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Abstract Novel numerical algorithms are presented for the
implementation of micro-scale boundary conditions of par-
ticle aggregates modelled with the discrete element method.
The algorithms are based on a servo-control methodology,
using a feedback principle comparable to that of algorithms
commonly applied within control theory of dynamic systems.
The boundary conditions are defined in accordance with the
large deformation theory, and are imposed on a frame of
boundary particles surrounding the interior granular micro-
structure. Following the formulation presented in Miehe et
al. (Int J Numer Methods Eng 83(8–9): 1206–1236, 2010),
first three types of classical boundary conditions are con-
sidered, in accordance with (1) a homogeneous deformation
and zero particle rotation (D), (2) a periodic particle displace-
ment and rotation (P), and (3) a uniform particle force and
free particle rotation (T). The algorithms can be straight-
forwardly combined with commercially available discrete
element codes, thereby enabling the determination of the
solution of boundary-value problems at the micro-scale only,
or at multiple scales via a micro-to-macro coupling with a
finite element model. The performance of the algorithms is
tested by means of discrete element method simulations on
regular monodisperse packings and irregular polydisperse
packings composed of frictional particles, which were sub-
jected to various loading paths. The simulations provide
responses with the typical stiff and soft bounds for the (D) and
(T) boundary conditions, respectively, and illustrate for the
(P) boundary condition a relatively fast convergence of the
apparent macroscopic properties under an increasing packing
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size. Finally, a homogenization framework is derived for the
implementation of mixed (D)–(P)–(T) boundary conditions
that satisfy the Hill–Mandel micro-heterogeneity condition
on energy consistency at the micro- and macro-scales of
the granular system. The numerical algorithm for the mixed
boundary conditions is developed and tested for the case of
an infinite layer subjected to a vertical compressive stress and
a horizontal shear deformation, whereby the response com-
puted for a layer of cohesive particles is compared against
that for a layer of frictional particles.

Keywords Granular materials · Multi-scale modeling ·
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1 Introduction

The accurate computation of the non-linear failure and
deformation behavior of heterogeneous granular systems
commonly requires a resolution of the complex mechani-
cal interactions and deformation mechanisms at the particle
scale, which can be adequately accounted for by using the
discrete element method (DEM), see e.g., [1–10] and ref-
erences therein. For practical granular systems composed
of a vast number of particles, however, it is infeasible to
simulate each particle as an individual discrete object, since
this leads to DEM models with an enormously large num-
ber of degrees of freedom, and consequently, to impractical
computation times. To circumvent this problem, advanced
multi-scale frameworks have been developed, where the
mechanical responses at the particle micro-scale and the
structural macro-scale are hierarchically coupled in an com-
putationally economical fashion. This is accomplished by
simulating the macro-scale problem under consideration with
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the finite element method (FEM), whereby in every integra-
tion point the response to the corresponding deformation is
calculated by means of a DEM model that accurately and
efficiently represents the complex particle behavior at the
micro-scale. Examples of coupled FEM–DEM approaches
for granular materials can be found in [11–15], illustrating the
use of various averaging theorems for relating force and dis-
placement measures at the particle micro-scale to stress and
strain measures at the structural macro-scale. Specific aspects
that should deserve more attention in FEM–DEM homog-
enization methods, but often are neglected for reasons of
simplicity, refer to (1) the Hill–Mandel micro-heterogeneity
condition, which enforces consistency of energy at the micro-
and macro-scales, (2) the effect of particle rotations in the
formulation of micro-to-macro scale-transitions, and (3) a
rigorous generalization of the multi-scale approach within
the theory of large deformations.

The computational homogenization framework presented
in [16] does include the three aspects mentioned above, and
calculates the micro-scale response of a granular packing
with a DEM model equipped with a frame of boundary par-
ticles at which the finite deformation following from the
macro-scale is imposed. The formulation considers three
types of micro-scale boundary conditions for the boundary
particles, namely (1) homogeneous deformation and zero
particle rotation (D), (2) periodic particle displacements and
rotations (P), and (3) uniform particle force and free par-
ticle rotation (T), where the abbreviations (D), (P) and (T)
are adopted from analogous, classical boundary conditions
used in continuum homogenization theories, referring to
the displacement, periodic and traction boundary conditions,
respectively. The numerical implementation of the boundary
conditions in [16] is done via a penalty method, where the
violation of the boundary conditions is punished by increas-
ing the total virtual work of the particle packing, through
the introduction of additional forces and moments on the
frame of boundary particles. Although the algorithm pre-
sented in [16] has been nicely generalized for the three types
of boundary conditions in a mathematically elegant and trans-
parent fashion, due to the nature of the penalty method the
expression for the homogenized stress of the particle pack-
ing becomes explicitly dependent on the value of the penalty
parameter, and thereby looses its physical interpretation. In
addition, in DEM models the penalty parameter may be dif-
ficult to control and must be chosen sufficiently large in
order for the penalty function to be effective, which may
induce numerical instabilities [17,18]. Another characteristic
of the penalty method is that it requires the constraint equa-
tions to be satisfied “approximately” instead of “exactly”,
whereby the accuracy of the approximation is determined by
the magnitude of the penalty parameter. As a consequence,
the limit case at which the boundary conditions are met
exactly is not rigorously retrieved from the formulation, since

the homogenized stress of the particle packing then vanishes,
see expression (44) in [16].

In order to improve on the algorithmic drawbacks men-
tioned above, in the present communication an alternative
numerical algorithm is proposed for the implementation of
the homogenization framework presented in [16]. This algo-
rithm is based on a servo-control methodology, using a
feedback principle comparable to that of algorithms com-
monly applied within control theory of dynamic systems
[19]. Accordingly, the displacements and rotations of the
particles of the boundary frame are iteratively adapted from
a gradually diminishing discrepancy between the measured
and desired values of the micro-scale boundary condition.
A strong point of this approach is that it is relatively simple
to implement, and only affects the interface communicating
information between the macro-scale FEM and micro-scale
DEM models. In other words, it does not require internal
modifications of the FEM and DEM source codes, so that
the approach also can be combined with commercially avail-
able software for which the user typically has no access to the
source code. In addition to its simplicity, the servo-control
algorithm preserves the physical interpretation of the homog-
enized stress measure derived for the particle packing, and
furnishes a realistic value for the stress in the limit case at
which the micro-scale boundary condition is met exactly.
It is noted that the algorithm only considers the (P) and
(T) boundary conditions, since for a macro-scale problem
discretized with a displacement-based FEM code, the (D)
boundary condition can be implemented in a straightforward
fashion, without the use of iterations.

Apart from providing servo-control algorithms for the
individual (P) and (T) boundary conditions, a novel for-
mulation for mixed (D)–(P)–(T) boundary conditions is
derived, and subsequently cast into a numerical formal-
ism. The formulation is proven to satisfy the Hill–Mandel
micro-heterogeneity condition, and therefore is very useful
for (1) a consistent derivation of macro-scale constitutive
relations from standard material tests on particle aggregates
subjected to any combination of (D)-, (P)- and/or (T)-type
boundary conditions, and (2) the efficient computation of
the homogenized response of large-scale particle aggregates
characterized by a spatial periodicity in one or two direc-
tions, i.e., granular layers exposed to uniform (D) and/or (T)
boundary conditions at their top and bottom surfaces. It will
be demonstrated that the formulation allows to impose the
(D) and (T) boundary conditions both at separate and iden-
tical parts of the layer boundary, where in the latter case the
(D) and (T) contributions obviously need to be applied along
different orthonormal directions.

The performance of the servo-control algorithms devel-
oped for the various micro-scale boundary conditions is
tested by using monodisperse and polydisperse frictional and
cohesive packings composed of two-dimensional, circular
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particles and subjected to various loading paths. These exam-
ples illustrate the basic features of each of the boundary con-
ditions in full detail. Despite the focus on two-dimensional
particle systems, it should be mentioned that the extension
of the present framework towards three-dimensional granular
systems is trivial, and can be made without the introduction
of additional prerequisites.

The paper is organized as follows. Section 2 presents
a review of the numerical homogenization framework for
particle aggregates, and outlines the formulations of the
micro-scale (D), (P) and (T) boundary conditions proposed in
[16]. Section 3 discusses the numerical implementation of the
micro-scale boundary conditions, where for the (P) and (T)
boundary conditions two different servo-control algorithms
are presented, which include or not an initial prediction of
the displacements of the boundary particles based on their
positions calculated at the previous loading step. In Sect.
4 the performance of the numerical algorithms is tested on
monodisperse and polydisperse frictional packings subjected
to various loading paths. The numerical results clearly illus-
trate the characteristic differences in response for the three
types of boundary conditions, and show their response con-
vergence behavior under increasing sample size. Section 5
presents the formulation for the mixed boundary conditions,
and provides the details of the servo-control algorithm and
its numerical performance for the cases of infinite frictional
and cohesive granular layers loaded by a vertical compressive
stress, and subsequently subjected to a horizontal shear defor-
mation. Some concluding remarks are provided in Sect.6.

In terms of notation, the cross product and dyadic prod-
uct of two vectors are, respectively, designated as a × b =
ei jkai b jek and a ⊗ b = aib jei ⊗ e j , where ei jk is the per-
mutation symbol, ei , e j and ek are unit vectors in a Cartesian

vector basis, and Einstein’s summation convention is used on
repeated tensor indices. The inner product between two vec-
tors is given by a · b = aibi , and between two second-order
tensors by A : B = Ai j Bi j . The action of a second-order ten-
sor on a vector is indicated as A·b = Ai j b jei . The superscript
T is used to indicate the transpose of a vector or a tensor. Fur-
ther, I = δi jei ⊗ e j denotes the second-order identity tensor,
with δi j the Kronecker delta symbol.

Since the present study focuses on two-dimensional parti-
cle aggregates, throughout the paper the dimensions related
to volume, area, stress and mass density are consistently pre-
sented in their reduced form as length2, length, force/length
and mass/length2, respectively.

