminology one speaks about ‘superposition’.)

The solution of this problem is simple, presented here for 
Q3(x) and λ3(x) . Let Vi the volume of sample i, V =

∑n

i=1
Vi , 

and let Q3,i(x) be the distribution functions and λ3,i(x) be the 
intensity functions. Then

mi = N ⋅ pi

pi = Q0(ai) − Q0(ai−1).

(31)X2
0
=

k
∑

i=1

(Ni − mi)
2

m2
i

and

Note that the superposition of independent Poisson pro-
cesses is again a Poisson process with intensity function 
equal to the sum of the intensity functions of the compo-
nents. Furthermore, in the theory of point processes it is 
shown that the superposition of many independent point pro-
cesses is approximately a Poisson process [20], section 11.2.

Mixtures of standard distributions, i.e. multimodal size 
distributions, may be seen as results of superpositions of 
point process samples. However, point process statistics 
does not simplify the difficult problem of decomposition of 
distributions [21].

8.2  Case 2: piecewise analysis

Sometimes a sample of particles is divided into two parts 
determined by a size limit xdiv , into {x ≤ xdiv} and {x > xdiv} , 
which are measured with different methods. At the end the 
sub-results have to be pooled to a final result for the whole 
sample. This case is studied in [1], page 273, in the distri-
bution-function approach. It is re-considered here for Q3(x) 
and Λ3(x) . (It is analogous for Q0(x) and Λ0(x).)

DF approach Analyzing only the particles with sizes 
larger than xdiv the true distribution function Q3(x) is meas-
ured for {x > xdiv} . It is positive at x = xdiv (equal to the vol-
ume fraction of all particles smaller than xdiv ) and satisfies 
Q3(xmax) = 1 . For the particles smaller than xdiv the distribu-
tion function Q∗

3
(x) is estimated with a distribution-function 

estimator, with Q∗
3
(xmin) = 0 and Q∗

3
(xdiv) = 1 . Then

PP approach The intensity function λ3(x) can be directly 
estimated for all x. The cumulative intensity function Λ3(x) 
can be directly estimated for the x smaller than xdiv . For the 
larger x (ignoring the particles smaller than xdiv ) a cumu-
lative intensity function Λ∗

3
(x) is estimated, which satisfies 

Λ∗
3
(xdiv) = 0 . Then

8.3  Case 3: statistics for very large particles

An important problem of particle statistics is that of statis-
tics for very large particles, statistics of the tail of extremely 

(32)Q3(x) =

n
∑

i=1

ViQ3,i(x)∕V

(33)λ3(x) =

n
∑

i=1

λ3,i(x).

(34)Q3(x) = Q3(xdiv)Q
∗
3
(x) for xmin ≤ x ≤ xdiv.

(35)Λ3(x) = Λ3(xdiv) + Λ∗
3
(x) for x ≥ xdiv.
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big particles. In particular, the extent of appearance of par-
ticles larger than a limit size xL is of considerable interest.

For this purpose the complements of distribution func-
tions and intensity functions are used,

and

DF approach The quantity Q3(xL) is equal to the mean vol-
ume fraction of all particles larger than xL . This gives valu-
able information on the occurrence of large particles, which 
is, however, not sufficient. Also the number of large particles 
is of interest! Therefore, somewhat like Q0(x) must be taken 
into account. However, this usually cannot be the cumulative 
distribution function for all particles, since often small par-
ticles cannot be measured precisely. Instead, a conditional 
distribution function should be used that corresponds to all 
particles larger than some limit xu . This function could be 
denoted as Q0(x∣xu).

The corresponding quantity Q0(xL∣xu) denotes the mean 
number proportion of particles larger than xL from all par-
ticles larger than xu . Given the total number Nu of particles 
larger than xu , Nu ⋅ Q0(xL∣xu) is the mean number of particles 
larger than xL.

PP approach The quantity Λ3(xL) is equal to the mean 
volume of all particles larger than xL in the sample consid-
ered and analogously Λ0(xL) denotes the mean number of 
particles larger than xL . If the point process can be consid-
ered as a Poisson process, the number of these large particles 
follows a Poisson distribution with mean Λ0(xL).

We remark that the problem of statistics for very small 
particles in a wide size distribution is not addressed here. 
This issue could be subject to future research.

9  Discussion

The Introduction already mentioned that the use of point 
process ideas in particle size statistics, in particular the use 
of the intensity function, is not entirely new in the context of 
particle statistics. Indeed, it appears in hidden form and with 
another notation in the papers [3, 4], known for a physically-
based derivation of the Weibull and RRSB distribution in the 
context of fragmentation.

