Skip to main content
Log in

Numerical simulation of column charge explosive in rock masses with particle flow code

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The detonation of a column charge and the damage process in a rock mass are simulated in this study by the particle flow code method. The expansion loading method and the dynamic boundary treatment method are established according to the discrete element mechanism. Mechanical parameters are calibrated on the basis of the Starfield superposition principle and the dynamic compensation method. Dynamic stiffness and microscopic parameters are used for numerical simulations. Numerical test results are consistent with lab experimental test results. The velocity attenuation law is compared with that of theoretical results, and the blasting crater action index is compared with that of field test results, to verify the rationality of the numerical explosion model of the column charge. The mechanism of the rock breaking process under column charge explosion is analyzed. Stress wave propagation, detonation wave propagation, and crack extension are investigated. The stress wave gradient law is obtained, and the effects of blasting rock breaking, crack extension, and explosion effect outside the blasting crater area are determined with different initiation modes. The research method can explain the blasting stress wave propagation law and describe the dynamical failure process in rock masses. This study can provide a reliable numerical analysis method for follow-up blasting research and offer practical guidance on engineering blasting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Liu, K., Li, X., Li, X., Yao, Z., Shu, Z., Yuan, M.: Characteristics and mechanisms of strain waves generated in rock by cylindrical explosive charges. J. Cent. South Univ. 23(11), 2951–2957 (2016). https://doi.org/10.1007/s11771-016-3359-7

    Article  Google Scholar 

  2. Chen, S., Hu, S., Zhang, Z., Wu, J.: Propagation characteristics of vibration waves induced in surrounding rock by tunneling blasting. J. Mt. Sci. 14(12), 2620–2630 (2017). https://doi.org/10.1007/s11629-017-4364-5

    Article  Google Scholar 

  3. Chen, L., Wang, C.P., Liu, J.F., Liu, J., Wang, J., Jia, Y., Shao, J.F.: Damage and plastic deformation modeling of Beishan granite under compressive stress conditions. Rock Mech. Rock Eng. 48(4), 1623–1633 (2015). https://doi.org/10.1007/s00603-014-0650-5

    Article  ADS  Google Scholar 

  4. Mukherjee, M., Nguyen, G.D., Mir, A., Bui, H.H., Shen, L., El-Zein, A., Maggi, F.: Capturing pressure- and rate-dependent behaviour of rocks using a new damage-plasticity model. Int. J. Impact Eng. 110, 208–218 (2017). https://doi.org/10.1016/j.ijimpeng.2017.01.006

    Article  Google Scholar 

  5. Yilmaz, O., Unlu, T.: Three dimensional numerical rock damage analysis under blasting load. Tunn. Undergr. Space Technol. 38, 266–278 (2013). https://doi.org/10.1016/j.tust.2013.07.007

    Article  Google Scholar 

  6. Wang, Z.L., Konietzky, H.: Modelling of blast-induced fractures in jointed rock masses. Eng. Fract. Mech. 76(12), 1945–1955 (2009). https://doi.org/10.1016/j.engfracmech.2009.05.004

    Article  Google Scholar 

  7. Yan, P., Zhou, W., Lu, W., Chen, M., Zhou, C.: Simulation of bench blasting considering fragmentation size distribution. Int. J. Impact Eng. 90, 132–145 (2016). https://doi.org/10.1016/j.ijimpeng.2015.11.015

    Article  Google Scholar 

  8. Zhao, J.J., Zhang, Y., Ranjith, P.G.: Numerical simulation of blasting-induced fracture expansion in coal masses. Int. J. Rock Mech. Min. Sci. 100, 28–39 (2017). https://doi.org/10.1016/j.ijrmms.2017.10.015

    Article  Google Scholar 

  9. Zhao, T., Crosta, G.B., Dattola, G., Utili, S.: Dynamic fragmentation of jointed rock blocks during rockslide-avalanches: insights from discrete element analyses. J. Geophys. Res. Solid Earth 123(4), 3250–3269 (2018). https://doi.org/10.1002/2017jb015210

    Article  ADS  Google Scholar 

  10. Mandal, S.K.: Mathematical model to locate interference of blast waves from multi-hole blasting rounds. Engineering 4(3), 146–154 (2012). https://doi.org/10.4236/eng.2012.43019

