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Abstract
The article proposes functions linking the standard deviation of a particle distribution in a porous bed consisting of spheri-
cal particles with various parameters characterising the spatial structure of the bed. The porosity, the inner surface, the 
specific surface and the geometrical tortuosity were analysed. In the first stage, a set of virtual beds was created with the 
use of the Discrete Element Method. The Radius Expansion Method was applied to generate virtual beds with different 
standard deviations. 150 virtual beds were created (25 standard deviations, 3 repetitions with different settings of the random 
number generator, 2 values of the radius expansion factor). In the second stage, the spatial structure of all virtual beds was 
analysed. The geometrical tortuosity was calculated with the use of the so-called Path Tracking Method; other parameters 
were calculated with the use of analytical formulas. The impact of the standard deviation on the parameters characterising 
the spatial structure of the granular bed was described by approximation functions, which can be used in order to obtain 
these parameters based on the particle size distribution for others porous beds.

Keywords  Granular beds · Particle distribution · Tortuosity · Discrete Element Method · Path Tracking Method

1  Introduction

The prediction of the pressure drop, occurring during fluid 
flows through porous media, is one of the most important 
problems in the widely understood science and engineering. 
For example, this issue plays significant role in geology, 
civil engineering, agriculture, food industry, chemistry and 
many other areas. So-called porous beds, i.e. granular beds 
consisting of spherical or quasi-spherical particles, play an 
important role here—the article relates to such kind of the 
physical matter.

The pressure drop occurring during fluid flows through 
porous media in many cases can be described with the use 
of one general mathematical formula [43]:

where p—pressure (Pa), x—a coordinate along which the 
pressure drop occurs (m), A(�) and B(�)—two generalized 
parameters, dependent on the � set of parameters charac-
terizing the spatial structure of the porous medium, �—
dynamic viscosity of the fluid [kg/(ms)], �—density of the 
fluid (kg/m3 ), vf—filtration velocity (m/s), T—temperature 
( ◦C).

Equations proposed by Forchheimer [16], Ergun [14], 
Macdonald [26] and Kovács [21], as well as other similar 
equations, may serve as examples of mathematical formulas 
matched to the topology of the formula (1). If B(�) coeffi-
cient equals zero, formula (1) becomes Darcy-like topology. 
Besides Darcy [11], achievements of Hazen [19], Slichter 
[35], Terzhagi [44], Kozeny [22] or Carman [6] must be 
mentioned here. Detailed review of these formulas is not 
important in the context of this article (it can be found e.g. 
in [41]). The crucial thing is that all these formulas are func-
tions of different parameters characterising the geometrical 

(1)
dp

dx
= A(�)[�(T)�f ] + B(�)[�(T)�2

f
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structure of the porous body. In the context of porous beds, 
such set of parameters (denoted here as � ) may have the 
following form (Table 1) [37]:

where d—the representative particle diameter (which may 
be defined in many ways [41]) (m), �—the porosity (−), �
—the packing coefficient (−), e—the void ratio (−), Vs—the 
volume of the solid part of the porous body (m3 ), Vp—the 
volume of the pore part of the porous body (m3 ), V—the 
total volume of the porous body (m3 ), �—the tortuosity 
(−), L0—the depth of the porous bed (m), Lp—the length 
of the pore channel (m), �f—the tortuosity factor (−), S0
—the specific surface of the solid body (in the Kozeny [22] 
or Carman meaning [6]) (1/m), Sp—the inner surface of the 
porous body (m2).

In the context of the described work it is important that 
the elements of the � set are usually treated as constant val-
ues, representative for the whole porous bed. Such approach 
is used in all formulas cited in the description of the Eq. (1). 
However, these parameters may depend on other factors. In 
the investigations of granular beds consisting of spherical 
or quasi-spherical objects, the particle size distribution may 
be such factor. This is the issue that we study in this paper.

Most elements of the � set may be calculated analytically, 
if only the number of particles in the bed and their sizes 
are known. The type of particle distribution is not directly 
considered in such calculations, but of course it is concealed 
in above-mentioned data. From the whole � set, only the 
tortuosity has to be obtained in another way. In the litera-
ture, many formulas destined for calculation of this quantity 
may be found. In the [39] we checked 21 such relations and 
in most cases tortuosity is treated as a direct function of 

(2)
� =[d,�(Vp,V), �(Vs,V), e(Vp,Vs),

�(Lp, L0), �f (�), S0(Sp,Vs,V),…],

the porosity. An additional parameter (a shape factor) was 
introduced only in two cases. We did not found any paper 
investigating the relationships between the kind and param-
eters of the particle distribution and the tortuosity. It was 
the main motivation to perform research described in this 
article. Study like that has the potential to propose formu-
las allowing calculation of porous bed parameters based on 
variance of size of particles forming the investigated bed, 
with no need of experiments, that can be time-consuming, 
cost-intensive or simply impossible. It should be noted that 
in the literature investigations in which a particle distribution 
of a porous bed is taken into account may be found (e.g. [4, 
7, 30, 49]). However, the Authors focus usually on the gen-
eral effect, like permeability or filtration coefficient (values 
of A(�) and B(�) terms), not on the elements of the � set. 
Papers related to investigations of mono- and poly-disperse 
granular systems are known too, even related to their inner 
geometrical structure [28, 29, 33]. However, it is very dif-
ficult to compare the results of these investigations with our 
data on a quantitative level.