2 Micro–macro transitions for particle aggregates

2.1 Micro-scale geometry

The initial micro-scale granular system is characterized by
a two-dimensional square domain of P + Q rigid parti-
cles, which are partitioned into P inner particles Pp, with
p = 1, .., P , and Q boundary particlesPq , with q = 1, .., Q,
colored in yellow and red in Fig. 1a, respectively. The bound-
ary particles can be further split into corner particles Pc

with c = 1, .., 4 and the remaining edge particles Pe with
e = 1, .., E = Q−4. The initial interior domainV comprises
the inner particles with their center points as Xp ∈ Pp with
p = 1, .., P . The boundary ∂V is defined by the boundary
particles, whose center points in the initial configuration are
Xq ∈ Pq with q = 1, .., Q. The macroscopic deformation
of the granular micro-structure is imposed via the frame of
boundary particles Pq , as a result of which the center points

(a) (b)

(c) (d)

Fig. 1 a Two-dimensional particle aggregate of initial volume V and
boundary ∂V . Yellow and red colors refer to inner Pp and boundary
Pq particles, respectively; b particle aggregate in the current configura-

tion; c boundary forces aq , boundary moments mq , and particle contact
forces fcq acting on the boundary particles Pq ; d particle contact forces
fcp acting on the inner particles Pp (color figure online)
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of the inner and boundary particles become located at xp and
xq , respectively, see Fig. 1b. In the current configuration, the
boundary particles Pq are subjected to boundary forces aq ,
boundary moments mq , and particle contact forces fcq , see
Fig. 1c, while the inner particles Pp are subjected to particle
contact forces fcp, see Fig. 1d, with the superscript c denoting
a contact with a neighbour particle.

The macroscopic response of a granular assembly is
derived by transforming relevant principles used in first-order
homogenization theories [20–23] from a continuous setting
to a discrete setting. Accordingly, at the centroids of the
boundary particles Pq the finite area vectors Aq and forces
aq are derived from infinitesimal area vectors and forces,
respectively,

∫
∂V

Nds → Aq and
∫

∂V
t ds → aq for q = 1..., Q ,

(1)

with N the vector pointing in the outward normal direc-
tion of the boundary ∂V of the initial particle volume V ,
t being the boundary traction, and ds indicating an infinitesi-
mal part of the boundary surface. Various expressions for Aq

have been presented in the literature, see e.g., [24,25]. In the
present communication the initial area vector is computed by
accounting for the different radii of the boundary particles:

Aq = Rq

Rq + Rq−1
(Xq − Xq−1) × e3

+ Rq

Rq + Rq+1
(Xq+1 − Xq) × e3 , (2)

where Rq+1, Rq and Rq−1 are the radii of adjacent bound-
ary particles q + 1, q and q − 1, respectively. Further, e3

represents the unit vector in the out-of-plane direction of the
two-dimensional particle structure, see also Fig. 1a. Note that
in (2) the boundary particles must be numbered in the anti-
clockwise direction in order to obtain an area vector pointing
in the outward normal direction of the boundary.

It is remarked that the formulation of the proposed homog-
enization scheme in principle is independent of the chosen
shape of the micro-scale particle system, see also [16]; how-
ever, a slightly different implementation strategy may be
required when considering non-rectangular particle systems.

2.2 Micro-scale governing equations

2.2.1 Equilibrium conditions

In the absence of body forces, the mechanical equilibrium of
a granular micro-structure can be formulated in terms of the
boundary forces aq and moments mq acting on the boundary
particles Pq :

Q∑
q=1

aq = 0 and
Q∑

q=1

(xq×aq+mq) = 0 for q = 1..., Q,

(3)

with xq the current position vector of the boundary particles.
The boundary forces aq and moments mq thus drive the over-
all, macroscopic deformation of the granular system via the
frame of boundary particles.

Note that, besides global equilibrium (3), local equilib-
rium conditions may be formulated for each of the inner
particles Pp, which interact through contact forces fcp at dis-
crete contact points xcp on the particle surfaces:

Nc
p∑

c=1

fcp = 0 and

Nc
p∑

c=1

(xcp−xp)×fcp = 0 for p = 1..., P,

(4)

with the superscript c referring to a particle contact, Nc
p being

the number of contact forces related to particle p and xp is
the current position vector of the inner particle. Analogous
conditions may be written for the boundary particles Pq , for
which discrete contact forces fcq act at contact points xcq on the
particle surfaces. The frame of boundary particles is driven
by boundary forces aq and boundary moments mq ,

Nc
q∑

c=1

fcq = −aq and

Nc
q∑

q=1

(xcq − xq) × fcq = −mq for q = 1..., Q ,

(5)

where Nc
q is the number of contact forces for particle q. Note

that the combination of expressions (4) and (5) is in corre-
spondence with relation (3).

2.2.2 Particle contact laws

In order to solve the micro-scale problem, the constitu-
tive response of the granular assembly needs to be defined
through a relation between the contact forces fci (or contact
moments mc

i ), with i = 1, ..., P + Q, and the correspond-
ing contact displacements �uc

i (or contact rotations �θci ).
For the sake of clarity, in the following the superscript c and
subscript i will be dropped. Two types of particle contact
interactions will be considered, which are referred to as fric-
tional contact and cohesive contact.

In accordance with [1], in the frictional contact law the
normal particle contact force fn is proportional to the nor-
mal overlap �un between two particles in contact via a
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multiplication by the normal contact stiffness kn . The tan-
gential particle contact force fs is proportional to the relative
tangential displacement �us at the particle contact via a mul-
tiplication by the tangential contact stiffness ks , up to a limit
value at which frictional sliding starts, as defined by the nor-
mal force multiplied by the friction coefficient μ. The contact
law is thus expressed as

fn = kn�un and fs =
{
ks�us if fs < μ fn ,

μ fn otherwise.
(6)

For the cohesive contact law, two particles in contact are
assumed to be initially bonded according to the constitutive
model presented in [26,27], which proposes a linear relation
between the force (or moment) and the corresponding relative
displacement (or rotation) at the particle contact:

f bn = kbn�un and f bs = kbs �us and mb
θ = kbθ �θb , (7)

where the superscript b refers to “bond”. In specific, the
relative displacements between two particles in the normal
and tangential directions of the contact, �un and �us , are,
respectively, related to the normal and tangential bond forces
f bn and f bs through a multiplication by the bond stiffnesses kbn
and kbs , respectively. Similarly, the relative angular rotation
�θb is related to the contact moment mb

θ through a multipli-
cation by the bond bending stiffness kbθ . The bond between
two particles is considered as broken when the following
failure criterion is met:

f bn
f b,un

+ | f bs |
f b,us

+ |mb
θ |

mb,u
θ

= 1 , (8)

where f b,un is the (ultimate) tensile strength, f b,us is the shear
strength and mb,u

θ is the bending strength. After breakage of
the contact the particle interaction is described by the fric-
tional contact law presented in expression (6).

2.2.3 Dynamic relaxation

The equilibrium conditions described by Eqs. (3)–(5) are
solved by applying a dynamic relaxation method, in which
the kinetic energy activated by the applied deformation is
dissipated to arrive at the equilibrium state. For each particle
i , where i = 1, .., P + Q, a vector of generalized coor-
dinates is defined as di = [xi , θ i · e3]T , which includes
the particle center location xi and rotation θ i . In addition,
a generalized force vector is introduced, pi = [fi , mi · e3]T ,
which contains the forces and moments acting on the particle.
Accordingly, the generalized equation of motion of particle
i can be expressed as

Mi d̈i = (pr + pd)i for i = 1..., P + Q , (9)

where the mass matrix Mi = diag [Mi , Ii ] includes the par-
ticle mass Mi and particle mass moment of inertia Ii =
1/2 Mi R2

i , with Ri the particle radius. The term d̈i represents
the generalized acceleration vector, with a superimposed dot
indicating a derivative with respect to time. The vector pr

is the generalized force vector composed of the resultant
force fr and moment mr acting on particle i , and pd =
[fd , md · e3]T is the vector containing the resulting particle
force and moment following from the artificial dissipation
applied in the simulations to improve the convergence rate
towards the equilibrium state. Following [28], the artificial
dissipative force f d and moment md are here defined as

fd = −α|fr | sign(ẋi ) and md = −β|mr | sign(θ̇ i ), (10)

where α and β are damping values related to (signum func-
tions of) the particle translational velocity ẋi and rotational
velocity θ̇ i , respectively. Further, |.| refers to the absolute
values of the components of the corresponding vector.

The time integration of the governing equations is per-
formed by applying an explicit, first-order finite difference
scheme, which, for each time step th+1, with the time incre-
ment given by �t = th+1 − th , allows for an explicit update
of the particle acceleration, velocity and displacement, see
[29] for more details. The dynamic relaxation process is con-
sidered to be converged towards the equilibrium state when
the ratio between the kinetic energy Ek of the inner particles
in the aggregate and their potential energy Ep is lower than
a prescribed tolerance [30], i.e.,

Ek/Ep ≤ tolE , (11)

in accordance with the following definitions

Ek =
P∑

i=1

1

2
ḋT
i Mi ḋi and

Ep =
Nc∑
c=1

1

2

(
kn (�ucn)

2 + ks (�ucs)
2
)

, (12)

where �ucn and �ucs are the relative displacements in the
normal and tangential direction of particle contact c and Nc

is the total number of particle contacts. Note that for the
cohesive contact law given by Eqs. (7) and (8) the potential
energy in (12) needs to be extended with the rotational term
kθ (�θc)2/2.

Obviously, for deriving the solution of a boundary value
problem, the equation of motion (9) and the constitutive
response of the particles (6) and (7) should be complemented
by the appropriate boundary conditions. As mentioned in the
introduction, the numerical implementation of the micro-
scale boundary conditions is based on the formulation
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presented in [16], and the main equations are summarized
in Sect. 2.3 for the sake of clarity.

2.3 Micro-scale kinematics and boundary conditions

Consider a rigid particle i within a granular assembly. The
current location x of an arbitrary material point, located
within the initial particle volume at X, is defined through
the non-linear deformation map x = ψ i (X), with ψ i as

ψ i (X) = xi + Qi · (X − Xi ) for i = 1..., P + Q, (13)

where xi and Xi are the current and original positions of
the center of particle i , and Qi is the second-order parti-
cle transformation tensor. For plane problems defined with
respect to the orthonormal tensor basis {ek ⊗ el}2

k,l=1,2, the
transformation tensor of particle i can be expressed as Qi =
cos θie1⊗e1−sin θie1⊗e2+sin θie2⊗e1+cos θie2⊗e2, with
θi the magnitude of the particle center rotation θ i = θi e3,
where e3 is the unit vector normal to the plane. In addition,
the current position of the particle center xi can be expressed
as the sum of a contribution affine to the macroscopic defor-
mation gradient F̄ and a local, micro-scale fluctuation wi :

xi = F̄ · Xi + wi for i = 1..., P + Q. (14)

In homogenization schemes for continuous media, the
macro-to-micro scale transition is enforced by requiring the
macro-scale deformation gradient to be equal to the volume
average of the micro-scale deformation gradient. In a discrete
setting, this is equivalent to the condition

F̄ = 1

V

Q∑
q=1

xq ⊗ Aq . (15)

Relation (15) can be derived by transforming the volume
average of the macro-scale deformation into a surface integral

F̄ = 1

V

∫
V
Fdv = 1

V

∫
V

∇xdv = 1

V

∫
∂V

x ⊗ Nds , (16)

with N the vector normal to the outer boundary of the original
particle volume, and subsequently performing the transition
from a continuous to a discrete setting with the aid of (1)1.