    Article  Google Scholar 

  11. Blair, D.P.: Blast vibration dependence on charge length, velocity of detonation and layered media. Int. J. Rock Mech. Min. Sci. 65, 29–39 (2014). https://doi.org/10.1016/j.ijrmms.2013.11.007

    Article  Google Scholar 

  12. Chen, S., Wu, J., Zhang, Z.: Influence of millisecond time, charge length and detonation velocity on blasting vibration. J. Cent. South Univ. 22(12), 4787–4796 (2015). https://doi.org/10.1007/s11771-015-3030-8

    Article  Google Scholar 

  13. Mohammadi, H.R., Mansouri, H., Bahaaddini, M., Jalalifar, H.: Investigation into the effect of fault properties on wave transmission. Int. J. Numer. Anal. Methods Geomech 41(17), 1741–1757 (2017). https://doi.org/10.1002/nag.2698

    Article  Google Scholar 

  14. Li, X., Li, Z., Wang, E., Liang, Y., Niu, Y., Li, Q.: Spectra, energy, and fractal characteristics of blast waves. J. Geophys. Eng. 15(1), 81–92 (2018). https://doi.org/10.1088/1742-2140/aa83cd

    Article  ADS  Google Scholar 

  15. Wang, Y., Tonon, F.: Dynamic validation of a discrete element code in modeling rock fragmentation. Int. J. Rock Mech. Min. Sci. 48(4), 535–545 (2011). https://doi.org/10.1016/j.ijrmms.2011.02.003

    Article  Google Scholar 

  16. Shen, W.G., Zhao, T., Crosta, G.B., Dai, F.: Analysis of impact-induced rock fragmentation using a discrete element approach. Int. J. Rock Mech. Min. Sci. 98, 33–38 (2017). https://doi.org/10.1016/j.ijrmms.2017.07.014

    Article  Google Scholar 

  17. Ning, Y., Yang, J., An, X., Ma, G.: Modelling rock fracturing and blast-induced rock mass failure via advanced discretisation within the discontinuous deformation analysis framework. Comput. Geotech. 38(1), 40–49 (2011). https://doi.org/10.1016/j.compgeo.2010.09.003

    Article  Google Scholar 

  18. Zhao, T., Crosta, G.B., Utili, S., De Blasio, F.V.: Investigation of rock fragmentation during rockfalls and rock avalanches via 3-D discrete element analyses. J. Geophys. Res. Earth Surf. 122(3), 678–695 (2017). https://doi.org/10.1002/2016jf004060

    Article  ADS  Google Scholar 

  19. Jhanwar, J.C.: Theory and practice of air-deck blasting in mines and surface excavations: a review. Geotech. Geol. Eng. 29(5), 651–663 (2011). https://doi.org/10.1007/s10706-011-9425-x

    Article  Google Scholar 

  20. Yi, C., Sjoberg, J., Johansson, D., Petropoulos, N.: A numerical study of the impact of short delays on rock fragmentation. Int. J. Rock Mech. Min. Sci. 100, 250–254 (2017). https://doi.org/10.1016/j.ijrmms.2017.10.026

    Article  Google Scholar 

  21. Far, M.S., Wang, Y.: Probabilistic analysis of crushed zone for rock blasting. Comput. Geotech. 80, 290–300 (2016). https://doi.org/10.1016/j.compgeo.2016.08.025

    Article  Google Scholar 

  22. Zhao, T., Crosta, G.B.: On the dynamic fragmentation and lubrication of coseismic landslides. J. Geophys. Res. Solid Earth 123(11), 9914–9932 (2018). https://doi.org/10.1029/2018jb016378

    Article  ADS  Google Scholar 

  23. Yan, P., Zou, Y.J., Lu, W.B., Hu, Y.G., Leng, Z.D., Zhang, Y.Z., Liu, L., Hu, H.R., Chen, M., Wang, G.H.: Real-time assessment of blasting damage depth based on the induced vibration during excavation of a high rock slope. Geotech. Test. J. (2016). https://doi.org/10.1520/gtj20150187

    Article  Google Scholar 

  24. Motoyama, Y., Mikame, S., Nojima, K., Kawahara, M.: Second-order adjoint equation method for parameter identification of rock based on blast waves in tunnel excavation. Eng. Optim. 46(7), 939–963 (2014). https://doi.org/10.1080/0305215x.2013.806917