The need for the calculation of the tortuosity determines 
the methods used in the investigations. To reach the article 
aim, we use the so-called Path Tracking Method (PTM). 
This method needs the data on the locations and sizes of all 
particles forming a bed. Such data may be obtained experi-
mentally (e.g. by the use of the computed tomograpfy and 
image analysis) or numerically (e.g. by the use of the Dis-
crete Element Method, DEM). Due the fact that it is impos-
sible to freely change the standard deviation in a real bed, in 
our study the second approach is used. In DEM simulations, 
the particle size distribution may be freely defined. To keep 
the resemblance to real granular beds, the porosity, the aver-
age particle diameter and the basic value of the standard 
deviation were taken from an earlier experiments [41].

The key question is whether the virtual beds generated in 
DEM simulations may be used to analyze the geometry of 
real granular beds. DEM is a very complicated technique and 
many different factors (the applied contact models, numeri-
cal schemes, time approach and many others) may influence 
the final spatial arrangement of the particles. To answer this 
question, all possible elements of the � set were calculated 
in two ways: direct, based on the discrete form of the cumu-
lative curve of particle distributions; and indirect, based 
on the data obtained from DEM simulations. This approach 
allows to show differences between these two ways.

The methodology of the presented investigations consists of 
four main steps: (a) preparation of a set of cumulative curves 
of particle distributions (with Gaussian distribution); (b) ana-
lytical calculations of all possible elements of the � set in 
function of the standard deviation; (c) preparation of a set 
of virtual beds with the use of the Discrete Element Method 
(where the type and parameters of the particle distribution is 
specified); (d) use of our own algorithms destined for analysis 

Table 1   Parameters characterising the spatial structure of a porous 
bed [41]

No. Parameter Definition

1 Porosity � = lim�V→Vg

�Vp

�V

2 Packing coefficient � = lim�V→Vg

�VS

�V

3 Void ratio e =
Vp

Vs

4 Tortuosity � =
Lp

L0

5 Tortuosity factor �f = �2

6 Inner surface
Sp = Ss =

ns
∑

i=1

Si =
ns
∑

i=1

�d2
i

7 Specific surface (by Kozeny) S0,Kozeny =
Sp

V

8 Specific surface (by Carman) S0,Carman =
Sp

Vs
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the spatial structure of granular beds consisting of spherical 
particles (where the so-called Path Tracking Method [36, 43] is 
the most important). In the last stage, all results are compared 
and the conclusions are drawn.

2 � Materials and methods

2.1 � Materials

A set of virtual beds consisting of spherical particles and cre-
ated with the use of the Discrete Element Method is the object 
of our investigations. We assume: (a) Gaussian distribution of 
the particle size; (b) one average particle diameter—equal to 
6.072 (mm) ( de ); (c) one basic value of the standard deviation 
equal to 0.05 (mm) ( �e ); (d) one bed porosity (the so-called tar-
get porosity, �e ) equal 0.413 (−). These values are taken from 
previous studies [41], in which real beds with such parameters 
were investigated.

2.2 � Methods

2.2.1 � Distributions of diameters

The main aim of this task is to create a set of cumulative curves 
of particle size distributions with a constant average diameter 
(equal to de ) and different values of standard deviations ( �).

Classic mathematical formulas for normal distribution are 
sufficient for generating theoretical, discrete distribution of 
the particles forming the bed. By the theoretical distribution, 
we mean the set of bins including numbers of spheres with a 
fixed diameter. Distribution is calculated in the range of ± 4�e 
from de . In case of normal distribution, it means that ≈ 99.994 
% of the population falls inside that range (15,787 must be 
the minimum total population to expect the first case falling 
outside that range [13]).

The procedure of generating the theoretical distribution is 
following. The range of ± 4�e is divided into nf  (ie. number of 
fractions) equal subranges. Each i-th (where i = 1, 2,… , nf  ) 
subrange has an attributed diameter:

Then, if N is the total number of spheres in the bed under 
creation, then the number of spheres ni for the i-th bin is 
calculated as:

Explanation for above procedure is as follows. The sum of 
calculated integrals seen in the formula (4) obtained for each 

(3)di = de − 4�e +
4�e

nf
(2i + 1).