Equation (15) needs to be satisfied by applying specific
boundary conditions to the boundary particles of the granular
micro-structure. For continuous media, this goal is typically
accomplished by applying one of the three classical types
of boundary conditions, namely (1) a homogeneous defor-
mation, also known as the displacement boundary condition
and thus abbreviated as (D), (2) periodic displacements (P),
and (3) a uniform traction (T), see, e.g., [21–23]. For dis-
crete particle structures, however, additional conditions need

to be imposed on the rotations or moments of the boundary
particles. Correspondingly, along the lines of [16], the three
boundary conditions mentioned above are extended as (1)
homogeneous deformation and zero rotation (D), (2) peri-
odic displacement and periodic rotation (P), and (3) uniform
force and free rotation (T), of which the formulations are pre-
sented below. The abbreviations (D), (P) and (T), although
typically used in continuum homogenization theories, are
maintained here for reasons of consistency. In addition to
the three classical boundary conditions, a novel combination
of these boundary conditions has been derived, which will
be referred to as “mixed boundary conditions”. The corre-
sponding formulation is proven to satisfy the consistency of
energy between the microscopic and macroscopic scales of
observation, known as the Hill–Mandel micro-heterogeneity
condition, and the details are provided in Sect. 5.

2.3.1 Homogeneous deformation and zero rotation (D)

In accordance with this boundary condition, all the boundary
particlesPq are prescribed to have zero micro-scale displace-
ment fluctuations and zero rotations:

xq = F̄ · Xq and Qq = I on ∂V , (17)

where the first expression follows from (14) with the dis-
placement fluctuations as wq = 0. Due to the second
condition in (17) the boundary moments do not vanish, i.e.,

mq �= 0 on ∂V . (18)

The homogeneous deformation and zero rotation boundary
condition is expected to result in a relatively stiff macroscopic
response of the particle aggregate.

2.3.2 Periodic displacement and periodic rotation (P)

For this boundary condition, both the displacements and rota-
tions of the boundary particles Pq are related by periodicity
requirements:

x+
q −x−

q = F̄ · (X+
q −X−

q ) and Q+
q −Q−

q = 0 on ∂V , (19)

where the superscripts + and − refer to corresponding parti-
cles on opposite boundaries of the granular assembly. From
the viewpoint of equilibrium, the forces and moments on
opposite boundaries need to be anti-periodic, thus satisfying
the relations

a+
q + a−

q = 0 and m+
q + m−

q = 0 on ∂V . (20)
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2.3.3 Uniform force and free rotation (T)

The boundary forces aq of the boundary particles Pq are
here determined from the product of the macroscopic first
Piola-Kirchhoff stress P̄ and the discrete area vectors Aq

introduced in Eq. (1)1:

aq = P̄ · Aq on ∂V . (21)

In addition, no constraint is applied to the boundary rotations,
so that the boundary moments vanish:

mq = 0 on ∂V . (22)

The uniform force and free rotation boundary condition is
expected to provide a relatively soft macroscopic response
of the particle aggregate.

2.4 Macro-scale stress and Hill–Mandel condition

The first Piola-Kirchhoff stress at the macro scale is defined
in terms of the boundary forces aq acting on the particle
aggregate:

P̄ = 1

V

Q∑
q=1

aq ⊗ Xq . (23)

The Hill–Mandel micro-heterogeneity condition expresses
the equality between the volume average of the virtual work
applied at the boundaries of the micro-structure and the vir-
tual work of a macroscopic material point [31]. For a discrete
particle system this condition specifies into

P̄ : δ F̄ = 1

V

Q∑
q=1

aq · δxq . (24)

The macroscopic stress P̄ given by (23) must satisfy the
energy consistency between the two scales. Accordingly,
considering definition (15), the following identity holds

P̄ : δ F̄ = P̄ : 1

V

Q∑
q=1

δxq ⊗ Aq = 1

V

Q∑
q=1

(
P̄ · Aq

) · δxq .

(25)

Alternatively, by making use of the definition of the macro-
scale stress (23), the inner product P̄ : δ F̄ can be expanded
as

P̄ : δ F̄ = 1

V

Q∑
q=1

aq ⊗ Xq : δ F̄ = 1

V

Q∑
q=1

aq · (
δ F̄ · Xq

)
.

(26)

Subsequently, reformulating Eq. (24) as

1

V

Q∑
q=1

aq · δxq − P̄ : δ F̄ − P̄ : δ F̄ + P̄ : δ F̄ = 0 , (27)

substituting Eqs. (25) and (26), and keeping in mind that

P̄ : δ F̄ = P̄ :
⎛
⎝δ F̄ · 1

V

Q∑
q=1

Xq ⊗ Aq

⎞
⎠

= P̄ :
⎛
⎝ 1

V

Q∑
q=1

δ F̄ · Xq ⊗ Aq

⎞
⎠

= 1

V

Q∑
q=1

( P̄ · Aq) · (δ F̄ · Xq), (28)

leads to

1

V

Q∑
q=1

(
aq − P̄ · Aq

) · (
δxq − δ F̄ · Xq

) = 0. (29)

Invoking the micro-scale displacement fluctuations in accor-
dance with relation (14) turns expression (29) finally into

1

V

Q∑
q=1

(
aq − P̄ · Aq

) · δwq = 0. (30)

Note that the recast form (30) of the Hill–Mandel condi-
tion is satisfied for all three types of boundary conditions
introduced above: For the (D) boundary condition, the com-
bination of Eqs. (14) and (17) results in δwq = 0. For
the (P) boundary condition, the periodicity of the micro-
fluctuations of the boundary displacements w+

q = w−
q and

the anti-periodicity of the boundary forces a+
q = −a−

q ,
following from Eqs. (19) and (20), respectively, make that
their products in expression (30) vanish for opposite bound-
aries. For the (T) boundary condition, relation (21) leads to
aq − P̄ · Aq = 0.

It should be mentioned that the Hill–Mandel condition
elaborated above only accounts for the influence of con-
tact forces acting on inner particles, and does not include
the effect of contact moments. This is consistent with the
assumption of a standard (Boltzmann) continuum at the
macro scale, which contains displacement degrees of free-
dom but does not consider rotations. This assumption is
satisfied for the frictional contact law, in which the contact
moments are absent, see expression (6). For the cohesive
contact law, the contact moments contribute both to the elas-
tic behavior and the strength criterion, see expressions (7)
and (8), respectively. The extension of a contact law with a
contact moment contribution formally introduces a couple
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stress in the macroscopic response of the particle aggre-
gate, which is energetically conjugated to the gradient of the
overall rotation, see e.g., [32–37]. These higher-order stress
and deformation measures correspond to higher-order natu-
ral and essential boundary data [37], which are known to be
difficult to measure in experiments, and commonly are (sub-
stantially) lower in magnitude than the classical boundary
data. For these reasons, and from the fact that the cohe-
sive contact law defined by Eqs. (7) and (8) is used only
for one example discussed at the end of this communica-
tion, see Sect. 5.3, an extension of the Hill–Mandel condition
with the effect of a contact moments is omitted here, but
may be considered as a topic for future research. Corre-
spondingly, for the cohesive contact law a consistency in
energy between the micro- and macro- scales of a particle
aggregate can only be warranted in an approximate fash-
ion.

In Sects. 4 and 5, the results of the DEM analyses
will be presented in terms of components of the macro-
scale Cauchy stress tensor σ̄ . This stress measure can be
derived from the first Piola-Kirchhoff stress P̄ computed
through (23) by using the common transformation rule:

σ̄ = 1

det
(
F̄

) P̄ · F̄T
. (31)

3 Numerical implementation of micro-scale
boundary conditions

The micro-scale boundary conditions outlined above were
implemented by using the open-source discrete element code
ESyS-Particle [38,39]. The numerical algorithms developed
for this purpose are described below.

3.1 Homogeneous deformation and zero rotation (D)

The homogeneous deformation and zero rotation bound-
ary condition (D) given by Eq. (17) can be implemented
straightforwardly by imposing this condition in an incre-
mental fashion on the boundary particles Pq . After moving
the boundary particles in accordance with the incremental
update of the deformation F̄, dynamic relaxation is applied
to reach the equilibrium state of the particle aggregate,
during which the displacements imposed on the boundary
particles remain fixed. The particle configuration corre-
sponding to the equilibrium state is stored, and the next
deformation increment is applied. This process is repeated
until the total number of deformation increments itot is
reached. The details of the algorithm are summarized in
Table 1.

Table 1 Algorithm for the (D) boundary condition

1. DEM simulation. Increments 0 ≤ i ≤ itot

1.1 Apply updated boundary conditions

xq = F̄Xq and Qq = I for q = 1..., Q

1.2 Dynamic relaxation

1.3 Save current configuration and go to 1 (next increment i + 1)

3.2 Periodic displacement/periodic rotation (P) and
uniform force/free rotation (T)

The periodic displacement and periodic rotation bound-
ary condition (P) and the uniform force and free rotation
boundary condition (T) were numerically implemented by
means of a servo-control algorithm, which uses a feedback
principle similar to that of algorithms commonly applied
within control theory of dynamic systems [19]. More specifi-
cally, the algorithms iteratively correct the boundary particle
displacements and rotations from a gradually diminishing
discrepancy between the measured and the required values
of the boundary condition.

For the periodic displacement and periodic rotation
boundary condition (P), the boundary forces and boundary
moments should satisfy the anti-periodicity conditions pre-
sented in Eq. (20). Accordingly, the corresponding residuals
for the edge particles are

�ae = a+
e + a−

e ,

�me = (m+
e + m−

e ) · e3 for e = 1..., E/2. (32)

Multiplying the residuals by corresponding gain parameters
gp
a and gp

m results into the following displacement and rota-
tion corrections for the edge particles:

�u+
e = �u−

e = gp
a �ae,

�θ+
e = �θ−

e = gp
m�me for e = 1..., E/2 , (33)

which are added to the particle locations and rotations from
the previous iteration. Note that the four corner particles
straightforwardly follow the macroscopic deformation F̄,
by prescribing their displacements in accordance with Eq.
(17). Hence, for these particles no displacement correction
is needed. The rotations of the four corner particles will be
updated similarly to (33), using the corrections

�θ+
c = �θ−

c = gp
m�mc with �mc =

4∑
c=1

mc · e3. (34)

For the uniform force/free rotation boundary condition
(T), the boundary forces ensue from the applied macroscopic
stress through expression (21). However, since the solution
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procedure is deformation-driven, the constraint given by (21)
cannot be enforced directly on the micro-scale particle struc-
ture. Correspondingly, an additional condition that depends
explicitly on the macroscopic deformation F̄ should be used.
This condition is given by expression (15), which represents
the weak counterpart of expression (21), see also [16]. Hence,
the two corresponding residuals are formulated as

�aq = P̄ · Aq − aq ,

�F̄q =
Q∑

r=1

[
V F̄ · Aq − (Aq · Ar ) xr

]
for q = 1..., Q.

