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Abstract
Potentially habitable icy Ocean Worlds, such as Enceladus and Europa, are scientifically compelling worlds in the solar 
system and high-priority exploration targets. Future robotic exploration of Enceladus and Europa by in-situ missions would 
require a detailed understanding of the surface material and of the complex lander-surface interactions during locomotion 
or sampling. To date, numerical modeling approaches that provide insights into the icy terrain’s mechanical behavior have 
been lacking. In this work, we present a Discrete Element Model of porous planetary ice analogs that explicitly describes 
the microstructure and its evolution upon sintering. The model dimension is tuned following a Pareto-optimality analysis, 
the model parameters’ influence on the sample strength is investigated using a sensitivity analysis, and the model parameters 
are calibrated to experiments using a probabilistic method. The results indicate that the friction coefficient and the cohesion 
energy density at the particle-scale govern the macroscopic properties of the porous ice. Our model reveals a good corre-
spondence between the macroscopic and bond strength evolutions, suggesting that the strengthening of porous ice results 
from the development of a large-scale network due to inter-particle bonding. This work sheds light on the multi-scale nature 
of the mechanics of planetary ice analogs and points to the importance of understanding surface strength evolution upon 
sintering to design robust robotic systems.

Keywords  Ice behavior · Planetary ice analogs · Microstructure · Probabilistic model calibration · Cone penetration test · 
Discrete element method (DEM)

1  Introduction

One of the main challenges in developing robots for in-situ 
space exploration is the uncertainty associated with the 
surface properties of the planetary bodies. Properties like 
ultimate bearing capacity and penetration resistance affect 
the ability of space robots to land, sample, and explore their 
environment. Hence, estimating these properties is critical 
for the design and optimization of the robots’ hardware and 

control system and the development of suitable sampling 
systems.

Several robotic mission concepts are under development 
to explore Ocean Worlds [10, 34]. Ocean Worlds are bodies 
in our solar system that are considered potentially habit-
able or inhabited. Saturn’s moon Enceladus and Jupiter’s 
moon Europa recently gained significant interest among 
the scientific community, and are now regarded as two of 
the most likely Ocean Worlds to harbor extraterrestrial life. 
Indeed, they appear to contain all essential ingredients of 
life, namely liquid water, energy, and nutrients.

Enceladus and Europa are likely to harbor an internal 
ocean of liquid water underneath their thick ice shells 
[66, 82]. Enceladus’ internal ocean spews material from 
large surface fractures around its southern pole known as 
the Tiger Stripes. The plume formed by the confluence of 
these geysers is primarily composed of micron-sized parti-
cles dominated by water ice [83] and are partly deposited 
back on the surface to form the outermost crust [44, 50, 
81]. This unique geological context provides direct access to 

 *	 E. Marteau 
	 eloise.marteau@jpl.nasa.gov

1	 Jet Propulsion Laboratory, California Institute 
of Technology, Pasadena, CA, USA

2	 ETH Zürich, Zurich, Switzerland
3	 Planetary Science Institute, Tucson, AZ, USA
4	 Thayer School of Engineering, Dartmouth College, Hanover, 

NH, USA

http://orcid.org/0000-0001-7696-6264
http://crossmark.crossref.org/dialog/?doi=10.1007/s10035-021-01167-6&domain=pdf


	 W. Dhaouadi et al.

1 3

12  Page 2 of 20

subsurface material, making Enceladus a high-priority target 
for planetary missions in the search for biosignatures [54]. 
Europa is also thought to be geologically active with plumes, 
though definitive data remain elusive [41]. The upcoming 
Europa Clipper mission [65] may confirm the presence of 
such features.

After the plume material is deposited on the surface, the 
size and microstructure of the ice particles are expected to 
evolve via sintering, transforming initially unconsolidated 
deposits into consolidated porous ice [50]. Sintering of ice 
is a metamorphism that describes the diffusion of water 
molecules within and between the ice particles, as well as 
the evolution of inter-particle bonds. Sintering leads to an 
increase in the inter-particle neck size and the densifica-
tion of the aggregates, resulting in the material as a whole 
becoming stronger over time [5]. Sintering is a temperature 
and particle-size dependent process in which the evolution 
rate increases monotonically with increasing temperature 
and decreasing particle size. While earlier work provided an 
improved understanding of sintering timescales in planetary 
environments [60], planetary ice sintering remains a poorly 
understood process that is now the subject of active research.

In a recent study, laboratory icy plume deposit analogs 
were produced and left to sinter over extended periods of 
time and at several temperatures [16]. Cone penetration 
tests were performed at frequent intervals to investigate the 
mechanical strength of the samples. [16] showed that the 
observed temperature dependence of the strength evolution 
is commensurate with a mechanism dominated by diffusion 
of water molecules on the surface of ice particles. Their 
study revealed a link between thermodynamic processes and 
sample strength, but was not suited to understand and quan-
tify the mechanical properties of planetary ice analogs at 
length scales ranging from particle- to macro-scale.

In this work, we develop a numerical model that aims to 
unravel the roles of particle-scale properties of the porous 
ice in the overall mechanical behavior. We use the Discrete 
Element Method (DEM) to represent the sintered ice parti-
cles and simulate cone penetration tests on ice plume deposit 
analogs at different consolidation levels. DEM allows study-
ing complex behavior via simple particle-particle interac-
tions. Alternative approaches to model this ice are presented 
in the Supplementary Material (Text S1). Our model, com-
posed of homogeneous particles that interact via contacts, 
mimics the material’s microstructure and reflects the ice 
properties both at the particle and at the contact level. As a 
result, the macroscopic mechanical behavior emerges from 
the microstructure and micromechanical interactions. Our 
model also describes the contacts and the sintering process 
based on the physics of the ice.

DEM has seen rapid development both in academic 
research [64, 86] and in engineering to solve problems 
involving granular material, such as in the mining, food, and 

pharmaceuticals industries. DEM has also been recognized 
as an accurate and computationally effective tool to simu-
late terrain–tool interactions [55, 79]. The method has been 
used to simulate ice, particularly for applications involving 
interactions with offshore structures and ship hulls [45, 68, 
85]. [46] developed a DEM-based model but for sintered 
snow. However, to the best of our knowledge, no previous 
study has attempted to model sintered porous granular ice.

In this work, the ice particles are treated as rigid bodies 
that interact via contacts. The contact parameters are cali-
brated with experimental data of cone penetration tests. The 
inter-particle solid bonds are modeled with a cohesive force 
following a Simplified Johnson-Kendall-Roberts (SJKR) 
model [48]. Unlike other bond models [2, 7, 23, 26, 33, 52, 
55, 67, 74], the SJKR model allows the bonds to fracture and 
reform dynamically throughout the simulation, allowing for 
indefinitely long simulations with large deformations and 
arbitrary interactions.

The paper is organized as follows. In Sect. 2, we briefly 
describe the ice preparation and testing methods. We also 
describe the fundamentals of DEM and detail the contact 
models used in our study. In Sect. 3, we introduce the simu-
lation setup, the modeling procedure, and the parameters 
of our model. In Sect. 4, we investigate how to reduce the 
model complexity in an optimal and rigorous manner. In 
Sect. 5, we calibrate the model to fit experimental data fol-
lowing a proposed probabilistic method. Finally, we present 
and interpret the results in Sect. 6.