Brown and Wohletz [4] consider fragment or particle 
masses m (instead of x in the present paper) and use a 
function n(m) which “is the number distribution in units of 

Q0(x) = 1 − Q0(x),Q3(x) = 1 − Q3(x)

Λ0(x) =Λ0(xmax) − Λ0(x),Λ3(x)

=Λ0(xmax) − Λ3(x) = ∫
xmax

xL

λ3(t)dt.

particles per unit mass of mass m between m and m + dm ” 
and derive the equation

Then it is written as

“where NT  is the total number of fragments in the 
distribution.”

The latter seems to be not correct: Since n(m) is by defi-
nition a deterministic quantity, also NT  should be deter-
ministic, while the total number of fragments is, of course, 
a random variable. Therefore, NT should be correctly the 
mean total number of fragments, in the notation of the 
present paper

And n(m) is not a probability density function, but an inten-
sity function.

Nevertheless, the main result of the paper [4] is true.
In the introduction of his text [5] Bernhardt, the author 

of [1], writes on page 118: “Das Ergebnis einer Partikel...
größenmessung liegt primär immer als ein System von 
diskreten Werten vor. Gleichwohl hat es sich eingebürgert, 
ihre Darstellung und Auswertung analog zur mathema-
tischen Statistik als Wahrscheinlichkeitsverteilung einer 
stetigen Zufallsgröße X zu behandeln.” In English: “The 
result of a particle size analysis is always given as a sys-
tem of discrete values. Nevertheless it is standard to treat 
its presentation and analysis analogously to mathematical 
statistics as for a probability distribution of a continuous 
random variable X.”

These words can be interpreted as a statement that 
Bernhardt had the same basic idea as that of this paper, 
but he did not apply it. Indeed, the ‘discrete values’ are the 
‘points’ of the present paper.

The assumption of an inhomogeneous Poisson process 
is very important. If it is really true, the whole statistics is 
greatly simplified. This means first that there is no inner 
structure or order in the sequence of size-ordered frag-
ments; nobody has mentioned until now such phenom-
enon. Second, for the number statistics of particle sizes the 
whole point-process statistics is the classical distribution-
function-based statistics with Q0(x) plus some statistics for 
the number of large particles. The latter is quite simple, 
it is only statistics for a Poisson variate, where the mean 
completely determines the distribution.

In order to prove the Poisson assumption, the authors 
recommend systematic statistical analyses of particles of 

n(m) =
NT

m1

(

m

m1

)�

exp

[

−
(m∕m1)

�+1

� + 1

]

.

NT = ∫
∞

0

n(m)dm,

NT = E(N([0,∞)) = Λ0(∞).
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different origin with testing the Poisson process hypothe-
sis. The superposition fact in Sect. 8 strengthens the belief 
that the Poisson process is indeed a universal model for 
particles collectives.

Since number statistics makes sense only for large par-
ticles, for particle sizes larger than a limit xu , the forms of 
q0(x) have to be adapted to this case. This means in the case 
of the RRSB distribution the shifted form of the distribution 
as in (28) should be used.

Our data are in the order of typical lab sieve analysis—
and already there it makes sense to study sub-samples of 
very large particles. However, the main problem we have in 
mind are statistics for rocks in quarries after blasting. We are 
still looking for suitable datasets and hope to get such, which 
may result from image analysis.

10  Conclusions

The present paper has shown that particle size statistics can 
be refined by application of ideas of point process statistics. 
Nevertheless, if only one sample is considered (n = 1) and 
only Q3(x) and q3(x) are wanted to be estimated, the classical 
distribution-function approach is often sufficient. Problems 
appear when the large jumps in the empirical distribution 
function Q̂3(x) for large x cannot be ignored, see Fig. 3. 
Then, for precise statistics more than one sample should be 
analysed and important additional variability may become 
visible if not fixed as in the experiment with the glass balls): 
the total volume V(I) turns out to be variable and has to be 
analysed statistically, too.

The cumulative intensity function Λ3(x) has then the form

where Q3(x) can be determined as usually and the determi-
nation of the mean volume VT requires extra statistics. The 
result of the statistical analysis may be given as Q3(x) plus 
VT.

It is similar with the number of particles. The cumulative 
intensity function Λ0(x) has the form

However, for small x the determination of Q0(x) can be ques-
tionable or impossible. The number intensity λ0(x) can be 
used to determine the mean number of particles larger than 
a limit xL as

and the latter integral is Λ0(xL).
In the Poisson process case, the number of particles larger 

than xL has a Poisson distribution with mean Λ0(xL).

(36)Λ3(x) = VT ⋅ Q3(x) for xmin ≤ x ≤ xmax,

(37)Λ0(x) = NT ⋅ Q0(x) for xmin ≤ x ≤ xmax.

(38)E(N([xL, xmax])) = ∫
xmax

xL

λ0(x)dx
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