(35)

The correction for the displacement of the boundary particles
is derived by multiplying the force and deformation residu-
als in (35) by the gain parameters gta and gtF , respectively,
leading to

�uq = gta�aq + gtF�F̄q for q = 1..., Q. (36)

When performing numerical simulations, the specific values
of the gain parameters gp

a , gp
m, gta, g

t
F need to be fine-tuned

from accuracy and stability considerations of preliminary
numerical benchmark tests.

The corrections for the displacement and rotation of the
boundary particles were implemented by means of two differ-
ent algorithms, which consider or not an initial prediction of
the position of the boundary particles based on their positions
calculated at the previous loading step. These algorithms
are therefore given the labels “with initial displacement pre-
diction” and “without initial displacement prediction”. The
algorithms are discussed below, and their effect on the com-
putational results will be investigated in Sect. 4. The specific
parts of the algorithms that refer to the periodic displacement
and periodic rotation boundary condition will be denoted by
the symbol (P), while the symbol (T) indicates the uniform
force and free rotation boundary condition. Finally, the resid-
uals defined in expressions (32) and (35), which relate to the
particle force, particle moment and macroscopic deformation
gradient, are evaluated at each iteration by subjecting their
dimensionless form to a convergence check. The dimension-
less forms are obtained through, respectively, a normalization
by the following parameters:

ãk = MkRk

�t2 , m̃k = MkR2
k

�t2 , F̃k = R3
k , (37)

with k = c, e, q referring to corner, edge, and boundary
particles, respectively. In (37), Mk is the mass of particle k,
Rk is its radius and �t is the time increment used in the
dynamic relaxation procedure.

3.2.1 Algorithm with initial displacement prediction

The macroscopic deformation is imposed in itot steps on the
boundary particles Pq via the incrementally updated defor-
mation gradient F̄. In correspondence with the algorithm
presented in Table 2, in the initialization step, i = 0, the
boundary particles are moved in accordance with a homo-
geneous deformation, and for the periodic boundary also a
zero rotation, similar to Eq. (17). Subsequently, the granu-
lar assembly is dynamically relaxed to the equilibrium state,
keeping the translational and, for the periodic boundary, rota-
tional degrees of freedom of the boundary particles fixed. The
iterative loop is entered, and the actual values of the forces
and moments of the boundary particles are recorded. For the
(P) boundary condition, the corrections for obtaining peri-
odic particle translations and rotations at the boundary are
calculated for the corner and edge particles separately, in
accordance with relations (32)–(34). For the (T) boundary
condition, the boundary moments vanish and the displace-
ment corrections are computed via (35)–(36). The residuals
are computed and compared with prescribed tolerances. For
the (P) boundary condition, the residual is based on bound-
ary forces and moments. For the (T) boundary condition, two
residuals are calculated, which are based on the boundary
forces and on the imposed macroscopic deformation. If the
norm of the residual(s) is(are) smaller than the tolerance(s)
(referred to as εa for the force criterion and εF for the defor-
mation criterion), the iterative loop is terminated and the next
loading step is applied. If the convergence criterion is not sat-
isfied, the corrections are computed again and the residual is
iteratively re-examined, until convergence is reached.

After the initialization step is concluded, the responses
for subsequent increments, 1 ≤ i ≤ itot , are calculated,
see Table 2. For the (P) boundary condition, the corner
nodes are moved by straightforwardly imposing the updated
macro-scale deformation in accordance with relation (17).
For the edge particles, their current position is determined
from a prediction based on the particle position in the
previous loading step i − 1. More specifically, this predic-
tion is a function of the position a particle would have in
case of a homogeneous deformation [using the displacement
boundary condition (17)], plus the difference, multiplied by
an inheritance factor n f , between the final particle posi-
tion at the previous increment and the position the particle
would have at the previous increment under a homoge-
neous deformation. The inheritance factor lies between 0
and 1, and its optimal value (in terms of computational
efficiency) depends on the loading conditions applied and
the characteristics of the particle assembly. For the (T)
boundary condition, the prediction occurs in an analogous
fashion and is applied to all the boundary particles. After
the boundary particles are translated in accordance with the
predicted values of their positions, the granular assembly is
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Table 2 Algorithm for the (P)
and (T) boundary conditions
with initial displacement
prediction

Algorithm with initial displacement prediction

1. Initialization DEM simulation. Increment i = 0

1.1 Initialize boundary conditions by applying updated macro-scale deformation homogeneously

1.1.A if (P) �⇒ xq = F̄Xq and Qq = I for q = 1..., Q

1.1.B if (T) �⇒ xq = F̄Xq and mq = 0 for q = 1..., Q

1.2 Dynamic relaxation. Obtain boundary forces and moments

1.3 Update particle configuration

1.3.A if (P) �⇒ Partition the boundary into corner c and edge e particles

Calculate edge particles displacement �ue and rotation �θe corrections via (32)–(33)

and corner particles rotation corrections �θc via (34)

1.3.B if (T) �⇒ Calculate boundary particles displacement correction �uq via (35)–(36)

1.4 Dynamic relaxation. Obtain boundary forces and moments

1.5 Calculate residual(s)

1.5.A if (P) �⇒ ra =
√∑E/2

e=1(�ae · �ae/ã2
e + (�me/m̃e)2) + (�mc/m̃c)2

1.5.B if (T) �⇒ ra =
√∑Q

q=1 �aq · �aq/ã2
q and rF =

√∑Q
q=1 �F̄q · �F̄q/F̃2

q

1.6 Check for convergence: ra ≤ εa for (P); ra ≤ εa and rF ≤ εF for (T)

1.6.A if converged �⇒ Save current configuration and go to 2

1.6.B if not converged �⇒ Return to 1.3

2. Subsequent increments 1 ≤ i ≤ itot

2.1 Apply updated boundary conditions

2.1.A if (P) �⇒
Impose updated macro-scale deformation on corner nodes: xc = F̄Xc and Qq = I

Prediction of the positions of edge particles:

xie = xi,(D)
e + n f

(
xi−1
e − xi−1,(D)

e

)
for e = 1...E/2

with x(D)
e = F̄Xe and the inheritance factor 0 < n f ≤ 1

2.1.B if (T) �⇒
Prediction of the positions of boundary particles:

xiq = xi,(D)
q + n f

(
xi−1
q − xi−1,(D)

q

)
for q = 1..., Q

with x(D)
q = F̄Xq and the inheritance factor 0 < n f ≤ 1

2.2 Translate particles according to predictions 2.1.A, or 2.1.B

2.3 Dynamic relaxation. Obtain boundary forces and moments

2.4 Update particle configuration with displacement and rotation corrections �u and �θ

2.4.A if (P) �⇒ Refer to 1.3.A

2.4.B if (T) �⇒ Refer to 1.3.B

2.5 Dynamic relaxation. Obtain boundary forces and moments

2.6 Calculate residual(s)

2.6.A if (P) �⇒ Refer to 1.5.A

2.6.B if (T) �⇒ Refer to 1.5.B

2.7 Check for convergence: ra ≤ εa for (P); ra ≤ εa and rF ≤ εF for (T)

2.7.A if converged �⇒ Save current configuration and go to 2 (next increment i + 1)

2.7.A if not converged �⇒ Return to 2.4

dynamically relaxed to its equilibrium state. Subsequently,
the iterative loop is entered, which invokes the previously
described correction procedure of the displacements and
rotations, in correspondence with the servo-control method-
ology.

3.2.2 Algorithm without initial displacement prediction

Similar to the algorithm with initial displacement predic-
tion, for the algorithm without initial displacement prediction
the macroscopic deformation is imposed in itot steps to the
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Table 3 Algorithm for the (P)
and (T) boundary conditions
without initial displacement
prediction

Algorithm without initial displacement prediction

1. DEM simulation. Increments 0 ≤ i ≤ itot

1.1 Initialize boundary conditions by applying updated macro-scale deformation homogeneously

1.1.A if (P) �⇒ xq = F̄Xq and Qq = I for q = 1..., Q

1.1.B if (T) �⇒ xq = F̄Xq and mq = 0 for q = 1..., Q

1.2 Dynamic relaxation. Obtain boundary forces and moments

1.3 Update particle configuration

1.3.A if (P) �⇒ Partition the boundary into corner c and edge e particles

Calculate edge particles displacement �ue and rotation �θe corrections via (32)–(33)

and corner particles rotation corrections �θc via (34)

1.3.B if (T) �⇒ Calculate boundary particles displacement correction �uq via (35)–(36)

1.4 Dynamic relaxation. Obtain boundary forces and moments

1.5 Calculate residual(s)

1.5.A if (P) �⇒ ra =
√∑E/2

e=1(�ae · �ae/ã2
e + (�me/m̃e)2) + (�mc/m̃c)2

1.5.B if (T) �⇒ ra =
√∑Q

q=1 �aq · �aq/ã2
q and rF =

√∑Q
q=1 �F̄q · �F̄q/F̃2

q

1.6 Check for convergence: ra ≤ εa for (P); ra ≤ εa and rF ≤ εF for (T)

1.6.A if converged �⇒ Save current configuration and go to 1 (next increment i + 1)

1.6.B if not converged �⇒ Return to 1.3

boundary particlesPq . However, as pointed out in Table 3, all
increments are now treated in the same fashion. The boundary
particles are initially moved in accordance with the updated
homogeneous macroscopic deformation F̄, similar to expres-
sion (17), after which the particle assembly is dynamically
relaxed to its equilibrium state. The iterative loop is started, in
which the corrections for the displacement and rotation of the
boundary particles are calculated based on the servo-control
methodology. For the (P) boundary condition, the boundary
is partitioned into corner and edge particles, whereby rela-
tions (32)–(34) are applied. For the (T) boundary condition,
Eqs. (35)–(36) are employed. Subsequently, the particle sys-
tem is relaxed to the equilibrium state, and the current values
of the boundary forces and moments are recorded and used
to compute the residuals. If the norms of the residuals are
smaller than the corresponding tolerances adopted, the iter-
ative loop is terminated and the next loading step is applied.
It can be confirmed that the algorithm without displacement
prediction can be obtained as a limit case of the algorithm
with initial displacement prediction by setting the inheritance
factor equal to zero, n f = 0, whereby the algorithmic struc-
ture provided in Table 2 reduces to the more compact and
simpler algorithmic structure presented in Table 3.