(4)ni = N ∫
de−4�e+

8�e

nf
(i+1)

de−4�e+
8�e

nf
(i)

1

�e

√

2�

e
−
�

x−de

2�e

�2

dx

bin is equal to one. Multiplication of these values by the 
number of spheres that are supposed to form the granular 
bed as a whole, gives us the contribution of each fraction 
with an attributed diameter. On that basis, we can get the 
cumulative curve for each distribution and having the theo-
retical distribution of the particles forming the granular bed, 
we can create the virtual beds with attributed mean diameter 
and different variances.

2.2.2 � Discrete Element Method

The main aim of this task is to obtain independent sets of 
virtual granular beds with one porosity, one average diam-
eter and different values of the standard deviation. By the 
term “virtual bed” we mean here the data on position in the 
space (x, y and z coordinate) and the size (radius or diam-
eter) of every particle forming the bed.

The virtual beds were prepared with the use of the Dis-
crete Element Method (DEM) proposed by Cundall and 
Strack [10]. This method is based on the analysis of dynam-
ics of a set of solid bodies (e.g. spherical particles grouped 
in a cloud), carried out with the use of Newtonian laws. The 
main equations of the linear and the angular motion may be 
written as follows [1, 12, 15]:

where mi—mass of the i-th body (kg), Ii—moment of inertia 
of the i-th body (kg m2 ), vi—linear velocity of the i-th body 
(m/s), �

�
—angular velocity of the i-th body (rad/s), �n

ij
—

normal forces between neighbouring bodies i and j (N), �t
ij

—tangential forces between neighbouring bodies i and j (N), 
nc—number of contacts between i-th body and neighbouring 
bodies (−), �ext

i
—external mass forces acting on the i-th 

body (e.g. gravity force) (N), ri—distance between the con-
tact point with the j-th body and the mass centre of the i-th 
body (m), �r

ij
—torque factor associated with the rolling fric-

tion (N m).
To generate a virtual bed consisting of spherical parti-

cles, the so-called Radius Expansion Method (REM) imple-
mented in the non-commercial YADE code was used [51]. 
This name denotes a specific way of generating a particle 
cloud in a DEM model. In this method, an initial cloud of 
small particles (without any contacts) with a given particle 
size distribution is randomly generated, and then all particles 
increase in size until the target porosity is reached [51]. The 
radiuses increases with the formula rt+dt = krt , where k is 

(5)mi

d�i

dt
=

nc
∑

k=1

(

�
n
ij
+ �

t
ij

)

+ �
ext
i

(6)Ii
d�i

dt
=

nc
∑

k=1

(

ri × �
t
ij
+ �r

ij

)
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the so-called radius expansion factor and t is time. The term 
“cloud” means here a set of objects (spherical in our model) 
located in the calculation domain. It should be emphasized 
that the random generation of objects in a cloud is applied 
very often [3, 32, 46, 51]. The number of contacts between 
particles increases during calculations and it is fixed at a 
constant level after some time. The REM may be used to 
create clouds with particles having one specific diameter or 
different diameters. In the second case, a discrete cumula-
tive curve of particle fractions must be defined (Sect. 2.2.1).

A characteristic feature of the REM is that the volume 
of the space in which the initial cloud is generated, must 
be very precisely defined. To control this volume, an addi-
tional parameter ( lc ) has to be calculated in every single 
case. In other case, the final cloud of particles obtains the 
correct porosity as well as the features of the particle dis-
tribution, but the diameter values will be incorrect.

The virtual beds were prepared with an assumption 
that the porous body has a cuboid shape with the size of 
lclc2lc . The last direction is twice longer than the others to 
increase the L0 dimension. This is the direction in which 
paths lengths ( Lp ) are calculated to obtain the geometrical 
tortuosity. The volume of the porous body may be also 
calculated as follows:

where lc is an characteristic dimension of the porous body 
[m]. This quantity may be obtained from the formula:

where

and

Symbols from formula (9) have following denotations: Vsum
i

—the total volume of all particles in the i-th bin (m3 ), Vi

—the volume of a single particle belonging to the i-th bin 
(m3 ), Yi—the fraction of particles in the i-th bin (−), di—the 
diameter of particle belonging to the i-th bin (m). In our 
investigations we assume that the total number of spheres 
(N) is constant for all virtual beds.

(7)V = Vs + Vp = 2l3
c

(8)lc =
3

√

Vs + Vp

2
,

(9)

Vs =

nf
∑

i=1

Vsum
i

=

nf
∑

i=1

niVi =

nf
∑

i=1

YiNVi

=

nf
∑

i=1

YiN
4

3
�

(

di

2

)3

(10)Vp =
�

1 − �
Vs.