2 � Methodologies

2.1 � Laboratory ice analog preparation and testing

To create a laboratory analog of the ice plume deposits, 
deionized liquid water was atomized into liquid nitrogen. 
The water droplets instantly crystallize and form ice par-
ticles. This formed fine-grained ice was stored in sealed 
containers and left to sinter at four different temperatures 
(193 K, 223 K, 233 K, and 243 K) for time periods up to 
14 months. The starting ice particles had a log-normal size 
distribution with a median diameter of 12 μm. The sam-
ples exhibited a porosity of 51.5% ± 1.6% , which remained 
sensibly constant throughout the aging process. The cone 
penetration resistance has been routinely measured using an 
in-house-developed experimental setup illustrated in Fig. 2a. 
The cone penetration tests consisted of driving a rod with a 
conical tip of 10mm diameter into the sample at a constant 
speed of 10mm.s−1 . The vertical force acting on the cone tip 
is measured in relation to the penetration depth and used to 
derive the ice strength. A complete description of the mate-
rial preparation, the measurement procedure, and a summary 
of the experimental results are presented in [16].
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2.2 � DEM modeling

In the DEM framework, as first described by [21], discrete 
rigid-body particles (or elements) interact with each other, 
transferring forces and torques via contacts. One appealing 
feature of DEM is that no assumptions about the material 
behavior at the continuum scale are required; instead, the 
material continuum behavior emerges from the large number 
of interactions at the particle scale [64]. In that sense, it is 
a faithful representation of the underlying physics. None-
theless, DEM has a prohibitively high computational cost, 
limiting the simulation time and the number of particles in 
a given simulation.

In DEM, the translational and rotational motion of each 
individual particle is calculated by solving Newton’s second 
law of motion at each time step, as summarized in the fol-
lowing equations:

where mi , Ii , vi , �i are respectively the mass, the moment of 
inertia, the translational velocity vector, and the angular 
velocity vector of a particle i. g is the gravity vector, Fn

ij
 , Ft

ij
 , 

and �r
ij
 are respectively the normal force, the tangential force, 

and the rolling resistance applied on particle i from the inter-
action with particle j. Rij is the vector between the center of 
particle i and the contact point with the particle j. In this 
work, Eqs. (1) and (2) are solved using the Velocity Verlet 
scheme. More details on integration schemes are presented 
in the Supplementary Material (Text S2).

Prior to solving Eqs. (1) and (2), the forces and torques 
exerted on each particle by neighboring particles or boundaries 

(1)mi

dvi

dt
=
∑

j

(Fn
ij
+ Ft

ij
) + mig

(2)Ii
d�i

dt
=
∑

j

(Rij × Ft
ij
− �

r
ij
)

are calculated using the three contact models depicted in 
Fig. 1. The normal and tangential forces at the contact point, 
respectively Fn and Ft , are modeled using the Hertz-Mindlin 
no-slip contact model with a linear spring-dashpot [59], as 
shown in Fig. 1a. In this framework, the normal and tangential 
forces have an elastic and a viscous component, denoted by 
the superscripts e and v, and are decomposed in the following 
equations:

Additionally, the tangential force is governed by the Cou-
lomb law of friction |Ft| ≤ �|Fn| , where � is the friction 
coefficient. Beyond this limit, slippage between particles 
occurs. The elastic force in the normal direction Fe

n
 is 

based on the classical Hertz’s theory of contact between 
two spheres [36, 47]. It assumes small elastic strains, small 
contact surfaces, and an ellipsoidal distribution of contact 
stresses. The elastic force in the tangential direction Fe

t
 is 

based on Mindlin’s theory [59]. It is determined by both the 
normal and tangential overlap, respectively �n and �t . The 
tangential overlap �t stems for the tangential velocity mis-
match of two particles at their contact point. These models 
describe non-linear normal elastic force-displacement rela-
tionships which are expressed as follows:

where kn and kt are the contact’s normal and tangential elas-
tic constants, R∗ =

RiRj

Ri+Rj

 the equivalent radius of the two 

bodies in contact, Ri the radius of the i-th particle, 
G∗ = 1∕(

2(2−�i)(1+�i)

Ei

+
2(2−�j)(1+�j)

Ej

) the equivalent shear mod-

(3)Fn = Fe
n
+ Fv

n

(4)Ft = Fe
t
+ Fv

t

(5)Fe
n
= −kn�n =

4

3
E∗

√
R∗��n��n

(6)Fe
t
= −kt�t = 8G∗

√
R∗��n��t

Fig. 1   Summary of the DEM contact models a Hertz-Mindlin model b Constant Directional Torque (CDT) rotational friction model c) Simpli-
fied Johnson-Kendall-Roberts (SJKR) cohesion model
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ulus, E∗ = 1∕(
1−�2

i

Ei

+
1−�2

j

Ej

) the equivalent Young’s modulus, 

�i the Poisson’s ratio of the i-th particle, and Ei its Young’s 
modulus.

The viscous components in Eqs. (3) and (4) allow the 
system to dissipate energy to reach a steady state packing 
in reasonable time. In their original formulation, [21] pro-
posed an expression of the critical damping ratio � based 
on the critical damping time of a single degree-of-freedom 
spring mass dashpot system. [84] proposed that the critical 
damping ratio � derives from the coefficient of restitution 
e - a physical parameter of the particles that characterizes 
the energy lost during collision and plastic straining - such 
that � = −ln(e)∕

√
ln(e)2 + �2 . When � = 1 , the system is 

considered critically damped and reaches steady-state 
packing in the shortest achievable time. The normal and 
tangential viscous forces are expressed as follows:

where �n and �t are the normal and tangential viscoelastic 
damping constants, vn and vt are the normal and tangential 
components of the relative velocity at the contact point, 
m∗ =

mimj

mi+mj

 is the equivalent mass. Sn and St are, respectively, 
the normal and tangential stiffness and are defined by 
Sn = 2E∗

√
R∗��n� and St = 8G∗

√
R∗��n�.

The rolling resistance represents the torques transmitted 
at the particles’ contact region. The contact region formed 
when two particles are pushed together under a normal load 
can transfer torque owing to frictional forces distributed over 
the contact region. Thereby, the magnitude of the rolling 
resistance is proportional to the normal force–the source of 
the contact surface–and to a friction coefficient. It is calcu-
lated using a rolling friction model, as shown in Fig. 1b. 
While several rolling models exist [1, 43, 93], the Constant 
Directional Torque (CDT) is the most commonly used in 
DEM research owing to its relatively accurate and efficient 
calculations. In this model, the resistive torque �r is propor-
tional to the normal force Fn and is oriented in the direction 
of the relative rolling motion �ij

|�ij|
 . It is expressed as 

follows:

where �r is the coefficient of rolling friction and �ij is the 
relative angular velocity of particle i with respect to par-
ticle j. Although the rolling friction has been somewhat 

(7)Fv
n
= �nv

n = −2

�
5

6
�
√
Snm

∗vn

(8)Fv
t
= �tv

t = −2

�
5

6
�
√
Stm

∗vt

(9)�r = −�rR
∗|Fn|

�ij

|�ij|

successfully used to model particle shape [88], it remains 
unclear whether it is a physical property [88, 93].

To represent inter-particle bonding due to sintering, we 
consider a supplemental cohesion model shown in Fig. 1c. 
Several bond models have been proposed like the dual spring 
[23], the Euler-Bernoulli [7, 26], the cohesive beam [2, 74], 
the bonded particle [33, 55], the vector-based [52], and the 
parallel bond [67] models. These models typically describe a 
rigid bond between particles that forms initially and remains 
until breakage occurs. As a result, they can only be used to 
run short simulations with restricted interaction types.

On the other hand, the Johnson-Kendall-Roberts (JKR) 
model [48] acts by adding an additional normal force, also 
known as pull-out force, which tends to maintain the contact. 
The pull-out force corresponds to the force needed to sepa-
rate two particles with zero overlaps. It can vanish and reap-
pear throughout the simulation depending on the particle 
contacts, allowing the bond to fracture and reform dynami-
cally. The JKR model was first developed from the observa-
tion of necks forming around the contact area of adhesive 
solids. It accounts for the electrostatic interactions such as 
the Van der Waals forces and other physical and chemical 
surface interaction effects, and, thus, its formulation depends 
on the material’s surface energy � [48].