4 Computational results for regular and irregular
packings

The algorithms proposed above for the implementation of
the micro-scale boundary conditions are tested on a series

of DEM simulations on regular, monodisperse and irregular,
polydisperse particle packings.

4.1 Regular monodisperse packing

In this section the responses of three different regular,
monodisperse particle packings are considered, which con-
sist of circular particles of radius R = 1.02 mm, where
the centroids of two particles in contact initially are at a
distance of 2.0 mm. The initial volumes of the packings
are V = [64, 324, 784] mm2, which are calculated from
the locations of the centroids of the four corner particles.
The number of particles of the three packings are equal to
n p = [25, 100, 225]. The particle volume fraction related to
initial volume occupied by the inner particles is v = 0.785.
The corresponding coordination number, which reflects the
average number of contacts of the inner particles, equals 4.

The particles obey a frictional contact law, in correspon-
dence with relation (6). Assuming relatively soft particles,
the normal and tangential stiffnesses are chosen as kn = 104

N/m and ks = 2×103 N/m, and the friction coefficient equals
μ = 0.4. The density of the particles is ρ = 2 × 103 kg/m2.
The translational and rotational damping factors used in the
dynamic relaxation procedure are α = β = 0.7. The pack-
ings are subjected to a combined biaxial compression-true
shear deformation

F̄ = I+ F̄11 e1⊗e1+ F̄12 e1⊗e2+ F̄21 e2⊗e1+ F̄22 e2⊗e2 ,

(38)
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Table 4 Physical and algorithmic model parameters

Parameter Value Unit

Elastic normal stiffness kn 1 × 104 N/m

Elastic tangential stiffness ks 2 × 103 N/m

Friction coefficient μ 0.4 –

Density ρ 2 × 103 kg/m2

Translational damping α 0.7 –

Rotational damping β 0.7 –

Time increment �t 10−6 s

Tolerance force (P), (T) εa 10−6 –

Tolerance deformation (T) εF 10−2 –

Gain force (P) gp
a M/�t2 1 × 102 –

Gain moment (P) gp
mMR2/�t2 2 × 102 –

Gain force (T) gtaM/�t2 1 × 102 –

Gain deformation (T) gtF R
2 2 × 10−5 –

Tolerance dynamic relaxation tolE 10−3 –

with F̄11 = F̄22 = −0.03 and F̄12 = F̄21 = −0.3,
which is applied in itot = 300 loading steps. For reach-
ing the equilibrium state at each loading step, the particle
system is subjected to dynamic relaxation steps of con-
stant time increments �t = 10−6s. The gain parameters
(in dimensionless form) used for the correct application of
the boundary conditions are: for (P) gp

a M/�t2 = 1 · 102

and gp
mMR2/�t2 = 2 × 102; for (T) gtaM/�t2 = 1 × 102

and gtF R
2 = 2 × 10−5, with M = ρπR2 representing the

mass of the particles. The force and deformation tolerances
are taken as εa = 10−6 and εF = 10−2, respectively. For
the dynamic relaxation process, a value of 10−3 is adopted
for tolE , whereby Eq. (11) must be minimally satisfied for
a pre-defined, continuous period of 20�t , in order to ensure
a rigorous dynamic relaxation to the equilibrium state. An
overview of the model parameters is given in Table 4.

4.1.1 Responses for algorithms with and without initial
displacement prediction

In order to investigate the performance of the two algorithms
presented in Tables 2 and 3, the packing of 25 particles is
considered first. The stress responses under the combined
biaxial compression-true shear loading were computed with
Eq. (31), and plotted as a function of the applied macroscopic
shear deformation F̄12. Figure 2a, b show the results for the
algorithms with (solid line) and without (dot-dashed line) an
initial displacement prediction for the (P) and (T) boundary
conditions, respectively. The normal and shear components
of the Cauchy stress are normalized as σ̃11 = σ̄11R/kn and
σ̃12 = σ̄12R/kn , respectively, where σ̄11 and σ̄12 are the
macroscopic normal and shear Cauchy stresses of the parti-
cle aggregate. For the periodic boundary conditions (P), Fig.
3 illustrates the packing structures at specific macroscopic
shear deformations F̄12 = −0.01 (a), F̄12 = −0.113 (b),
and F̄12 = −0.28 (c). The red lines plotted in the deformed
particle aggregates indicate the network of normal contact
forces between the particles.

For the algorithm with initial displacement prediction, the
local minimum of the normal stress σ̃11 near F̄12 = −0.113,
as shown in Fig. 2a for the periodic boundary conditions (P),
can be ascribed to a joint localized sliding of all the boundary
particles, see Fig. 3b, top. This localization mechanism does
not arise for the algorithm without initial displacement pre-
diction, which furnishes a shear response that is much more
homogeneous, see Fig. 3b, bottom. It may be therefore con-
cluded that the response of the packings is rather sensitive
to bifurcations in the equilibrium path followed, which here
become evident due to the relatively low number of parti-
cles present in the packing. Under continuing deformation
towards F̄12 = −0.28, the inner particles of the aggregate
also develop substantial sliding, such that for both algorithms
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Fig. 2 Combined biaxial compression-true shear deformation: nor-
malized macroscopic Cauchy stresses −σ̃11 and −σ̃12 versus the shear
deformation −F̄12 for a periodic displacement/periodic rotation bound-
ary condition (P) and b uniform force/free rotation boundary condition

(T). The responses relate to a regular monodisperse packing of 25 parti-
cles, and were computed by the algorithms with (solid line) and without
(dot-dashed line) initial displacement predictions
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Fig. 3 Combined biaxial
compression-true shear
deformation: deformed
configurations of a regular
packing of 25 particles with (P)
boundary conditions evaluated
at three different deformation
states: a F̄12 = −0.01, b
F̄12 = −0.113, c F̄12 = −0.28.
The particle configurations were
computed with the algorithms
with (top) and without (bottom)
initial displacement prediction.
The red lines indicate the
normal contact force network of
the particles (color figure online)

(a) (b) (c)

(P) with
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Fig. 4 Combined biaxial
compression-true shear
deformation: a normalized
homogenized Cauchy stress
−σ̃11 and b average particle
overlap �ūn versus the shear
deformation −F̄12 for the three
types of boundary conditions
(D), (P) and (T)
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the particle structure gradually reaches its densest packing
structure, at which the deformation as well as the normal
contact force network become strongly homogeneous. Both
for the normal and shear stress components the responses
computed by the two algorithms at this stage have coalesced,
and steadily grow under further increasing deformation.

A similar trend can be observed for the normal and shear
stress responses of the particle aggregates with the (T) bound-
ary condition, see Fig. 2b. The discrepancies in the responses
computed by the two algorithms appears to be less than for
the (P) boundary condition.

In the simulations discussed above the two proposed algo-
rithms have demonstrated a comparable numerical efficiency
and robustness. Additional analyses not presented here never-
theless have illustrated that the performance of the algorithm
with initial displacement prediction may be computationally
more efficient for a well-calibrated choice of the inheritance
parameter. However, if the value of the inheritance factor
becomes relatively large, convergence problems may arise.
Hence, for reasons of simplicity and numerical robustness,

the forthcoming DEM results were computed with the algo-
rithm without initial displacement prediction.

4.1.2 Responses for the (D), (P) and (T) boundary
conditions

The influence of the choice of the boundary condition on
the overall packing response is illustrated in Fig. 4a. The
(normalized) normal stress σ̃11 is shown as a function of
the applied shear deformation F̄12 for the displacement/zero
rotation boundary condition (D) with a solid line, for the peri-
odic displacement/periodic rotation boundary condition (P)
with a dot-dashed line, and for the uniform force/free rota-
tion boundary condition (T) with a dashed line. The stress
response computed for the (P) boundary condition is bounded
by the stiffer and softer responses measured for the (D) and
(T) boundary conditions, respectively, a result that is in agree-
ment with the numerical studies performed in [16]. It may
be observed that the initial stress value corresponding to the
(T) boundary condition is somewhat smaller than the value
computed for the other two boundary conditions. This is,
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Fig. 5 Combined biaxial
compression-true shear
deformation: normalized
macroscopic Cauchy stress
−σ̃11 versus the shear
deformation −F̄12 for three
different sample sizes of 25, 100
and 225 particles, for the a (D)
boundary condition, b (P)
boundary condition, and c (T)
boundary condition

−F̄12

0

0.025

0.05

0.075

− σ̃
11

25 particles
100 particles
225 particles

0 0.1 0.2 0.3 0 0.1 0.2 0.3
−F̄12

0

0.025

0.05

0.075

−σ̃
11

25 particles
100 particles
225 particles

0 0.1 0.2 0.3
−F̄12

0

0.025

0.05

0.075

− σ̃
11

25 particles
100 particles
225 particles

(a) (b)

(c)

because after the sample preparation procedure was finished,
the boundary forces generated by a 4% particle overlap do
not exactly satisfy Eq. (21), and therefore in the first loading
increment are slightly relaxed by the algorithm in order to
meet this condition.

Consider the average normalized particle overlap �ūn ,
defined as

�ūn = 1

Nc

Nc∑
c=1

�ucn
R̄c

, (39)

where Nc is total number of particle contacts, R̄c is the
average radius at contact c and �ucn is the particle over-
lap at contact c. Figure 4b depicts �ūn as a function of
the applied shear deformation −F̄12. Observe that the trend
for the average particle overlap is similar to that for the
macroscopic normal stress in Fig. 4a. This can be explained
as follows: The macroscopic stress is represented by the
volume average of all contact forces generated within the
granular micro-structure. Since the assumed normal contact
stiffness is considerably larger than the shear contact stiff-
ness, kn >> ks , see Table 4, the normal contact forces f cn ,
which are proportional to contact overlaps �ucn , see expres-
sion (6), provide the main contribution to the macroscopic
stress response.

4.1.3 Responses for different sample sizes

The effect of the sample size on the macroscopic stress
response is considered by plotting the computational results
for packings composed of 25, 100 and 225 particles for the
(D), (P) and (T) boundary conditions in Fig. 5a–c, respec-
tively. Generally, for a larger sample the normal stress σ̃11

decreases. The (D) and (P) boundary conditions show a close
resemblance in the responses for 100 and 225 particles, from
which it may be concluded that for a sample of about 225
particles the stress response has more or less converged.
Conversely, for the (T) boundary condition the stress for a
sample of 225 particles shows a substantial relative drop in
value up to a deformation of F̄12 ≈ 0.20. This softening
behavior appears to be governed by strongly localized defor-
mations emerging at the boundaries of the particle system,
a phenomenon that also has been reported for continuum
homogenization methods equipped with this relatively soft
boundary condition, see [40].