The other possibility to create a virtual bed with a defined 
particle distribution is the use of a triaxial compression. In 
this approach, a cloud of particles is created (the particle 
sizes and distribution are correct in that moment) and then 
the cloud is compressed by the walls to obtain the target 
porosity. The particle distribution is introduced in the same 
way as in the previous method. The main drawback of this 
method is a long simulation time, counted in hours, not min-
utes, like in the REM method. Due to the fact that a big num-
ber of virtual beds had to be generated, we decided to use the 
REM approach. Since this method is often applied in many 
different studies [8, 17, 23, 45, 48, 50], new conclusions 
related to the consequences of its use seems to be desirable.

2.2.3 � Path Tracking Method

The main aim of this task is to obtain values of the geometri-
cal tortuosity for every virtual bed prepared with the use of 
the Discrete Element Method. The geometrical tortuosity is 
calculated with the use of the Path Tracking Method (PTM) 
in a variant called Regular Grid Method (RGM) [36, 42]. 
The other parameters are calculated analytically, but with the 
use of the same software, the so-called PathFinder code [31].

Path Tracking Method is an iterative method of determi-
nation of the length of a pore channel in a porous medium 
in the chosen space direction, which consists of analysis of 
the local structure of the pore space based on the information 
on the location and diameter of every particle forming the 
bed. The PTM method was developed by one of the authors 
in 2009 as a tool destined for investigating the spatial struc-
ture of granular beds. As a result, the numerical code called 
PathFinder was written, and it is currently freely available 
in the Internet [31]. The length of a pore channel ( Lp ) in the 
PTM is determined between two parallel planes, based on 
the sum of the unitary lengths. In turn, these unitary lengths 
are calculated based on the so-called tetrahedral structures 
that establish the basis for the calculation algorithm (Fig. 1). 
Tetrahedral structures are created based on the data on the 
location and diameter of each particle in the bed.

The Regular Grid Method defines a way of using the PTM 
algorithm [36].

2.2.4 � Approximation functions

Six following models were fitted to data in each case 
(Table 2). Symbols p1 , p2 , p3 and p4 are models param-
eters and y is the parameter of the porous bed being under 
consideration. Models were fitted to data using Levenberg-
Marquardt algorithm [27]. Then, Akaike Information Cri-
terion (AIC) was used to compare models [2, 40]. Hence, 
formulas given below as linking porous bed parameters with 
variance of particle size distribution are those indicated by 
AIC as best describing analysed relationship. Moreover, 
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residual analysis (whiteness test of residuals) was performed 
for each model indicated by AIC in order to check, whether 
chosen approximation function properly explains changes in 
analysed value [25].

3 � Results and discussion

3.1 � Discrete form of particle size distribution

The set of standard deviations used in our investigations to 
generate cumulative curve of particle distribution was as 
follows: 0.0001, 0.001. 0.01, 0.10, 0.15, 0.20, ...,1.15. Each 
particle distribution was saved in a discrete form of 101 frac-
tions ( nf = 101 ). The total number of particles (N) was set 
to 10,000 (−), what is less than the maximum safe value 
calculated in Sect. 2.2.1. Examples of such functions are 
visible in Fig. 2. The Ysum symbol denotes the cumulative 
fraction of all particles with a diameter equal or less than di.

3.2 � Direct analytical calculations

If the discrete function of the particle size distribution and 
the total number of particles are known, then the values of 
Vs , Vp , V, lc , Sp , S0,Carman , S0,Kozeny as well as other quantities 
(see Eq. 2) for every standard deviation may be directly 
calculated. The mathematical formulas visible in Table 1 
and Eqs. (7)–(10) were used. In this approach, firstly Vs 
with the use of the Eq. (9) is calculated and next, tak-
ing into account the target porosity �e , the volume of the 
pore part ( Vp ) as well as the total volume of the bed (V) 
are determinated. After obtaining this data, the porosity is 
calculated. Knowing all diameters, the inner surface is also 
calculated. At the end, the fit functions were obtained for 
all parameters listed above. Results of the direct calcula-
tions are collected in Table 3. The ”hat” symbol was added 

Fig. 1   Schemat of the tetra-
hedral structure used in the 
Path Tracking Method; the 
meaning of the abbreviations 
is as follows [38]: ISP—Initial 
Starting Point (a point in the 
bottom surface of the bed, from 
which the calculation starts), 
FSP—Final Stating Point (a 
point from which the path 
begins), GC—gravity center of 
the triangle formed by particles 
P
1
 , P

2
 and P

3
 , IL—Ideal Loca-

tion (a predicted point, in which 
the centre of the fourth particle 
forming the tetrahedral structure 
is located), RL—Real Location 
(a real point in which the centre 
of the particle P

4
 is located)

Table 2   Approximation functions considered in the statistical analy-
sis

No. Function Kind

1 y = p1 + p2� Linear
2 y = p1 + p2� + p3�

2 Polynomial
3 y = p1 + p2� + p3�

2 + p4�
3 Polynomial

4 y = p1 + p2e
p3� Expotential

5 y = p1 + p2�
p3 Expotential

6 y = p1 +
p2

�
Hyperbolic

 0
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m
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]
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σ = 0.01
σ = 0.5
σ = 1.0

Fig. 2   Examples of cumulative curves of particle distributions



	 W. Sobieski, S. Lipiński 

1 3

14  Page 6 of 15

to distinguish these functions from indirect results shown 
in the rest of the paper.