In our work, we employ the simplified version of the JKR 
model (SJKR), in which the area increment caused by the 
formation of the neck is ignored, and the effective contact 
area is simply calculated as the intersection of the two par-
ticles. The cohesive force in the SJKR model is calculated 
as follows:

where Ω is the specific cohesion energy density per unit 
volume (J/m3 or Pa) and �a2 is the circular contact area. 
This cohesive force also implicitly represents the resistance 
of the inter-particle bond to shear and bending. Because the 
maximal tangential force Ft and resistive torque �r are pro-
portional to the normal force, their magnitudes increase with 
the additional normal force due to the cohesion force |Fcoh| . 
The contacts configuration used in this study is summarized 
in the Supplementary Material (Table S1).

3 � Simulation of porous granular ice

3.1 � Simulation setup

The DEM simulations are performed using the open-source 
code LIGGGHTS© [51]. The cone geometry is replicated 
at true scale. The cone has a diameter of D

cone
= 10mm . 

The ice samples are cylinders having a diameter of Dcyl 
and a height of H = 130mm , which is approximately 

(10)|Fcoh| = Ω�a2
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equal to the height of the experimental samples. The cone 
was meshed using a non-uniform grid, where the average 
mesh size is 0.2mm around the cone tip and 2mm around 
the cone base and at the shaft. The mesh size was chosen 
to be approximately an order of magnitude smaller than 
the particle size to ensure an accurate transfer of forces 
between the particles and the solid. The particle diameter 
in our study ranged from 1.5mm to 8mm . The visuali-
zation of the simulations was performed using ParaView 
(version 5.2.0) and the postprocessing using a custom 
code implemented on MATLAB© (version r2018b). The 
simulations were run on Lonestar5 - a high-performance 
supercomputer at the TACC facilities (Texas Advanced 
Computing Center)–and took advantage of LIGGGHTS’s 
parallel processing capabilities. To this end, an MPI (Mes-
sage Passing Interface) framework was used to compile a 
parallel version of LIGGGHTS. Up to four nodes, each 
with two 12-core (Xeon E5-2690 v3 – Haswell 2.60 GHz) 
processing cores, were used for the various simulations. 
On this setup, a typical simulation takes about two hours.

To simulate the cone penetration test, the ice particles 
are poured into a cylinder from a height approximately 
equal to the final height of the sample. The particles are 
allowed sufficient time to settle under terrestrial gravita-
tional conditions. The cone is then driven at a constant 
velocity of 100mm.s−1 towards the bottom of the sample. 
It should be noted that, due to computational limitations, 
the penetration velocity was increased by a factor of ten 
relative to the experimental penetration speed. The simu-
lation is terminated when the cone reaches 20mm before 
the bottom of the sample. Fig. 2 shows a snapshot of the 

simulation at t = 0 s and t = 0.5 s cut along the middle of 
the sample.

3.2 � Model input parameters

In our study, we varied six parameters, namely the particle’s 
Young’s modulus Ep , the friction coefficient � , the rolling 
friction coefficient �r , the cohesion energy density Ω , the 
particle radius R, and the sample size Dcyl . The parameters’ 
range and all other model input parameters are summarized 
in Table 1. � , �r , Ω , Ep are the degrees of freedom of the 
model. The range of particle properties is taken to be 1000 
to 10 times lower than the bulk ice modulus owing to the 
peculiar microstructure of our porous ice [25, 63, 76]. The 
model’s sensitivity to these parameters is investigated exten-
sively in Sect. 4.3. The particle radius R and the domain size 
Dcyl are the hyper-parameters of the model and are investi-
gated extensively in Sect. 4.1.

To reduce the complexity of the model, we equate the 
particle-cone friction coefficients to the particle-particle 
friction coefficients, i.e. �pp = �pc and �r,pp = �r,pc . The par-
ticle’s density � was derived from the density of homogene-
ous polycrystalline isotropic ice at phase Ih . Even though 
the density of ice decreases slightly with temperature by 
∼ 0.1 kg.m−3∕K [39], for simplicity, we assume a constant 
density at the reference temperature (i.e., T = 233 K). The 
Poisson’s ratio �p was taken as the average over our experi-
mental temperature range [24, 25, 61, 63, 76, 80]. The par-
ticle-particle coefficient of restitution epp and particle-cone 
coefficient of restitution epc were obtained from previous 
studies on collision between, respectively, two ice particles 
[38], and an ice particle and an ice block [37].

Fig. 2   a Custom cone pen-
etrometer apparatus used in [16] 
to measure the cone penetra-
tion resistance of sintered ice 
samples. Dimensions are in mm 
b (left) DEM simulation of a 
cone penetration test of sintered 
ice at t = 0s (right) Cut-off view 
at the sample median at t = 0.5 s 
showing the particles in contact 
with the cone along with the 
cone dimensions. The cone 
geometry is replicated at scale. 
In the presented case, the sam-
ple diameter is Dcyl = 100mm 
and the particle radius is 
R = 2mm
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Table 1 also reports the range of time step values used in 
the Velocity Verlet integration scheme. As the simulation 
time step is affected by both the particle properties and the 
particle size, the time step is adjusted for each simulation to 
match the critical time step to ensure algorithmic stability. 
The calculation of the critical time step is discussed in detail 
in the Supplementary Material (Text S3).

3.3 � Model response variables

To study the response of the ice sample, we measure the 
force reaction on the cone upon penetration, which, accord-
ing to Newton’s third law, is equal to the force required to 
drive the cone at the given velocity. The force is extracted 
along three directions, with the Z-axis aligned with the 
cone axis. The X- and Y-axes are orthogonal to each 
other but arbitrarily oriented relative to the sample due to 
the symmetry of the problem. The stress components �x , 
�y and �z are derived by dividing the components of the 
force vector by the largest cross-sectional area of the cone 
( Acone = 78.5mm2).

Figure 3a shows a typical stress response of a cone pene-
tration simulation. We note that the stress components along 
the X- and Y-axes are not precisely equal, meaning that the 
problem is not perfectly symmetrical. This is primarily due 
to the granular nature of the material and the non-symmetry 
in the particle configuration.

The stress results from the top three centimeters starting 
of the samples are excluded from the analysis. It is suspected 

that the derived strength in this region is not representative 
of the sample strength since the tip influence zone has not 
yet fully developed [73]. Similarly, the stress results from the 
bottom three centimeters of the sample are excluded from 
the analysis. In this region, the tip influence zone interacts 
with the bottom of the sample, which distorts the strength 
measurements. The stress results in the remaining proof 
region are the most representative of the true strength of the 
specimen. The tip influence zone in this region is considered 
to be nearly undistorted and uniform. Figure 3a summarizes 
the extent of these regions.

To reduce the dimensionality of the model response, we 
extract a number of summary statistics from the stress pro-
files, namely the cone penetration resistance �i , the disper-
sion factor s�i , the penetration energy density Ei along the 
three axes, and the strength-depth correlation factor � . These 
metrics can be calculated as follows:

(11)
�i =

1

N

N∑

k=1

�i,k with

i ∈ {x, y, z}

(12)
s�i =

√√√√ 1

N − 1

N∑

k=1

(�i,k − �i)
2 with

i ∈ {x, y, z}

Table 1   Summary of the model 
input parameters available from 
literature along with the search 
range for the unknown model 
parameters. All values are taken 
for a constant temperature of 
248 K, except for the particle 
density which is taken at 233 K

Parameters Unit Symbol Value References

Cone Cone Young’s modulus MPa Ec 2e5 [53]
Cone Poisson’s ratio – �c 0.27 [53]

Particle Particle Young’s modulus MPa Ep 10–1000 This study [76]
Particle Poisson’s ratio – �p 0.32 [25]
Particle radius mm R 0.75-4 This study
Particle density kg.m−3 � 920 [39]

Interactions Coefficient of restitution
      Particle-particle – epp 0.36 [38]
      Particle-cone – epc 0.88 [37]

Coefficient of static friction
      Particle-particle – �pp 0.2–2.5 This study [77]
      Particle-cone – �pc 0.2–2.5 �pc = �pp

Coefficient rolling friction
      Particle–particle – �r,pp 0.2–5.5 This study
      Particle–cone – �r,pc 0.2–5.5 �r,pc = �r,pp

Cohesion energy density
      Particle-particle MPa Ω 0.02–120 This study

Sample Cylinder diameter mm Dcyl 40–160 This study
Simulation Time step �s Δt 0.5–2 This study

Cone penetration speed mm. s−1 V 100 This study
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where �i,k is the stress component along the i-axis meas-
ured at depth zk . Figure 3b provides a visual depiction of the 
extracted summary statistics. �i is indicative of the average 
sample strength, s�i of the dispersion of the stress, Ei is of 
the total energy required for the cone to penetrate through 
the sample, and the coefficient � is indicative of any depth 
dependency in the stress profile.