4.2 Irregular polydisperse packing

The irregular polydisperse packings analyzed in this section
are composed of circular particles, with the particle radii arbi-
trarily taken from a uniform size distribution with polydisper-
sity Rmax/Rmin = 2, where Rmin = 0.67 mm. A collision-

123



Formulation and numerical implementation of micro-scale boundary conditions for particle... Page 15 of 24 72

(a)

(b)

(c)

Fig. 6 Characteristics of the five different irregular polydisperse packings studied: a initial packings generated by a collision-driven molecular
dynamics code [41], b geometrically periodic packings with the number of particles equal to n p = [37, 120, 228, 444, 650], and c the rose diagrams
(color figure online)

driven molecular dynamics code described in [41] is used to
randomly generate irregular packings with the initial num-
ber of particles equal to n0

p = [25, 100, 200, 400, 600], as
shown in Fig. 6a. Subsequently, these packings are recon-
structed into geometrically periodic packings by copying
each of the boundary particles intersecting with the edges
of the square particle volume to corresponding positions at
the opposite boundaries. This results into the packing geome-
tries shown in Fig. 6b, with the final particle numbers as n p =
[37, 120, 228, 444, 650]. The initial volumes of the particle
aggregates are equal to V = [100, 400, 818, 1462, 2156]
mm2, respectively. The rose diagrams of the particle assem-
blies are sketched in Fig. 6c, clearly indicating that the
packings become more isotropic when the particle number
increases. The particle volume fraction of the packings varies
in the range v ∈ [0.833, 0.850], where the smallest and high-
est values correspond to the packings with the smallest and
highest number of particles, respectively. The corresponding
coordination numbers lie in between 2.97 and 3.47.

The particle packings are subjected to a simple shear
macroscopic deformation

F̄ = I + F̄12 e1 ⊗ e2 , (40)

with F̄12 = 0.5, which is applied in itot = 100 loading
steps. A step size variation study not presented here has
shown that this loading step is sufficiently small for reaching
a converged, pre-peak response of the micro-structural parti-
cle assembly, irrespective of the type of boundary condition

applied. However, after passage of the peak load localization
may occur, during which the macroscopic stress response
softens; due to the appearance of numerous bifurcations the
equilibrium path to be followed then becomes sensitive to
small physical and numerical perturbations of the particle
system, such as round-off errors in the numerical scheme.
Accordingly, different load step sizes may trigger different
equilibrium paths and therefore can induce differences in the
post-peak response computed. For the irregular packings the
same physical and algorithmic parameters are used as for
the regular packings, see Table 4, except for the tolerance
εF = 10−1 and the two gain values for the (T) bound-
ary condition, which here relate to gtaMi/�t2 = 5 and
gtF R

2
i = 2×10−6, with Mi = ρπR2

i being the mass of parti-
cle i and Ri its radius. Note that for an irregular polydisperse
packing the specific gain values depend on the characteristics
of the actual particle i .

4.2.1 Responses for the (D), (P) and (T) boundary
conditions

The response of a packing with 228 particles is considered
first. The normalized macroscopic stresses σ̃11 = σ̄11 R̄/kn
and σ̃22 = σ̄22 R̄/kn , with the average radius as R̄ =∑P+Q

i=1 Ri/(P + Q), are shown in Fig. 7 as a function of
the applied macroscopic shear deformation F̄12. The solid,
dot-dashed and dashed lines refer to the (D), (P) and (T)
boundary conditions, respectively. Since for the packing of
228 particles the particle structure is rather isotropic, see Fig.
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Fig. 7 Simple shear
deformation: normalized
homogenized Cauchy stresses
versus the shear deformation
F̄12 for packings of 228
particles, subjected to the
boundary conditions (D), (P)
and (T). a Stress component
σ̃11, b stress component σ̃22
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Fig. 8 Simple shear deformation: deformed configurations of an irreg-
ular packing of 228 particles evaluated at four different deformation
states. a F̄12 = 0.05, b F̄12 = 0.1, c F̄12 = 0.3, and d F̄12 = 0.5,

for the (D), (P) and (T) boundary conditions. The red lines indicate the
normal contact force network of the particles (color figure online)

6c, it can be confirmed that the responses for the two normal
stresses σ̃11 and σ̃22 indeed are similar. As for the regular
monodisperse packing, the (D) and (T) boundary conditions
provide the upper (stiffest) and lower (softest) bounds for
the particle system response, and thereby encapsulate the
response calculated for the (P) boundary condition. Although
not depicted here, the responses for the normalized shear
stress σ̃12 = σ̄12 R̄/kn under the (D), (P) and (T) boundary
conditions follow similar trends as observed for the normal
stresses σ̃11 and σ̃22, with the magnitude of the shear stress
being about one third of that of the normal stresses.

Figure 8 shows the deformed structure of the granular
aggregates for the three types of boundary conditions at four

different deformation levels, namely (a) F̄12 = 0.05, (b)
F̄12 = 0.1, (c) F̄12 = 0.3 and (d) F̄12 = 0.5. The local distri-
bution of particles develops differently for the three boundary
conditions, leading to differences in the network of normal
contact forces represented by the red lines: The (D) and (T)
boundary condition experience the highest and lowest contact
forces, respectively, as indicated by the relatively thick and
thin red lines. Obviously, this is in correspondence with the
largest and smallest stress levels for the (D) and (T) boundary
conditions, as depicted in Fig. 7.

Figure 9 illustrates the average normalized particle over-
lap �ūn , defined by relation (39), and the average particle
rotation
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Fig. 9 Simple shear
deformation: a average
normalized particle overlap �ūn
and b average particle rotation θ̄

versus the shear deformation
F̄12 for a packing of 228
particles subjected to the (D),
(P) and (T) boundary conditions
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θ̄ =
∑P+Q

i=1 |θi |
P + Q

, (41)

both as a function of the applied macroscopic shear defor-
mation F̄12. As for the regular monodisperse packings, the
average normalized particle overlap is the largest for the (D)
boundary condition and the smallest for the (T) boundary
condition, and shows a similar evolution as observed for the
normal stresses, see Fig. 7. As expected, the average rotation
shows the opposite trend, being the largest for the soft (T)
boundary condition and the smallest for the stiff (D) bound-
ary condition.

4.2.2 Convergence behavior of macroscopic response
under increasing sample size

The convergence behavior of the apparent macroscopic
response of the particle aggregate towards its effective
response under increasing sample size is studied by subject-
ing the five micro-structures depicted in Fig. 6b to a simple
shear deformation given by (40). In convergence studies, this
type of loading condition occasionally is characterized as
“critical”, because of a relatively slow convergence behavior
towards a representative volume element (RVE). The conver-
gence behavior is evaluated here by means of the L2-norm of
the normalized, homogenized Cauchy stress tensor σ̃ , inte-
grated along the entire deformation path

‖σ̃‖L2 =
( ∑

i j=11,22,12,21

∫ F̄12=0.5

F̄12=0
σ̃ 2
i jdF̄12

)1/2

. (42)

Figure 10 illustrates the stress norm ‖σ̃‖L2 as a function of
the sample size, expressed in terms of the number of particles.
It can be observed that for the stiff (D) and soft (T) bound-
ary conditions the stress norm, respectively, decreases and
increases with increasing sample size, while for the periodic
(P) boundary condition it remains approximately constant.
These trends are typical for a change in apparent proper-
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Fig. 10 Stress norm ‖σ̃‖L2 versus particle number for irregular poly-
disperse particle packings subjected to (D), (P) and (T) boundary
conditions, in accordance with a macroscopic simple shear deforma-
tion F̄12

ties under increasing sample size, see e.g., [21]. However, to
define the minimal RVE the curves for the (D) (P) and (T)
boundary conditions must coincide [31], which indeed is not
the case for the largest sample of 650 particles. As already
indicated above, the minimum size of RVE depends on the
type of loading condition applied, which is known to be rela-
tively large under a macroscopic shear deformation. From the
approximately constant stress value observed in Fig. 10 for
the (P) boundary condition, it may be expected that the stress
response of the RVE will be close to ‖σ̃‖L2 ≈ 0.011. Hence,
in multi-scale simulations on granular materials the compu-
tational costs can be kept manageable by adopting the (P)
boundary condition for a relatively small (and thus not rigor-
ously “representative”) micro-structural sample. Its effective
response in fact is comparable to that of the minimal RVE,
which thus is typically characterized by a much larger size.

5 Mixed boundary conditions

In this section the formulation and numerical implementa-
tion of mixed (D)–(P)–(T) boundary conditions is presented.
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Despite that the classical boundary conditions accurately
represent the response of granular assemblies for the spe-
cific conditions under which they apply, for simulating more
generally the effect of a macroscopic deformation on the par-
ticle micro-structure and to accurately represent the loading
conditions in particular experimental set-ups, a combination
of the classical boundary conditions may be needed. The
homogenization framework proposed here satisfies the Hill–
Mandel micro-heterogeneity condition, and thus can be used
for (1) a consistent derivation of macro-scale constitutive
relations from standard material tests on micro-scale particle
aggregates subjected to any combination of (D)-, (P)- and/or
(T)-type boundary conditions, and (2) the efficient compu-
tation of the homogenized response of large-scale particle
aggregates characterized by a spatial periodicity in one or
two directions, i.e., granular layers exposed to uniform (D)
and/or (T) boundary conditions at their top and bottom sur-
faces. To the best of the authors’ knowledge, the formulation
presented is novel in the field of granular materials.