3.3 � Virtual beds

To prepare a set of virtual beds with the use of the Discrete 
Element Method, the following assumptions were made: (a) 
the average diameter is equal to de ; (b) the standard deviation 
is changed in a range as wide as possible; (c) the total num-
ber of particles (N) is equal to 10000; (d) the target porosity 
is equal to �e ; (e) every virtual bed is generated three times 
with the use of different parameters of the random function 
(the repetitions are identified by numbers 1, 2 and 3); (f) 
all test are performed two times with different values of the 
radius expansion factor. When the radius expansion factor 
is less, then the time of DEM simulation is longer but the 

target porosity may be obtained more precisely. These tests 
are identified as A and B. The radius expansion factor was 
equal to 0.0001 and 0.001 in tests A and B, respectively. 
The visco-elastic contact model was applied. The damping 
coefficient was set to 0.2. Mass forces in each direction were 
set to zero due to the desire to obtain more homogeneous 
beds. In every simulation the friction angle (denoted by � ) 
was firstly set to 0.5 [rad], and next it was decreased during 
calculations. In Fig. 3, examples of virtual beds from DEM 
simulations are visible.

It should be stressed that when the Radius Expansion 
Method is used, the final particle distribution differs from 
the normal distribution (Fig. 4). Based on additional experi-
ment, we noticed that this effect is independent of initial 
value of the friction angle � . The np symbol in this figure 
denotes the number of particles with a specific diameter. 
The above mentioned effect occurs despite the fact that the 
initial cumulative curves are symmetric (see Fig. 2) and they 
all were created for the normal distributions. The reason is 
that in many cases particles are blocked by neighbouring 
particles and cannot grow evenly during simulation. This 
effect is significant mainly for particles with medium and 
higher diameters. In turn, to obtain the target porosity, the 
particles with smaller diameters have to grow more than 
they are supposed to. Confirmation of this phenomenon is 
visible in Fig. 5, where higher normal stress magnitude is 
noticeable for higher diameters (The mean normal stress was 
calculated using the formula given by [18] and [47]). This 
trend is not very strong but it is visible in every case. It 
should be noted that for some particles with small diameters 

Table 3   Relationships between standard deviation and chosen ele-
ments of the � set

No. Parameter Analytical function

1 V̂s(𝜎) 0.001166 + 9.3 × 10−5�2

2 V̂p(𝜎) 0.00082 + 6.55 × 10−5�2

3 V̂(𝜎) 0.001987 + 0.00016�2

4 l̂c(𝜎) 0.0998 + 8.07 × 10−5� + 0.0025�2

5 Ŝp(𝜎) 1.153 − 1.76 × 10−9� + 0.03�2 − 1.13 × 10−8�3

6 Ŝ0,Carman(𝜎) 1002.89 − 12.962e1.58�

7 Ŝ0,Kozeny(𝜎) 588.7 − 7.61e1.58�

Fig. 3   Two examples of virtual beds (from the A1 set): � = 0.1 (left) and � = 1.1 (right)
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the normal stress magnitude is equal to zero. It indicates that 
no normal forces affected these particles (they may have no 
contact with other particles). Such effect is not visible for 
the biggest particles. It also happens that big single particles, 
which have space to growth, increases excessively in size 
(see the right end of the chart visible in Fig. 4).

The other consequence of uneven growth of particles is 
the decrease of the average diameter when the standard devi-
ation increases (Fig. 6). However, the relative error (where de 
is taken as the precise value) is small and do not exceed 2%. 
On this stage we do not arbitrate whether the virtual beds 
can form the basis for further investigations of the geometry 
of such kind of porous media. This issue is discussed in the 
next section.

It should be emphasized that the investigations of virtual 
beds generated rendomly with the use of the REM and the 
cumulative curves are not new in the literature [5, 9, 20, 24]. 

However, in the available literature we did not found com-
ments concerning the changes in the particle distribution if 
this approach to modelling is applied.

3.4 � Indirect analytical calculations

If the data on the location and size of every particle forming 
the virtual bed is known, then the PathFinder code destined 
to calculate all elements of the � set may be used. In this 
section we focus on these elements of this set which may be 
calculated analitically. Additionally, we discuss some issues 
related to the data obtained with the use of the Discrete Ele-
ment Method.