(13)
Ei = ∫

l1

l0

�i
dr

Δl
with

i ∈ {x, y, z}

(14)

� = Corr(�z, z)

=

∑N

k=1
(�z,k − �z)(zk − z)

s�z sz

The coefficient � takes values between − 1 and 1. A 
zero value corresponds to a plateau in the cone penetration 
strength profile. A positive � value reflects a depth-strength-
ening behavior, while a negative � reflects a depth-weaken-
ing behavior. The higher the absolute value of � , the more 
pronounced the depth dependence.

4 � Statistical study of the model parameters

4.1 � Sample dimensions

Due to computational limitations, DEM samples are typi-
cally downscaled compared to their experimental counter-
part, while particles are typically upscaled relative to the 
true particle size [31]. However, the selection of the down-
scaling and upscaling factors is not trivial and is usually 
performed heuristically. Here, we propose a method for rig-
orously selecting the optimal factors such that the numerical 
sample represents the true boundary conditions while entail-
ing a relatively low computational cost. We simulate differ-
ent sample configurations with a range of relative sample 
diameters Dcyl∕Dcone and relative particle diameters Dcone∕d , 
as shown in Fig. 4. The sample diameter Dcyl is expressed 
relative to the cone diameter Dcone as it is indicative of the 
extent of the boundary influence zone. An infinitely large 
bed effectively mimics the true sample boundary conditions 
and, thus, large sample diameters are desired. The cone 
diameter Dcone is expressed relative to the particle diameter 
d as it is indicative of the number of active particle-cone 
contacts. The total number of particles N needed for each 
configuration can be estimated using the formula 
N =

3

2
(1 − �)D2

cyl
H∕d where � is the sample porosity and H 

is the sample height. In this work, the sample porosity and 
height are taken to be equal to their experimental values, i.e., 
� = 0.42 and H = 130mm . With the available computation 
resources, several particles ranging from ∼300 to ∼65, 000 
can be simulated in 3 minutes to 100 hours.

The computational time per node � is defined as the time 
taken to complete a simulation multiplied by the number 
of nodes used. � provides a measure that can be compared 
across simulations under some assumptions of equivalence, 
i.e., constant simulation performance, linear speed-up, lit-
tle overhead time, and 100% parallelizable instructions. � 
tends to increase with the number of particles, which itself 
increases with both the particle diameter and the sample 
diameter. Hence, there is a trade-off between the particle 
diameter and sample size, as illustrated by Fig. 4. We note 
that the physical configuration corresponds to an estimated 
particle count of N = 170.109 and an extrapolated computa-
tion time of � = 3.1011 h - a prohibitively expensive cost that 
reaffirms the need for scaling factors.

Fig. 3   Typical stress response of a cone penetration test simulation a 
Stress components measured at the cone tip as a function of the pen-
etration depth. b Description of summary statistics; the cone penetra-
tion energy density Ei , the cone penetration resistance �i , and the dis-
persion factor s�i
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To select the optimal configuration, we qualitatively 
analyze the sample displacement fields. Figure 5 shows the 
displacement map of the particles in the vertical direction �z 
(left) and in the radial direction �r (right), averaged azimuth-
ally around the main axis. We observe that lower relative 
sample diameter leads to higher vertical displacement, which 
the law of mass conservation can explain. No significant 
change in the vertical displacement map can be seen for 
values higher than Dcyl∕Dcone = 10 , indicating that this value 
might be an appropriate threshold. We also observe that finer 
particles lead to finer radial displacement maps, although no 
significant change can be seen beyond Dcone∕d = 2.5 , indi-
cating that this ratio might be an appropriate choice.

To formally study the trade-off between sample size and 
computational time, we perform a Pareto analysis relating 
the displacement at the boundary to the computational cost, 
as shown in Fig. 6. The Pareto front connects the efficient 
configurations selected in such a way that no one objective 
can be improved without sacrificing the other. The objec-
tives in our study are minimal displacement at the bound-
ary and minimal computational cost. The displacement at 
the boundary is calculated as the average total displacement 
in the outer 10mm layer of the sample. The computational 
cost, measured in service-units (SUs), represents the com-
putational resources needed in terms of time and number 
of cores. The Pareto optimal configuration correspond to 
the point closest to the origin of the graph shown in Fig. 6. 
By inspection and considering the available computational 

resources, we select Dcyl∕Dcone = 10 and Dcone∕d = 2.5 . 
Henceforth, a sample diameter Dcyl = 100mm and a particle 
radius R = d∕2 = 2mm are used in all simulations.

Finally, while varying the particle size in the above analy-
sis, we observed a decrease in penetration energy density 
with decreasing particle size. Nevertheless, this effect does 
not impact our results and an in-depth study of its causes 
goes beyond the scope of this work.

4.2 � Sample bed randomness

The sample bed is produced by pluviation, which has an 
inherent random component. The particles can assume a 
virtually infinite number of packing configurations while 
statistically retaining consistent macroscopic properties. 
This randomness implies a non-unique stress profile despite 
holding the same input parameters. To evaluate the effect of 
packing randomness on the model response, we compare the 
results of ten sample beds having arbitrarily different particle 
arrangements but the same input parameters. The results are 
summarized in Fig. 7.

We observe that the spread in the model outputs, meas-
ured by the interquartile range IQ, is comparable. In par-
ticular, we note that the interquartile ranges are smaller 
than the experimental confidence bounds derived from the 
laboratory tests [16], allowing for the use of a single repre-
sentative numerical sample with given parameters for each 
experiment.

Fig. 4   Matrix of relative sample 
dimensions Dcyl∕Dcone as a 
function of the relative particle 
dimensions Dcone∕d . � repre-
sents the computational time 
per node. Starred values are 
the estimated computation time 
derived from an exponential fit 
of the executed simulations. N 
refers to the number of particles 
in the sample, and starred val-
ues are estimated numbers. The 
case corresponding to the physi-
cal condition is reported in the 
top-right case (particle diameter 
∼25 μm, sample diameter ∼160 
mm). The color scale represents 
the computational time, where 
red cases correspond to simula-
tions needing considerable com-
putational resources that exceed 
the available resources for this 
study. Green to orange cases 
represents the computationally 
feasible cases with a varying 
need for resources



Discrete element modeling of planetary ice analogs: mechanical behavior upon sintering﻿	

1 3

Page 9 of 20  12

To obtain a translatable measure of the dispersion, we 
calculate the coefficient of variation, which is expressed 
as Cv(x) = sx∕x , where sx is the standard deviation and 
x is the mean of the metric x. We obtain Cv(�z) = 4% , 
Cv(s�z) = 14% , and Cv(Ez) = 9% , indicating that the effect 
of sample bed randomness is limited. The coefficient of 
variation is not applicable to � as it is a bounded meas-
ure (i.e., −1 < 𝜅 < 1 ). We take IQ� as an estimate of the 
uncertainty associated with the sample bed randomness, 
which also indicates a limited spread relative to the 
experimental confidence bounds. We can conclude that 
the stochasticity introduced by the sample bed configu-
ration will not significantly affect the subsequent model 
calibration and the use of a single representative sample 
bed is sufficient.

This limited effect of sample bed randomness has the 
added benefit of considerably reducing the simulation 
computational cost. Only one simulation is needed for 
each parameter set, and the associated confidence bounds 
accounting for sample bed randomness can be easily extrap-
olated. This reduces the number of simulations by a factor 
of approximately ten. Furthermore, creating the sample bed 
can take as long as running the virtual cone penetration test. 