5.1 Formulation

For the formulation of the mixed boundary conditions, the
basic particle configuration sketched in Fig. 1 is considered,
with the boundary being split up into the top part ∂Vt , the
bottom part ∂Vb, the left part ∂Vl and the right part ∂Vr . It
is emphasized that the main concepts of the mixed formu-
lation are general, and can be applied to arbitrary boundary
value problems. The concepts are elaborated here for the spe-
cific case of an infinite horizontal layer of particles loaded
by a constant vertical pressure, P̄22 = P̄∗

22, and subsequently
subjected to a shear deformation F̄12 in horizontal direction.
The reason for choosing this boundary value problem is that
it includes all the three (D), (P) and (T) boundary conditions
discussed previously, with their combinations entering the
formulation both at separate and identical parts of the layer
boundary. This allows for highlighting the characteristics of
the mixed formulation in full detail. Accordingly, the macro-
scopic deformation of the particle aggregate is imposed via
a combined (D)–(T) condition

xq,1 = F̄12Xq,2+Xq,1 and aq,2 = P̄21Aq,1+ P̄∗
22Aq,2 , (43)

in which the macroscopic shear stress P̄21 is measured from
the response of the particle assembly. Note that (43)1 implic-
itly accounts for the condition

F̄11 = 1. (44)

Furthermore, the first contribution in the right-hand side of
(43)2 typically is relatively small, since most particles q at
the top boundary ∂Vt are characterized by Aq,1 << Aq,2,

with Aq,1 vanishing for the specific case of an ideally hor-
izontal boundary composed of identical particles. Since the
shear deformation F̄12 is imposed after the application of
the vertical stress P̄∗

22, in (43)1 the reference positions Xq

of the boundary particles relate to the particle configuration
obtained after the vertical stress has been applied. In sum-
mary, the boundary conditions for the particle aggregate are
specified as follows:

• For the particles that are part of the bottom boundary,
q ∈ ∂Vb, the homogeneous deformation and zero rotation
boundary condition (D) is applied in accordance with
expression (17). The vertical boundary displacements are
constrained to construct a rigid support for the layer, and
the horizontal boundary displacements follow the shear
deformation given by expression (43)1.

• For the particles that are part of the left and right
boundaries, q ∈ ∂Vl ∪ ∂Vr , the periodic displacement
and periodic rotation boundary condition (P) is applied,
as given by expression (19). This boundary condition
reflects the horizontal confinement of the particles within
the infinite layer.

• For the particles that are part of the top boundary, q ∈
∂Vt , free rotations are assumed, in correspondence with
the (T) boundary condition.1 For the description of the
particle displacements, the boundary is split up along the
two orthonormal directions e1 and e2 indicated in Fig. 1.
Along the e1-direction, the (D) boundary condition (43)1

is applied to simulate the horizontal macroscopic shear
deformation. Along the e2-direction, a constant macro-
scopic pressure P̄∗

22 is imposed via the (T) boundary
condition (43)2, for which the corresponding components
of the macroscopic deformation gradient, F̄21 and F̄22,
in accordance with the general form (15), turn into

F̄21 = 1

V

Q∑
q=1

xq,2Aq,1 and F̄22 = 1

V

Q∑
q=1

xq,2Aq,2.

(45)

Note that the two deformation components above should
be considered as a computational result obtained by pre-
scribing the stress component P̄∗

22.

The macroscopic deformation gradient F̄, which is followed
by the four corner nodes of the sample, now is fully specified
through its “(D)-type components” provided by (43)1 and

1 Since the top boundary is subjected to a mixed (D)–(T) boundary
condition, instead of leaving the particle rotations free at the boundary,
i.e., a (T)-type condition, the particle rotations could have been equally
well taken as fully constrained, i.e., a (D)-type condition. For relatively
large samples the effect of this choice on the homogenized response of
the particle aggregate is expected to be minor.
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(44), and its “(T)-type components” given by (45)1,2. The
corresponding macroscopic Piola-Kirchhoff stress tensor is
defined by (23). For the adopted mixed-boundary conditions
it will now be demonstrated that this stress definition satisfies
the recast Hill–Mandel condition given by expression (30),
i.e., the energy consistency between the macro- and micro
scales. Accordingly, relation (30) is first split up with respect
to the different boundary parts considered above, i.e.,

∑
q∈∂Vb

(
aq − P̄ · Aq

) · δwq +
∑

q∈∂Vl∪∂Vr

(
aq − P̄ · Aq

) · δwq

+
∑
q∈∂Vt

(
aq − P̄ · Aq

) · δwq = 0. (46)

For the bottom boundary ∂Vb, boundary condition (D) holds,
which, by comparing Eqs. (17) and (14), lets the micro-
fluctuations of the displacements vanish, wq = 0. Hence,
the first term in (46) is equal to zero. At the left and right
boundaries q ∈ ∂Vl ∪ ∂Vr , the (P) boundary condition is
imposed, for which the micro-fluctuations of the displace-
ments are periodic, wl

q = wr
q , see (14) and (19). Together

with the anti-periodicity of the boundary forces alq +arq = 0,
see (20), the second term in (46) vanishes. Finally, for the top
boundary ∂Vt , the last term in (46) may be further developed
as

∑
q∈∂Vt

[(
aq,1 − P̄1 j Aq, j

)
δwq,1 + (

aq,2 − P̄2 j Aq, j
)
δwq,2

]

= 0. (47)

Along the e1-direction, the micro-fluctuations of the bound-
ary particle displacements vanish, wq,1 = 0, in correspon-
dence with Eq. (43)1, by which the first term in (47) becomes
zero. Along the e2-direction, the boundary forces are uni-
form, aq,2 − P̄2 j Aq, j = 0, see Eq. (43)2, so that the second
term in (47) becomes zero. With this result, the Hill–Mandel
condition (46) is proven to be satisfied for the mixed bound-
ary conditions.

5.2 Numerical implementation

The numerical algorithm for the implementation of the mixed
boundary conditions is outlined in Table 5, and is based on
a combination of the algorithms presented in Sect. 3 for the
(D), (P) and (T) boundary conditions, without an initial dis-
placement prediction.

During stage 1 of the loading process, the vertical com-
pressive stress P̄22 = P̄∗

22 is applied to the particle aggregate
in a stepwise fashion,2 using a total of ivs loading increments,

2 Instead of applying the vertical compressive stress by means of the
first Piola-Kirchhoff stress P̄22, the Cauchy stress σ̄22 could have been

with the subscript vs designating “vertical stress”. After ini-
tiating the displacement and rotation boundary conditions at
the top ∂Vt and bottom ∂Vb boundaries, the vertical stress
is incrementally updated and subsequently used to compute
the displacement and rotation corrections at the left and right
boundaries with expressions (32)–(33), and the displacement
correction at the top boundary boundary with

�uq,2 = gta�aq,2 with �aq,2 = aq,2 − P̄21Aq,1 − P̄∗
22Aq,2.

(48)

The expression above is derived from (43)2, whereby dur-
ing the incremental application of the vertical stress P̄∗

22 the
value of P̄21 is prescribed as zero, in order to avoid the initial
development of a shear stress. After the particle aggregate has
reached its equilibrium state under dynamic relaxation, the
boundary forces and moments of the particles at the top, left
and right boundaries are recorded and employed to compute
the corresponding residuals. When all residuals are lower
than the prescribed values of the corresponding tolerances,
the iterative loop is stopped and the next vertical stress incre-
ment is applied. Otherwise, the iterative loop is entered again,
until a converged solution is found. After the application
of ivs increments the vertical stress has reached the desired
value, and stage 1 of the loading process has completed.

During stage 2 of the loading process, the horizontal shear
deformation F̄12 is imposed on the particles at the top ∂Vt and
bottom ∂Vb boundaries of the granular assembly, by displac-
ing these in a stepwise manner using itot − ivs increments.
The rotations of the particles at the top boundary are free,
and the vertical displacement and rotation of the particles
at the bottom boundary are fully constrained. In a similar
way as explained above for stage 1, the boundary forces and
moments in the relaxed equilibrium state are used to com-
pute the displacement and rotation corrections at the periodic
left and right boundaries ∂Vl and ∂Vr , and at the top bound-
ary boundary ∂Vt . However, the only difference is that in
(48) the shear stress P̄21 here is not prescribed as zero, but
is calculated from the homogenized response of the particle
assembly using Eq. (23). After the dynamic relaxation proce-
dure has completed, the residuals are computed in the same
way as during stage 1, and compared against the correspond-
ing tolerances. The iterative process is terminated when the
convergence criterion is satisfied, after which the shear defor-
mation is incremented and the response to the next loading
step is computed. This procedure is continued until all load-
ing increments itot are applied.

Footnote 2 continued
used. The conversion of the Cauchy stress into the first Piola-Kirchhoff
stress, which is the stress measure used in the numerical algorithm
presented in Table 5, can straightforwardly be accomplished by using
the inverse form of expression (31).
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Table 5 Algorithm for the application of the mixed boundary conditions

Algorithm for mixed boundary conditions

1. DEM simulation. Apply vertical stress. Increments 0 ≤ i ≤ ivs

1.1 Apply boundary conditions

1.1.A q ∈ ∂Vt �⇒ Free rotations mq = 0

1.1.B q ∈ ∂Vb �⇒ Zero vertical displacements xq,2 = 0 and zero rotations Qq = I

1.2 Update vertical stress P̄22 = P̄∗
22

1.3 Update particle configuration

1.3.A q ∈ ∂Vt �⇒ Calculate particles displacement correction �uq,2 via (48), with P̄21 = 0

1.3.B q ∈ ∂Vl ∪ ∂Vr �⇒
Calculate particles displacement �uq and rotation �θq corrections via (32)–(33)

1.4 Dynamic relaxation. Obtain boundary forces and moments

1.5 Calculate residual(s)

1.5.A q ∈ ∂Vt �⇒ r ta =
√∑

q∈∂Vt �aq,2
2/ã2

q

1.5.B q ∈ ∂Vl ∪ ∂Vr �⇒ r pa =
√∑

q∈∂Vl∪∂Vr �aq · �aq/ã2
q and r pm =

√∑
q∈∂Vl∪∂Vr (�mq/m̃q )2

1.6 Check for convergence: r ta ≤ εta and r pa ≤ ε
p
a and r pm ≤ ε

p
m

1.6.A if converged �⇒ Save current configuration and go to 1 (next increment i + 1)

1.6.B if not converged �⇒ Return to 1.3

2. Apply horizontal shear deformation at fixed vertical stress. Increments ivs < i ≤ itot

2.1 Apply updated macro-scale deformation and boundary conditions

2.1.A q ∈ ∂Vt �⇒ Horizontal displacements xq,1 = F̄12Xq,2 + Xq,1 and free rotations mq = 0

2.1.B q ∈ ∂Vb �⇒ Zero vertical displacements xq,2 = 0 and zero rotations Qq = I

Horizontal displacements xq,1 = F̄12Xq,2 + Xq,1

2.2 Dynamic relaxation. Obtain boundary forces and moments

2.3 Update particle configuration

2.3.A q ∈ ∂Vt �⇒ Calculate particles displacement correction �uq,2 via (48)

2.3.B q ∈ ∂Vl ∪ ∂Vr �⇒
Calculate particles displacement �uq and rotation �θq corrections via (32)–(33)

2.4 Dynamic relaxation. Obtain boundary forces and moments

2.5 Calculate residual(s)

2.5.A q ∈ ∂Vt �⇒ Refer to 1.5.A

2.5.B q ∈ ∂Vl ∪ ∂Vr �⇒ Refer to 1.5.B

2.6 Check for convergence: r ta ≤ εta and r pa ≤ ε
p
a and r pm ≤ ε

p
m

2.6.A if converged �⇒ Save current configuration and go to 2 (next increment i + 1)