    Article  MathSciNet  Google Scholar 

  25. Tiwari, R., Chakraborty, T., Matsagar, V.: Dynamic analysis of a twin tunnel in soil subjected to internal blast loading. Indian Geotech. J. 46(4), 369–380 (2016). https://doi.org/10.1007/s40098-016-0179-5

    Article  Google Scholar 

  26. Cardu, M., Seccatore, J.: Quantifying the difficulty of tunnelling by drilling and blasting. Tunn. Undergr. Space Technol. 60, 178–182 (2016). https://doi.org/10.1016/j.tust.2016.08.010

    Article  Google Scholar 

  27. Yang, J., Lu, W., Chen, M., Yan, P., Zhou, C.: Microseism induced by transient release of in situ stress during deep rock mass excavation by blasting. Rock Mech. Rock Eng. 46(4), 859–875 (2013). https://doi.org/10.1007/s00603-012-0308-0

    Article  ADS  Google Scholar 

  28. Lazzari, E., Johansson, F., Ivars, D.M., Juncal, A.S.: Advances, current limitations and future requirements for a numerical shear box for rock joints using PFC2D. In: Rock Engineering and Rock Mechanics: Structures in and on Rock Masses, pp. 763–768. CRC Press, Boca Raton (2014) (ISBN: 978-1-138-00149-7; WOS: 000345985300124)

    Chapter  Google Scholar 

  29. Bahaaddini, M., Hagan, P.C., Mitra, R., Hebblewhite, B.K.: Scale effect on the shear behaviour of rock joints based on a numerical study. Eng. Geol. 181, 212–223 (2014). https://doi.org/10.1016/j.enggeo.2014.07.018

    Article  Google Scholar 

  30. Chong, Z., Li, X., Chen, X., Zhang, J., Lu, J.: Numerical investigation into the effect of natural fracture density on hydraulic fracture network propagation. Energies 10(7), 914 (2017). https://doi.org/10.3390/en10070914

    Article  Google Scholar 

  31. Zhang, Y., Shao, J., Liu, Z., Shi, C., De Saxcé, G.: Effects of confining pressure and loading path on deformation and strength of cohesive granular materials: a three-dimensional DEM analysis. Acta Geotech. 14(2), 443–460 (2018). https://doi.org/10.1007/s11440-018-0671-4

    Article  ADS  Google Scholar 

  32. Zhang, Y., Liu, Z., Shi, C., Shao, J.: Three-dimensional reconstruction of block shape irregularity and its effects on block impacts using an energy-based approach. Rock Mech. Rock Eng. 51(4), 1173–1191 (2018). https://doi.org/10.1007/s00603-017-1385-x

    Article  ADS  Google Scholar 

  33. Starfield, A.M., Pugliese, J.M.: Compression waves generated in rock by cylindrical explosive charges: a comparison between a computer model and field measurements. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 5(1), 65–77 (1968). https://doi.org/10.1016/0148-9062(68)90023-5

    Article  Google Scholar 

  34. Itasca Consulting Group: PFC 2D-user manual. Itasca Consulting Group, Minneapolis (1999)

    Google Scholar 

  35. Cundall, P.A., Strack, O.: Discussion: a discrete numerical model for granular assemblies. Geotechnique 30(3), 331–336 (1980). https://doi.org/10.1680/geot.1980.30.3.331

    Article  Google Scholar 

  36. Potyondy, D.O., Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41(8), 1329–1364 (2004). https://doi.org/10.1016/j.ijrmms.2004.09.011

    Article  Google Scholar 

  37. Holt, R.M., Kjølaas, J., Larsen, I., Li, L., Gotusso Pillitteri, A., Sønstebø, E.F.: Comparison between controlled laboratory experiments and discrete particle simulations of the mechanical behaviour of rock. Int. J. Rock Mech. Min. Sci. 42(7), 985–995 (2005). https://doi.org/10.1016/j.ijrmms.2005.05.006

    Article  Google Scholar 

Download references

Acknowledgements

The work presented in this paper was financially supported by the National Natural Science Foundation of China (Grant No. 51679071), the National Basic Research Program of China (973 Program) (Grant No. 2015CB057903) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20171434).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Shi, C., Yang, W. et al. Numerical simulation of column charge explosive in rock masses with particle flow code. Granular Matter 21, 96 (2019). https://doi.org/10.1007/s10035-019-0950-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0950-2

Keywords

Navigation