Fig. 5   Matrix of the particle 
displacement field as a function 
of relative sample dimensions 
Dcyl∕Dcone and relative particle 
dimensions Dcone∕d . In each 
panel, the left map represents 
the vertical displacement �z 
while the right map represents 
the radial displacement �r aver-
aged azimuthally around the 
main sample axis

Fig. 6   Computational cost versus average total displacement in the 
outer one centimeter layer of the sample. The displacement is calcu-
lated as � =

√
�2
x
+ �2

y
+ �2

z
=
√

�2
r
+ �2

z
 . The dashed line is the esti-

mated Pareto front, where optimal solutions correspond to the joint 
minimization of the objectives; displacement vs. computational cost



	 W. Dhaouadi et al.

1 3

12  Page 10 of 20

Hence, using the same sample bed for all simulations further 
reduces the total computation time by a factor of two, allow-
ing for a total reduction by a factor of about 20.

4.3 � Sensitivity analysis

Before proceeding with the sensitivity analysis, we need 
to derive a lower-dimensional representation of the model 
output, i.e., a limited set of metrics that comprehensively 
capture the output characteristics. As seen in Sect. 3.3, ten 
variables are output from the DEM simulations. The degree 
of interdependence between the different model output 
parameters is measured by studying the correlation matrix, 
as shown in the Supplementary Material (Fig. S1). Output 
parameters with a high degree of correlation may be con-
sidered redundant, while output parameters with a degree 
of correlation close to zero may be considered orthogonal. 
We find that the penetration energy density Ez is poorly 
correlated with the strength-depth correlation factor � 
( r = −0.17 ), indicating that � and Ez express very differ-
ent characteristics of the ice. Henceforth, the output of the 
numerical test of any sample is described by the pair ( Ez , �).

As described in Sect. 3.2, the DEM model has six input 
parameters (i.e., six degrees of freedom). In this section, 
we assess the impact of each input parameter on the model 
response in an attempt to reduce the model complexity 
without significantly affecting its flexibility and predictive 
capability. To this end, we conduct a sensitivity analysis 
in which the output response is determined by sequentially 
varying one input parameter while fixing all other param-
eters to nominal values. Fig. 8 shows the variation of the 
penetration energy density Ez for a range of particle input 
parameters Ep , � , Ω , and �r.

Fig. 7   Box plots representing the distribution of the summary metrics 
of ten beds having arbitrarily different particle configurations but the 
same particle and interaction properties. The spread of the data points 
illustrates the variance in the model due to variations in particle 
arrangements. The interquartile range for this parameter configuration 
is IQ�i

= [2.08e3, 1.76e3, 2.58e3 ] MPa, 
IQs�i

= [1.55e3, 1.18e3, 1.67e3 ] MPa, IQEi
= [2.07e3, 1.75e3, 2.61e3 ] 

MPa for i ∈ {x, y, z} The spread in the strength-depth correlation fac-
tor is IQ� = 0.25

Fig. 8   Qualitative sensitivity 
analysis of the model micro-
mechanical parameters on the 
penetration energy density Ez a 
Effect of the particle Young’s 
Modulus Ep b Effect of the 
friction coefficient � c Effect of 
the cohesion energy density Ω 
d Effect of the rolling friction 
coefficient �r
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In Fig. 8a, we observe that the penetration energy density 
Ez decreases with increasing Young’s modulus Ep , which 
can be explained by the fact that stiffer particles are harder 
to deform and thus have a lower contact area. Furthermore, 
since the cohesive forces are proportional to the contact 
area (see Eq. (10), they are also reduced, making it easier 
for the cone to penetrate the sample. Figure 8b shows that 
the penetration energy density Ez increases monotonically 
with the friction coefficient � , which can be explained by 
considering that more friction implies more energy for the 
particles to slide past each other. The strength appears to 
reach a plateau at low and high friction values. At low fric-
tion values ( � ≈ 0.2), the strength is only a few kPa. In this 
regime, the particles can easily slide past each other and the 
strength is primarily determined by the resistance to roll-
ing, which simulates the interlocking effect [88]. The rela-
tively low contribution of the rolling resistance (few kPa) 
to the total sample strength (few MPa for a typical sample) 
supports the relative unimportance of the rolling friction 
parameter in our case. At high friction values ( 𝜇 > 2 ), the 
Coulomb threshold is high and particles cannot easily slide 
past each other. Instead, the particles’ bonds rupture and 
the contact points are continuously reforming as the simula-
tion progresses. In this case, the strength is limited by the 
bond strength and thus the cohesion value, which points to 
the relative importance of this parameter. Figue 8c shows 
a large influence of the cohesion energy density Ω on the 
model response, although the dependence is not monotonic. 
A higher inter-particle cohesion implies higher energy for 
the cone to penetrate through the sample. However, a peak 
strength is observed at Ω ∼80MPa . Visualization of the 
simulations beyond this threshold indicates the formation of 
cracks which could explain the apparent decrease in strength 
beyond this limit, as shown in the Supplementary Material 
(Fig. S2). Finally, Fig. 8d shows the influence of the roll-
ing friction coefficient �r on the penetration energy density 
Ez . The increase in strength for 𝜇r < 1 can be explained by 
the fact that the particles require an increasing amount of 
torque to roll over each other. The maximum strength is 
reached when the rolling resistance becomes equal to the 

Coulomb friction limit i.e., �rR
∗|Fn|∕R = �|Fn| . In the 

case of homogeneous particle sizes, the equation leads to 
�r = 2� . Beyond this limit, the particles will slip past each 
other before exceeding the torque limit, and thus the strength 
will decrease.

To quantify the influence of each parameter, we compute 
the parameter sensitivity matrix Sk , whose formula, adapted 
from [89], reads as follows:

where y = Ez is the response variable and xi
k
 is the value of 

the k-th parameter in the i-th simulation. To have a compa-
rable metric, we scale the sensitivity values dy

dxk
 by the value 

of each parameter in each experiment xi
k
 and model response 

y(xi) . We run a set of 81 simulations with the input param-
eters Ep = [0.5, 1, 5] GPa, � = [0.2, 0.6, 1] , Ω = [0.2, 2, 20] 
MPa, and �r = [0.5, 0.75, 1] . Several statistics of the sensi-
tivity matrix are reported in Fig. 9.

Yan et al. [89] proposed to use the norm of the param-
eter sensitivity matrix norm(Sk) in DEM sensitivity studies 
to determine the most influential parameter. However, this 
metric is biased towards higher values due to the quadratic 
nature of the norm. Moreover, it does not provide informa-
tion on the directional dependence of the response. As an 
alternative metric, we could take the mean value of the dis-
tribution < Sk > which accounts for the directional depend-
ence and gives all simulations the same weight, effectively 
solving two of the pitfalls of the norm metric mentioned 
above. The mean value metric, however, is sensitive to 
extreme values. As shown in Fig. 9, the distributions of Ep , 
� , and Ω are highly skewed, which biases the mean value. To 
mitigate these points, we propose an analysis based on the 
median value of the parameter sensitivity matrix median(Sk) . 
The median values, as shown in Fig. 9, are consistent both in 
direction and magnitude with the findings showcased earlier 
in Fig. 8. The friction coefficient � entails a positive rela-
tionship where a 100% increase in � leads to about 153% 
increase in penetration energy density. Similarly, a 100% 

(15)Sk =
xi
k

y(xi)

dy

dxk

||xi

Fig. 9   Quantitative sensitiv-
ity analysis of the model to its 
input parameters. The distribu-
tion of the sensitivity to each 
parameter experiment-wise is 
shown in the histograms. The 
X-axis represents the parameter 
sensitivity values Sk , and the 
Y-axis represents the bin count
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increase in the cohesion energy density Ω leads to an aver-
age increase of about 36% in the penetration energy density. 
For Young’s modulus Ep , a 100% increase leads to about a 
12% decrease in penetration energy density. The coefficient 
of rolling friction �r seems to be the least influential param-
eter and is almost symmetrically distributed around − 8%, 
consistent with the non-monotonic relationship observed in 
Fig. 8.