2.6.B if not converged �⇒ Return to 2.3

The loading process consists of stage 1, during which the vertical stress is incrementally applied, and stage 2, during which the horizontal shear
deformation is incrementally imposed

5.3 Computational results

The performance of the algorithm used for the implemen-
tation of the mixed boundary conditions is demonstrated
by means of two DEM simulations of an irregular polydis-
perse packing of 449 particles, with the particle radii taken
randomly from a uniform size distribution with polydisper-
sity Rmax/Rmin = 1.5, where the minimum radius equals
Rmin= 0.8 mm. The initial particle volume is V = 1517
mm2, with the particle volume fraction of the packing being
equal to v = 0.849, and the average particle coordination

number as 3.55. The two simulations consider different par-
ticle contact laws, namely the frictional contact law and
the cohesive contact law described in Sect. 2.2.2. Assuming
relatively hard particles, the normal and tangential contact
stiffnesses for the frictional contact law are set as kn = 105

N/mm and ks = 4 × 104 N/mm, respectively, and the
friction coefficient equals μ = 0.6. The normal contact
stiffness kbn and the tangential contact stiffness kbs for the
cohesive contact interaction are assumed to be equal to
those of the frictional contact law, and the bending con-
tact stiffness is taken as kbθ = 2 × 104 Nmm. The normal,

123



Formulation and numerical implementation of micro-scale boundary conditions for particle... Page 21 of 24 72

Table 6 Physical and algorithmic model parameters for the simulations
with mixed boundary conditions

Parameter Value Unit

Elastic normal stiffness kn = kbn 1 × 105 N/mm

Elastic tangential stiffness ks = kbs 4 × 104 N/mm

Elastic bending stiffness kbθ 2 × 104 Nmm

Friction coefficient μ 0.6 –

Cohesive normal strength f b,un 300 N

Cohesive tangential strength f b,us 60 N

Cohesive bending strength mb,u
θ 200 Nmm

Density ρ 10 × 103 kg/m2

Translational damping α 0.7 –

Rotational damping β 0.7 –

Time increment �t 10−5 s

Tolerance force (P) ε
p
a 2 × 10−10 –

Tolerance moment (P) ε
p
m 2 × 10−10 –

Tolerance force (T) εta 2 × 10−10 –

Gain force (P) gp
a Mi/�t2 3 × 104 –

Gain moment (P) gp
mMi R2

i /�t2 6 × 104 –

Gain force (T) gtaMi/�t2 3 × 104 –

Tolerance dynamic relaxation tolE 10−3 –

shear and bending strengths have the values f b,un = 300
N, f b,us = 60 N and mb,u

θ = 200 Nmm, respectively. The
density of the particles is ρ = 10 × 103 kg/m2. The macro-
scopic vertical (compressive) stress is P̄∗

22 = −1.05 × 106

N/m, which is applied in ivs = 6 increments. The total
macroscopic shear deformation equals F̄12 = 0.2, which
is imposed on the particle aggregate in itot − ivs = 100
increments. The translational and rotational damping factors
used in the dynamic relaxation procedure are α = β = 0.7,
and the time increment equals �t = 10−5 s. The dimen-
sionless values of the gain parameters are gtaMi/�t2 =
gp
a Mi/�t2 = 3 × 104 and gp

mMi R2
i /�t2 = 6 × 104, and

the corresponding tolerances are equal to εta = ε
p
a = ε

p
m =

2 × 10−10. The above model parameters are summarized in
Table 6.

Figure 11 shows the macroscopic response of the particle
aggregates as a function of the applied shear deformation F̄12,
with the dot-dashed and solid lines referring to packings with
cohesive and frictional particle contact interactions, respec-
tively. In Fig. 11a the stress ratio σ̄12/σ̄22 is depicted, while
Fig. 11b illustrates the relative volumetric change det(F̄)

(using the packing obtained after the application of the ver-
tical stress as the reference state), and Fig. 11c sketches
the average particle rotation θ̄ , in accordance with expres-
sion (41). Furthermore, in Fig. 12 the particle configurations
of the cohesive and frictional packings are plotted at four
different deformation levels, namely (a) F̄12 = 0.002, (b)

F̄12 = 0.05, (c) F̄12 = 0.1 and (d) F̄12 = 0.015. Here,
the red lines between the particles represent cohesive con-
tact forces, while the blue lines indicate frictional contact
forces. It can be observed from Fig. 11a that up to a deforma-
tion F̄12 = 0.02 the cohesive and frictional packings show a
similar response, whereby the stress increases approximately
proportionally with deformation. Upon continuing deforma-
tion, in the frictional packing a large number of contacting
particles meets the failure criterion (6) and starts to slide,
such that the stress ratio σ̄12/σ̄22 reaches a maximum at
F̄12 ≈ 0.06. The maximal stress ratio is accompanied by
a volumetric increase of the particle structure, commonly
referred to as “dilation”, see Fig. 11b. After passing the peak
value, the stress ratio for the frictional packing slightly drops
in magnitude, which is caused by a substantial rolling of par-
ticles. The effect of particle rolling can be clearly observed
from Fig. 11c, where at the onset of shear deformation the
increase in average particle rotation only is mild, but steadily
grows towards a more or less constant value at F̄12 = 0.07
for the frictional packing and at F̄12 = 0.12 for the cohe-
sive packing. Note from Fig. 11c that the initial value of
the average particle rotation is due to the application of the
vertical stress P̄∗

22, and for the frictional packing appears
to be somewhat larger than for the cohesive packing. For
the cohesive packing the maximal value of the stress ratio
σ̄12/σ̄22 is about 1.5 times larger than for the frictional pack-
ing, and is reached at F̄12 ≈ 0.07, see Fig. 11a. At this stage
a significant number of particle bonds are broken, in cor-
respondence with the failure criterion (8). With continuing
deformation, the broken particle bonds of the cohesive pack-
ing become frictional, as indicated by the thick blue lines
in Fig. 12c, whereby the stress ratio σ̄12/σ̄22 of the packing
drops to a level comparable to that of the frictional packing,
see Fig. 11a. Observe from Fig. 12c, d that for the cohesive
packing the frictional contacts indicated by the blue lines
are established only along local force chains in the particle
structure, whereby the rest of the contacts remain cohesive,
as indicated by the red lines. This implies that the overall
deformation of the packing near the end of the loading pro-
cess becomes governed by a localized failure zone, which
indeed is associated to a strong softening behavior in the
stress response, see Fig. 11a. Towards a shear deformation
of F̄12 = 0.20, both the stress ratio σ̄12/σ̄22 and the rela-
tive volumetric change det(F̄) of the frictional and cohesive
packings become approximately constant, characterizing the
occurrence of a so-called “critical state”. For the frictional
packing the overall residual strength at the critical state is
σ̄12/σ̄22 ≈ 0.28. This value is only about half of the value
of 0.6 adopted for the local particle contact friction μ, which
can be explained from the fact that at the end of the deforma-
tion process the dilating particle structure, instead of sliding,
is predominated by a relatively easy rolling of particles, see
[7] for a more detailed discussion on this aspect. For the same
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Fig. 11 Macroscopic response
of an infinite granular layer
subjected to a vertical
compressive stress P̄22 = P̄∗

22
and a horizontal shear
deformation F̄12. a Stress ratio
σ̄12/σ̄22, b relative volumetric
change det(F̄), and c average
particle rotation θ̄ , all plotted
versus the applied shear
deformation F̄12 for cohesive
(dot-dashed line) and frictional
(solid line) packings

(a) (b) (c) (d)
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Fig. 12 Deformed configurations of a packing with 449 particles cor-
responding to a F̄12 = 0.002, b F̄12 = 0.05, c F̄12 = 0.1 and d
F̄12 = 0.15, for cohesive (top) and frictional (bottom) particle con-

tact interactions. The networks of cohesive and frictional forces acting
between particles are indicated by the red and blue lines, respectively
(color figure online)

reason, the eventual, large amount of particle rolling gener-
ated in the cohesive packing, see Fig. 11c, leads to a final
residual strength that is lower than for the frictional packing,
see Fig. 11a.

As a final note, it is mentioned that the contact moments
in the cohesive packing determine about 10% of the total
potential energy. This contribution implicitly contributes to

the stress ratio σ̄12/σ̄22 depicted in Fig. 11a by means of
moment equilibrium at the particle level. More specifically,
for each particle the corresponding contact moments are bal-
anced by the product of the contact shear forces and the
particle radius, whereby contact shear forces contribute to
the effective Cauchy stress in accordance with expressions
(23) and (31).
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6 Conclusions

Novel numerical algorithms have been presented for the
implementation of three types of classical boundary con-
ditions for a particle aggregate. The micro-scale boundary
conditions are formulated within the discrete element method
using large deformation theory, and, along the lines of
[16], are imposed on a frame of boundary particles of the
particle packing, in accordance with (1) a homogeneous
deformation and zero particle rotation (D), (2) a periodic
particle displacement and rotation (P), and (3) a uniform
particle force and free particle rotation (T). The algorithms
can be straightforwardly combined with commercial dis-
crete element codes, thereby enabling the determination of
the solution of boundary-value problems at the micro-scale
only, or at multiple scales via a micro-to-macro coupling
with a finite element model. The performance of the algo-
rithms has been tested by means of discrete element method
simulations on regular monodisperse packings and irregu-
lar polydisperse packings composed of frictional particles,
which were subjected to various loading paths. The sim-
ulations provide responses with the typical stiff and soft
bounds for the (D) and (T) boundary conditions, respectively,
and illustrate for the (P) boundary condition a relatively
fast convergence of the apparent macroscopic properties
under an increasing packing size. Finally, a homogeniza-
tion framework has been presented for the formulation of
mixed (D)–(P)–(T) boundary conditions that satisfy the
Hill–Mandel micro-heterogeneity condition on energy con-
sistency at the micro- and macro-scales of the granular
system. The numerical algorithm for mixed boundary con-
ditions has been developed and tested for the case of an
infinite layer subjected to a vertical compressive stress and
a horizontal shear deformation, whereby the response com-
puted for a layer of cohesive particles is compared against
that for a layer of frictional particles. The results illustrate
that the failure response for both contact laws is charac-
terized by the development of a dilated particle structure,
which at large deformation gradually turns into a critical state
with an approximately constant residual strength and spe-
cific volume. The application of the present algorithms for
multi-scale FEM–DEM analyses on granular systems with
a large number of particles, and their extension towards a
dynamics homogenization framework, are topics for future
studies.
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