In Fig. 7, changes in the porosity in function of standard 
deviation are visible. Important is that these values were col-
lected directly during DEM simulation in the main calcula-
tion loop (similar relationship is shown in the article further 
(Fig. 9), but obtained in the PathFinder code). This time, 
at the beginning of every DEM simulation, a calculation 
domain with a specific volume (V) dependent on the param-
eter lc is created. The parameter lc is calculated analytically, 
in the same way as in the direct approach. The total volume 
of the particles ( Vs ) and the volume of the pore space ( Vp ) is 
calculated in every time step on the basis of the current data 
to obtain the current porosity. The main loop stops when the 
current porosity is equal or less than the target porosity ( �e ). 
This explains why the values visible in Fig. 7 are always 
a bit lower than this target porosity. As it can be seen, the 
porosity value is much more constant in the A test. Besides, 
the porosity decreases in A test if the standard deviation 
increases, otherwise than in the B test, where the porosity 
changes are more non-uniform. The minimum and maximum 
relative errors (where the target porosity is used as the refer-
ence value) in A test were equal to 0.06% and 0.68%, in B 
test in turn 0.38% and 2.63%. None of considered models 
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was able to describe changes in porosity for the B test. In 
case of the A test, changes in porosity were best explained 
with the use of the second degree polynomial model:

Our results showed that the porosity slightly decreases when 
the standard deviation increases. It coincides with informa-
tion from the literature (e.g. [34]), that the packing fraction 
in the polydisperse beds is higher than in the monodisperse 
system. The higher packing fraction denotes the lower poros-
ity. Similar information is given in [47], where the influ-
ence of number of granulometric fractions on structure 
and micromechanics of compressed granular packings was 
investigated.

During investigations it turned out that the characteristic 
dimension increases slightly with increase of the standard 
deviation (Fig. 8). The porosity changes are caused by dif-
ferences in the local arrangement of particles in the bed. 
Increase of a variance of particle sizes causes small changes 
in the structure of contacts between particles and in conse-
quence in structure of forces and momentums. In case of 
characteristic dimension, the results were best explained 
with the use of the second degree polynomial model in a 
form of:

In Fig. 9, the porosity in function of standard deviation 
for data obtained from the PathFinder code is presented. 
In opposition to porosity obtained in the YADE code, the 
values from the PathFinder code are slightly higher. The 
procedure of calculation the porosity in the YADE code 
was explained earlier. The bed size (volume V) in the 
PathFinder is calculated based on the data of locations 
and sizes of all particles (details in [38]). The volume of 
the solid part ( Vs ) is calculated by the use of Eq. (9). The 

(11)�A = 0.4124 − 0.0005� − 0.0013�2.

(12)lc = 0.0998 + 0.00008� + 0.0025�2.

minimum and maximum relative errors (where the target 
porosity is used as the reference value) in A test were 
equal to 0.23% and 0.65% , in B test in turn 0.19% and 
1.82% . Important is that all calculations related to the � 
set are performed in the PathFinder code, thus the val-
ues presented earlier in Fig. 7 are not taken into account. 
Similarly like in a case of relationship between porosity 
and standard deviation obtained for data obtained through 
DEM simulations (shown in Fig. 7), none of considered 
models was able to properly describe changes in porosity 
for the B test, where obtained results are clearly nonlinear. 
In case of the A test, changes in porosity are best explained 
with the use of the second degree polynomial model:

(13)�A = 0.4138 − 0.0001� − 0.0023�2.
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The results visible in Figs. 7 and 9 show that virtual beds 
obtained in the A set have higher quality. By the term “qual-
ity” we mean here the level of the data scattering. It leads 
to the conclusion that the radius expansion factor should 
be as small as possible. Therefore, we assume, that results 
obtained in A test are good enough to reach the aim of the 
article. In the next parts, the approximation functions are 
shown only for data obtained in the A test. However, to con-
tinue the discussion results for the B test are also shown.

The porosity is dependent of the characteristic volumes 
of the bed and its parts. In Figs. 10, 11 and 12, the impact 
of standard deviation on the solid part of the bed, the pore 
part of the bed and the total volume of the bed are shown. 
Approximation functions for these relationships are as 
follows:

The changes in the characteristic volumes of the bed and 
its parts shows that the structure of the pore space changes 
slightly in function of the standard deviation. The key role 
plays the volume of the solid part of the porous body (Eq. 9), 
which is dependent on the particle distribution in the bed. 
Such parameters like Vp , V and lc depend directly on this 
volume.

In Fig. 13, the inner surface for all defined data sets is 
visible in function of the standard deviation. Important is 
that the inner surface was calculated with an assumption 
that all particles are non-deformable, what means that they 
have point contacts [see the formula no. 6 in Table 1 and 
Eq. (9)]. The inner surface increases with the increase of the 

(14)VA
s
= 0.001166 + 0.0001�2.