We conclude from our sensitivity study that the coeffi-
cient of friction � and the cohesion energy density parameter 
Ω are the most influential parameters and can, henceforth, be 
considered as the model parameters. Both Young’s modulus 
Ep and the coefficient of rolling friction �r have a relatively 
low influence and can thus be held constant. For the subse-
quent simulations, we choose a value of Young’s Modulus 
Ep = 1 GPa, which is close to Young’s modulus of snow [27] 
but 5–10 times lower than Young’s modulus of isotropic 
polycrystalline ice [25, 63, 90]. While we expect Young’s 
modulus of this type of granular ice to differ from snow and 
isotropic ice due to differences in microstructure, the low 
sensitivity values observed suggest that an exact estimate 
is not required. The coefficient of rolling friction is fixed to 
the value that maximizes the strength results, i.e. �r = 1 , to 
emulate the interlocking effect of particle aggregates.

5 � Model response and calibration

5.1 � Model response maps

The model response is estimated by simulating a wide 
range of model input parameters. This step corresponds to 

the evaluation of the implicit function F that represents our 
DEM model:

where �i is the vector of model input parameters for the i-th 
simulation (�i,Ωi) . We evaluate the function F at 110 param-
eter combinations distributed on a uniform grid. Then, the 
results are linearly interpolated to obtain a continuous map 
over the whole parameter space as shown in Fig. 10. We note 
that this interpolation is considered a “model of a model” 
and falls under the general framework of surrogate models 
[4, 6, 12, 33, 62, 69, 71, 92]. We choose a linear interpola-
tion for its simplicity and the relatively good approximation 
it provides for fine grids.

Figure 10a shows the response map of the cone penetra-
tion energy density Ez while Fig. 10b shows the response 
map of the strength-depth correlation factor � . We see that 
the model can represent a broad range of ice conditions with 
varying strength values and depth-strengthening behavior. 
The modeled strength map, as seen in Fig. 10a, is regular 
and smooth with values ranging from ∼1 MPa (unconsoli-
dated ice) to ∼13 MPa (heavily consolidated ice). The cone 
penetration energy density increases with increasing values 
of cohesion energy density Ω and friction coefficient � , 
consistent with the expectation that stronger particle-par-
ticle interactions yield a higher macroscopic strength. We 
also note a decrease in penetration energy density beyond 
a critical value of Ω ∼80 MPa, which, as touched upon in 
Sect. 4.3, might be due to the formation of large cracks in the 
sample. As shown in Fig. 10b, the strength-depth correlation 
map is less smooth. In particular, at low Ω and high � values, 
the model predicts a high depth-strengthening behavior. This 

(16)Esim
z,i

, �sim
i

= F(�i)

Fig. 10   Model response map linearly interpolated over points with cohesion energy density Ω ∈ [10, 20,… , 100] MPa and friction coefficient 
� ∈ [0.25, 0.375,… , 1.5] a Simulated cone penetration energy density Ez b Simulated strength-depth correlation factor �
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observation is similar to the behavior exhibited by viscous 
liquids and is consistent with a loose frictional granular 
material. To better understand the depth-strengthening and 
depth-weakening behavior observed in our study (i.e. the 
value of the correlation factor � ), future work will inves-
tigate the scaling laws of the penetration force with depth, 
similar to other work on impact in granular material [8]. 
These model response maps will subsequently be used in the 
calibration process to solve the inverse problem of finding 
the pair of model input parameters ( Ω,� ) for a given output 
value ( Ez,� ) obtained experimentally.

5.2 � Model calibration

DEM parameters are typically difficult to measure in the lab-
oratory and cannot be easily related to measurable physical 
material parameters [35]. As a result, calibration is required 
to select the appropriate parameters for use in simulations. 
Calibration is considered one of the most challenging steps 
in DEM modeling, and is now an active area of research 
[20]. It corresponds to solving the inverse problem of finding 
the model parameters 𝜃i that match the experimental bulk 
properties Gexp

i
 for the i-th experiment, as shown in the fol-

lowing equation:

In previous DEM studies, Gexp

i
 have been typically obtained 

from biaxial and triaxial tests [42], angle of repose tests 
[72], and Brazilian tests [33, 62]. Cone penetration tests are 
less commonly used for DEM calibration. They have only 
been used to calibrate non-cohesive materials in chambers 
with well-controlled boundary conditions [9, 18, 58]. Hence, 
calibrating this cohesive ice with cone penetration tests is an 
unprecedented task.

Multiple methods have been developed to solve the 
inverse problem in DEM [20, 71]. However, they either 
require numerous experiments [30, 35], a good a priori 
knowledge of the parameter dependencies [15, 19, 49, 56, 
91], tend to find local minima rather than global optima [69], 
or tend to be computationally intensive [4, 22]. Probability-
based calibration methods like the sequential quasi-Monte 
Carlo [14], iterative Bayesian filtering [15], Transitional 
Markov Chain Monte Carlo [32], and Sequential Monte 
Carlo [13, 14] are state-of-the-art and have been successfully 
used. However, they require expert knowledge and remain 
difficult to implement for many DEM users.

We propose a novel Bayesian parameter calibration 
method that optimally incorporates experimental uncer-
tainties and uses a single calibration experiment. This 
method leads to a set of candidate DEM input parameters, 
together with their likelihood to yield the given experi-
mental outcome. Considering the complete parameter 

(17)𝜃i = F−1(G
exp

i
)

space ensures that our method satisfies global optimal-
ity. To obtain a unique parameter set, we use a weighted 
mean approach where each parameter set is weighted by 
its likelihood. We run our method on each experiment 
independently, and estimate the corresponding posterior 
distribution on the model parameter space. The method 
makes use of the Bayes’ theorem such that:

where p(𝜃i|E
exp

z,i
, 𝜅

exp

i
) is the joint posterior probability distri-

bution, p(𝜃i|E
exp

z,i
) is the posterior probability distribution on 

the parameter space given the experimental strength value 
Ez , and p(𝜃i|𝜅

exp

i
) is the posterior probability distribution 

on the parameter space given the experimental strength-
depth correlation factor � . This method assumes that the 
strength value and the strength-depth correlation factor are 
conditionally independent of the model input parameters. 
In other words, if the model input parameters were known, 
knowledge of the sample strength would not provide any 
information on its depth-strengthening behavior.

The uniqueness of our method lies in the estimation 
approach. We estimate the posterior distributions by solv-
ing the inverse problem described in Eq. (17) for a selected 
set of values within the experimental confidence bounds 
{Gk|Gk = �Gexp + �k�Gexp , k = 1..N} , where �Gexp and �Gexp 
are, respectively, the mean and standard deviation of the 
experimental measurement of the property G, N the num-
ber of selected values in the set, and � is a variable. We 
then search for each value Gk on the response maps shown 
in Fig. 10, and record the associated parameter set {𝜃i,k} . 
To each parameter 𝜃i,k in the parameter set {𝜃i,k} , we asso-
ciate a probability p(𝜃i,k) equal to the corresponding value 
of the probability density function of a standard normal 
distribution �(�k) . For example, if we consider values at 
both ends of the experimental confidence interval, their 
associated parameters will be attributed a low probability 
value (i.e. a low weight), whereas for values at the center 
of the experimental confidence interval their associated 
parameters will be attributed high probability values (i.e. 
high weights). The algorithmic implementation for this 
procedure is presented in details in Supplementary Mate-
rial (Algorithm S1).