(15)VA
p
= 0.000824 + 0.00006�2.

(16)VA = 0.00199 + 0.00016�2,

standard deviation due the fact that the relationship between 
the diameter and the inner surface is quadratic. Thus, the 
bigger particles have more significant impact on the total 
inner surface than the smallest particles. In Fig. 13 a clearly 
trend is visible with a maximum for � ≈ 1.05 . This disortion 
results from the way used to generating the virtual bed and 
don’t should appears. This is the only one case, for which 
the indirect analysis gives different shape of the fit function 
than in the direct calculations. The approximation function 
for specific surface is the third degree polynomial of fol-
lowing form:

In Figs. 14 and 15, the specific surfaces in meanings 
of Kozeny and Carman are shown. The approximation 

(17)SA
p
= 1.1556 − 0.0085� + 0.064�2 − 0.0342�3.
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functions for these figures are given in following expo-
nential form:

In Table 4 the mean and maximum relative errors between 
fit functions obtained from the indirect analysis in relation 
to the fit functions from the direct calculations are shown. 
As it can be seen, these errors are very small in all cases. On 
this basis we can assume that virtual beds created with the 
Radius Expansion Method properly represent the real beds 
and so they may be used to further investigations of their 
geometrical features.

(18)SA
0,Kozeny

=586.3 − 5.29e1.97� ,

(19)SA
0,Carman

=1001 − 9.6e2� .

3.5 � Geometrical tortuosity

The values of the geometrical tortuosity were obtained with 
the use of the Path Tracking Method [39] in the variant 
called the Regular Grid Method. The bottom surface of the 
bed was divided into a regular grid of Initial Starting Points 
( 100 × 100 ), from which 10000 paths lengths for every vir-
tual bed were calculated. In Fig. 16, the geometrical tortu-
osity maps for two chosen cases were shown. One can see 
that the geometrical tortuosity value differs depending on 
the location of the point, in which the path begins (details 
in [39]). It is characteristic that small areas in which the 
geometrical tortuosity has the same value are clearly vis-
ible. This is due to the fact that paths starting at different 
points lying close to each other lead often in whole or in part 
through the same pore channel. This effect was described 
in [36].

In Fig. 17, average values of geometrical tortuosity for 
three sets of virtual beds and both A and B tests are visible. 
The approximation function for A set is as follows:
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Table 4   Mean and maximum relative errors between fit functions 
obtained in direct and indirect calculations

Parameter Mean relative error (%) Maximum 
relative error 
(%)

Vs 0.18 0.30
Vp 0.26 0.43
V 0.17 0.22
Sp 0.31 1.23
S0,Carman 0.41 2.17
S0,Kozeny 0.24 1.44
lc 0.02 0.03
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It should be stressed here, that in case of geometrical tortu-
osity, obtained approximation function is proper for the B set 
as well, so it does not depend on bed quality. It leads to the 
conclusion that details related to the metod used to generate 
a virtual bed may have relatively little meaning in calcula-
tion this quantity. It is a very desirable conclusion due to the 
fact that from the � set, the tortuosity is the most difficult 
parameter to obtain.

Note, that if the standard deviation is equal to zero, then 
the tortuosity equals 1.208. We may compare this value with 
data shown by Wang [46], who used coupled DEM-LBM 
(Lattice Boltzmann Method) simulations to calculate the 
so-called hydraulic tortuosity in granular beds consisting 

(20)�A = 1.208 + 0.006e1.54� .

of spherical particles. The hydraulic tortuosity obtained by 
him was equal to 1.1975 for the porosity equal to 0.4. Such 
compliance is very satisfying, especially since in the both 
cases the used methodologies were different.

In Fig. 18 geometrical tortuosity maps of two chosen 
standard deviations and three sets of virtual beds are shown. 
These maps are different in every case what confirms that 
the trend visible in Fig. 17 is independent on the arrange-
ment of local values of the tortuosity.

It was mentioned that in the literature the tortuosity is 
usually defined as a non-linear function of the porosity. Here 
we want to check, whether the trend visible in Fig. 17 is 
not caused by changes of the porosity shown in Fig. 9. For 
this purpose the available analytical formulas for calculating 
the tortuosity in granular beds were used. A review of such 
formulas is available in [39]. In Fig. 19 it can be seen that 
such analytical formulas do not respond to small changes 
of the porosity reported earlier (Fig. 9). It confirms that the 
trend visible in Fig. 17 is a general feature, dependent on 
the standard deviation and not on the porosity fluctuations. 
Moreover, since the porosity decreases slightly in function 
of the standard deviation, the changes in the tortuosity may 
by even bigger than it can result from the formula (20).

The performed analysis shows that the impact of the 
standard deviation on the geometrical tortuosity cannot 
be assessed on the basis of analytical formulas, in which 
� = f (�).

3.6 � Sensitivity analysis

To obtain more information about the influence of the stand-
ard deviation on the particular elements of the � set, the 

Fig. 16   Examples of geometrical tortuosity maps (A1): � = 0.1 (left) and � = 1.1 (right)
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sensitivity analysis was performed. A sensitivity indicator 
is introduced in the following form

(21)Ij,i =
��out

j,i

��in
i

,

where Ij,i equals indicator of the impact of the i-th input 
parameter on the j-th output parameter, ��in

i
 equals change 

in the value of the i-th input parameter, ��out
j,i

 equals change 
in the value of the j-th output parameter caused by a change 
in the value of the i-th input parameter.

Increments in Eq. (21) are defined as follows:

(22)𝛥𝜑in
i
= 𝜑in

i
− 𝜑̄in

i
and 𝛥𝜑out

j,i
= 𝜑out

j,i
− 𝜑̄out

j,i
,

Fig. 18   Geometrical tortuosity maps for � = 0.1 (left) and � = 1.1 (right) and set A1 (top), A2 (center), A3 (bottom)
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where �in
i

 equals current value of the i-th input parameter 
(for which the value of the j-th output parameter is esti-
mated), 𝜑̄in

i
 equals base value of the i-th input parameter 

(from the base model), �out
j,i

 equals value of the j-th output 
parameter determined for the current value of the i-th input 
parameter, 𝜑̄out

j,i
 equals base value of the j-th output parameter 

(from the base model).
To obtain a non-dimensional number, the increments (22) 

are divided by appropriate base values. In the consequence:

where

In our case the i set contains only one parameter ( � ) and j 
set contains six parameters ( Vs , Vp , V, Sp , S0,Carman , S0,Kozeny ). 
We resign to calculate the sensitivity indicator for the char-
acteristic dimension lc . As the base values we use the values 
calculated for the standard deviation equal to �e . In turn, 
as the current values the data for � = 1.15 (maximum) and 
� = 0.6 (approx. half of the maximum) are used. Results of 
calculations are collected in Table 5. The absolute value of 
the |I|j,i shows the level of the sensitivity of the investigated 
variable. The negative sign means that the increase of the 
standard deviation causes the decrease of the chosen param-
eter. Without the sensitivity analysis these informations are 
not obvious.

(23)|I|j,i =
�|�|out

j,i

�|�|in
i

,

(24)𝛥|𝜑|in
i
= 𝛥𝜑in

i
∕𝜑̄in

i
and 𝛥|𝜑|out

j,i
= 𝛥𝜑out

j,i
∕𝜑̄out

j,i
.

4 � Conclusions

The following conclusions can be formulated based on the 
above-discussed topics: (1) Geometrical parameters charac-
terising granular beds (identified in the paper as the set � ) 
may be treated as functions of the standard deviation of the 
particle distribution. These functions may be obtained on the 
basis of Discrete Element Method and statististical methods; 
(2) The obtained functions may be used as replacements 
of constant values in such formulas like e.g. Kozeny–Car-
man equation, in which the porosity, the tortuosity factor 
and the specific surface have to be stated; (3) The functions 
proposed in the paper are developed on the basis of virtual 
beds and may be treated only as an estimation. However, we 
hope that the obtained trends and intensivities of changes are 
close to what is in fact, at least in relation to granular beds 
consisting of spherical or quasi-spherical particle; (4) Due 
the fact, that the DEM is an increasingly popular method 
of modeling different granular systems, the investigations 
of features, possibilities and limitations of this approach 
is very important and in our opinion fully justified; (5) A 
drawback of the Radius Expansion Method is distortion of 
an originally given particle distribution during the simula-
tions (not commented in the available literature). However, 
this method seems to be sufficient to perform investigations 
related to the spatial structure of a porous bed; (6) The qual-
ity of a virtual bed depends on the radius expansion factor. 
This parameter should be relatively small; (7) The sensitiv-
ity analysis performed in the article allows estimating the 
intensity and the direction of changes of all elements of the 
� set when the standard deviation increases; (8) Geometrical 
tortuosity in granular beds increases slightly and nonlinearly 
with an increase in the standard deviation of the particle 
size distribution. Additionally, this relationship seem to be 
independent on the quality of the virtual bed.
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Table 5   Values of the normalized sensitivity indicator

Parameter
|I|

0.6
× 10

−2
|I|

1.15
× 10

−2

Vs 0.28 0.51
Vp 0.24 0.44
V 0.26 0.48
Sp 0.09 0.09
S0,Carman − 0.78 − 0.39
S0,Kozeny − 0.18 − 0.39
� 0.28 2.03
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