The experimental strength measurements Eexp
z  are 

represented by a Gaussian distribution with a mean and 
standard deviation equal to the experimental values, i.e., 
� = �E

exp
z

 and � = sEexp
z

 . For the correlation factor � , we can-
not assume a Gaussian distribution since � is a bounded 
measure. We can transform the bounded correlation val-
ues to unbounded values using the Fischer transformation 
function F(r) = 1

2
ln(

1+r

1−r
) = arctanh(r), commonly used for 

correlation factors. The mean and standard deviation of 
the Gaussian distribution is equal to the mean and standard 

(18)p(𝜃i|E
exp

z,i
, 𝜅

exp

i
) ∼ p(𝜃i|E

exp

z,i
)p(𝜃i|𝜅

exp

i
)
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deviation of the transformed experimental values, i.e., 
� = �F(�exp) and � = sF(�exp)∕

√
n − 3 , where n is the sample 

size.
To assess the normality assumption, we compare the 

quantiles of the experimental and theoretical distributions 
in a Q–Q plot shown in the Supplementary Material (Fig. 
S2). The results indicate a good match between the experi-
mental and theoretical distributions overall, which suggests 
that the data reasonably satisfies the normality assumption 
and justifies the choice of the Gaussian distribution.

6 � Results and discussion

6.1 � Comparison between experimental 
and simulation results

We first examine the cone penetration test results of ice sam-
ples that sintered at four different temperatures (193 K, 223 
K, 233 K, and 243 K) for time periods up to 14 months [16]. 
Figure 11 shows the experimental strength-depth correlation 
factor � as a function of the penetration energy density Ez . 
We observe that the ice samples exhibit strength values up 
to 14 MPa and correlation factor values spanning almost 
the whole [−1, 1] interval. The data points are mostly scat-
tered throughout the range of possible values, indicating that 
the ice can take a large number of physical configurations 
and have a rather large, unrestricted state space. A closer 
inspection of the data shows a cluster of very high posi-
tive strength-depth correlation factor values at penetration 
energy density below 2 MPa. Such high values of � cor-
respond to a linear increase in resistance with depth. For 
penetration energy density values higher than 2 MPa, the 
strength-depth correlation factor is uniformly distributed, 

which indicates an absence of apparent relationship between 
cone penetration resistance and depth. In addition, for Ez > 2 
MPa, the cone penetration profiles (e.g., Fig. 3) exhibit a 
jerky behavior. These findings are indicative of a brittle 
mechanical behavior for samples with resistance above 2 
MPa, a value comparable to the brittle compressive strength 
of ice at strain rates greater than approximately 10−2 s−1 [17].

The purple region in Fig. 11 corresponds to the ice states 
that are numerically reproducible with our current DEM 
model. It is derived from a smoothed representation of the 
combination of the model response maps shown in Fig. 10 
and indicates that our DEM model can represent approxi-
mately 70% of the observed experimental states.

For each experiment presented as a data point in Fig. 10, 
we follow the calibration procedure described in Sect. 5.2. 
Figure 12 shows an example of the posterior probability 
distribution for an ice sample aged for 4 days at T = 243 
K. The sample response is characterized by a cone penetra-
tion energy density Ez = 3.06 ± 0.24 MPa (95% confidence 
interval) and a strength-depth correlation factor � = −0.29 
( CI� = [−0.62; 0.14] 95% confidence interval). Figure 12a 
shows the posterior distribution given the strength value 
p(𝜃i|E

exp

z,i
) . The distribution spans over a large set of pos-

sible model input parameters. The most likely parameters 
form a smooth line owing to the regularity of the underly-
ing strength map. Figure 12b shows the posterior probabil-
ity distribution given the strength-depth correlation factor 
p(𝜃i|𝜅

exp

i
) . The distribution still spans a large set of pos-

sible model input parameters but is less regular due to the 
unevenness of the underlying response map. Together, these 
two distributions restrict the possible set of parameters. Fig-
ure 12c shows the joint posterior distribution p(𝜃i|E

exp

z,i
, 𝜅

exp

i
) , 

which depicts the most likely set of input parameters for a 
given experiment. This map can be intuitively understood by 
considering that input parameters that are declared highly 
likely by both probability distributions, p(𝜃i|E

exp

z,i
) and 

p(𝜃i|𝜅
exp

i
) , are highly likely overall. Input parameters that 

are declared likely by only one of the distributions are only 
moderately likely overall and parameters that are declared 
impossible by one of the distributions (i.e., p(𝜃i|E

exp

z,i
) = 0 or 

p(𝜃i|𝜅
exp

i
) = 0 ) are considered impossible overall.

In this particular example where the sample sintered for 
4 days at T = 243 K, the most probable input parameters are 
in the lower-end of friction coefficient � ≈ 0.33 and cohe-
sion Ω ≈ 42 MPa, which is consistent with the low level of 
consolidation of the sample and its relatively young age. In 
the case of more consolidated ice, for example, a sample that 
aged for 28 days at T = 243 K developed a cone penetra-
tion energy density Ez = 9.33 ± 2.28 MPa (95% confidence 
interval) and a strength-depth corrrelation factor � = −0.69 
( CI� = [−0.93; − 0.03] 95% confidence interval). Our analy-
sis yields a most probable friction coefficient of � ≈ 0.69 
and cohesion parameter of Ω ≈ 87 MPa.

Fig. 11   Strength-depth correlation factor � as a function of the cone 
penetration energy density Ez extracted from the experimental cone 
penetration tests. Markers color-coded according to the sintering tem-
peratures. The colored surface corresponds to the numerically feasi-
ble region. (Adapted from [16])
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6.2 � Time evolution of particle‑scale parameters

Figure 13 shows the evolution of the calibrated set of param-
eters as a function of sintering time and temperature for all 
tests performed. Fig. 13a and b show, respectively, the evolu-
tion of the calibrated cohesion energy density parameter Ω 
and the calibrated friction parameter � , which both exhibit a 
clear temperature dependence. We constrain each parameter 
evolution at each temperature to the first order with a linear 
regression while weighting each parameter set by its prob-
ability. The dashed lines represent the best-fit trend lines.

We observe from Fig. 13a and b that the evolution of the 
particle-scale parameters matches very well the evolution 
of the continuum-scale sample cone penetration resistance 
presented in [16]. The model parameters increase mono-
tonically with time, and the evolution rates increase with 
temperature. This correspondence points to a link between 
the micro- and macro-mechanical properties and suggests 
that the evolution of the particle-scale interactions upon 
sintering is an important strengthening mechanism of the 

ice. Similarly to [16], we notice that the linear fits do not 
have the same intercept values with the Y-axis, which rep-
resents the parameters associated with a fresh ice sample. 
This may be an artifact of the simplistic linear evolution 
model assumed or due to a different strengthening rate at 
earlier sintering times.

To further investigate the temperature dependence, we 
extract the evolution rates of the model input parameters. 
Fig. 13c and d show the natural logarithm of the rates 
at which the cohesion energy density dΩ

dt
 and the friction 

coefficient d�
dt

 evolve as a function of inverse temperature, 
also known as the Arrhenius plot. Such representation is 
widely used to study thermally activated processes. The 
evolution rates for each parameter seem to follow a lin-
ear trend, which supports that the evolution follows an 
Arrhenius law. The slope of the linear regression is given 
by −Q∕R , where Q is the activation energy of the under-
lying process and R = 8.314 J∕mol.K is the ideal gas con-
stant. The linear regression yields an activation energy of 

Fig. 12   Posterior probability 
distributions on the model 
parameters’ space for a cone 
penetration test performed on 
an ice sample aged for 4 days at 
T = 243 K. The colormap gives 
the likelihood of each param-
eter set a Posterior distribution 
p(𝜃i|E

exp

z,i
) for an experimental 

penetration energy density value 
Ez = 3.06 ± 0.24 MPa (95% 
confidence interval) b Posterior 
distribution p(𝜃i|𝜅

exp

i
) for a 

strength-depth correlation factor 
� = −0.29 ( CI� = [−0.62;0.14] 
95% confidence interval) c 
Joint posterior distribution 
p(𝜃i|E

exp

z,i
, 𝜅

exp

i
) ∼ p(𝜃i|E

exp

z,i
)p(𝜃i|𝜅

exp

i
)
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Q = 26.8 ± 15.0 kJ/mol for the cohesion energy density Ω 
and Q = 17.9 ± 5.5 kJ/mol for the friction coefficient �.

For comparison, [16] derived an activation energy of 
Q = 24.3 ± 3.3 kJ/mol for the rate of strengthening of the 
experimental samples and found that it is consistent with 
diffusion of water molecules on the surface of ice parti-
cles. Within their confidence intervals, the activation ener-
gies representing the temperature evolution of both the 
cohesion energy density and the friction coefficient are 
broadly consistent with the experimentally-derived value 
for the strengthening rate. This suggests that the particle-
scale interaction parameters in the DEM model, despite 
larger uncertainties, reflect the underlying thermodynam-
ics and represent well the effect of temperature that had 
been derived experimentally at the macroscopic scale.

6.3 � Implications for mechanical properties 
from particle‑ to macro‑scale

The correspondence between the calibrated model param-
eters and the physical properties of ice supports that the 
model parameters � and Ω are representative of the physical 
micro-mechanical properties of the ice. The calibrated fric-
tion coefficient � of a sample that sintered for 4 days at T = 
243 K (i.e., � ≈ 0.33 ) is in good agreement with published 
experimental measurements. [77] measured the kinetic 
friction coefficient of fresh ice to be � = 0.29 ± 0.03 for a 
sliding velocity of V = 10−3 ms−1 at a temperature of T = 
223 K. Futhermore, the increase in the calibrated friction 
coefficient, as seen in the example above (from � ≈ 0.33 
to � ≈ 0.69 in 24 days at T = 243 K), is consistent with 

Fig. 13   Evolution of the calibrated model input parameters a Cohe-
sion energy density Ω and b Friction coefficient � as a function of sin-
tering time and temperature. The mean and standard deviation of the 
probability distribution of the calibrated parameters are shown. The 

dashed lines represent the weighted linear regression and are color-
coded with respect to temperature. Arrhenius plot of the calibrated 
model input parameters c Cohesion energy density Ω and d Friction 
coefficient � as a function of inverse temperature
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increased inter-particle interactions due to sintering. The 
evolution of the model friction coefficient, as showcased in 
Fig. 13b, exhibits a clear positive trend and is reminiscent of 
static strengthening – a phenomenon observed in compact 
ice held under constant normal stress [77, 78].

The cohesion energy density Ω is tightly linked to the 
material’s surface energy � , which has been established 
as the primary driver of ice sintering [5]. In fact, the JKR 
model, which represents various electrostatic, physical, 
and chemical surface interactions, expresses the cohesion 
force as a function of the material’s surface energy � (in 
unit surface). The SJKR model, which makes a geometri-
cal simplification to the JKR model, expresses the cohe-
sion force as a function of Ω (in unit volume). Furthermore, 
since increasingly sintered material require an increas-
ingly high pull-out force to separate the particle, and since 
Fpull−out = Fcoh = Ω�a2 , enhancement of sintering implies 
higher Ω values – a feature that is showcased in our results 
on the evolution of the model cohesion energy densities 
(Fig. 13a).

This modeling study along with prior works suggest inter-
relationships between the particle-scale interaction param-
eters, the evolution of a mesoscopic network of ice, and the 
macroscopic mechanical properties that govern the brittle 
compressive failure of ice. As discussed in Sect. 6.1, the 
evolution in cone penetration resistance of macroscopic sam-
ples of ice microspheres suggested a transition in mechanical 
behavior from loose unconsolidated ice particles at low cone 
penetration resistance values ( < 1MPa ) to brittle compres-
sive failure for values around 2 MPa or greater. This con-
solidation is not accompanied by any discernible change in 
bulk porosity, implying that sintering may be responsible for 
the development of an inter-particle network that binds the 
starting ice particles together. Once this network is estab-
lished, the ice particles form consolidated aggregates which 
behaves as a coherent medium and fails in the brittle regime 
when compressed at strain rates greater than approximately 
10−2 s−1 [17].

Interestingly, the combination of friction and cohesive 
energy and its apparent dominant role in the brittle failure 
of porous ice has also emerged from experiments on the 
brittle compressive failure of fully-dense ice. There, the 
frictional-sliding wing crack mechanism [3, 29, 40, 57] 
accounts quantitatively for the behavior [11, 28, 70, 75, 87]. 
Accordingly, sliding across the opposing faces of closed, 
parent/primary cracks that are inclined to the principal load-
ing direction induces tensile stress at the crack tips. When 
sufficiently high, tension is relieved through the initiation of 
out-of-plane secondary cracks termed wings (or extensile 
cracks). As sliding continues, the wing-crack mouths open, 
thereby increasing the mode-I stress intensity factor at their 
tips until a critical level is reached, at which point the wings 
begin to grow in a stable, albeit jerky, manner. As sliding 

continues, the secondary/wing cracks lengthen, interact with 
other secondaries and eventually form a fault at which point 
the material collapses. In this model, resistance to sliding is 
set by the coefficient of friction and resistance to wing crack 
growth is set by fracture toughness to which surface energy, 
and hence cohesive energy, is a major contributor in ice [76, 
pp. 207–208].

That two different approaches–DEM of sintered ice and 
experiment-cum-physical modeling of pore-free ice–point 
to the underlying role of the same physical processes sug-
gests that an intermediate level of porosity, while increasing 
microstructural complexity, may not change the underlying 
physics of brittle compressive failure.

7 � Conclusion

In this study, we present a physics-based numerical model of 
planetary ice plume deposit analogs that explicitly represents 
the microstructure and its evolution upon sintering. We cali-
brated our DEM model using 100 published experiments of 
cone penetration tests on ice plume deposit analog samples 
that sintered at different temperatures for time periods up to 
14 months. We tuned the sample dimension and particle size 
( Dcyl , d) following a Pareto-optimality approach and inves-
tigated the effect of the particle and bond parameters ( Ep , 
� , �r , and Ω ) using a sensitivity analysis. We found that the 
friction coefficient � and the cohesion energy density Ω are 
the primary model parameters. Furthermore, we proposed a 
novel easy-to-implement Bayesian probabilistic calibration 
method for numerically replicating experimental conditions 
while optimally incorporating experimental uncertainties.

Our DEM model has shown capable of reproducing 
experimental porous ice strengthening results and represent-
ing the physical micromechanics of ice and their evolution 
upon sintering. The evolution of the bond strength matches 
that of the macroscopic sample, suggesting that ice sintering 
is responsible for an increased interaction at the particle-
scale which manifests itself by the formation of a mesoscale 
network structure that mechanically behaves in a manner 
akin to fully-dense ice.

Our findings show that this methodology can provide a 
critical link between theoretical and experimental studies, 
allowing us to better understand the effect of sintering on the 
mechanical properties of plume deposits on icy worlds. In 
the future, this model could be used to study ice features that 
are impossible or extremely difficult to observe experimen-
tally, such as the force network, ice fabric, micro-dynamics, 
and fracture behavior. In this regard, it would enable a more 
detailed exploration of ice mechanics and, potentially, dis-
covering new fundamental insights about this unique icy 
material.
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This numerical model approach can also be expanded to 
robot-terrain applications. Such models are beneficial for 
engineers optimizing the design of planetary exploration 
robots and sampling systems. For this purpose, it would 
need to be interfaced with multi-body dynamics software to 
simulate complex robotic interactions such as traversing or 
sampling. As our model is tuned to cone penetration tests, its 
performance should be first evaluated on other loading con-
ditions, then generalized to accommodate realistic robotic 
systems, such as landing pads.

Finally, the model can be extrapolated to Ocean Worlds 
surface conditions, accounting for the reduced gravity, 
reduced pressure, plume deposition rate, and differential 
sintering with depth. This extrapolation would allow the 
prediction of surface conditions on icy worlds and the iden-
tification of suitable landing and sampling sites.
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