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Abstract In order to study the rotational behavior of granu-
lar materials, rotation averaging methods are required. Most
of the existing rotation averaging methods are only for 2D
cases and limited by the shape, position and size of the aver-
aging volumes. Hence, a general rotation averaging method
is proposed in this paper. Our approach is simple yet works
for both 2D and 3D cases with very little restriction. The
performance of this method is shown by both hypothetical
examples and DEM simulations of plane strain tests with
different boundary conditions.
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1 Introduction

The overall mechanical behaviors of granular materials can
be reasonably well described by continuum approaches
[3,9,11,22,23,29]. Since granular materials are discrete in
nature, some attempts have been made to obtain the con-
tinuum properties by averaging methods [2,5,6,16,25,39],
which are also referred as homogenization methods [7,19] or
coarse grain methods [30,38]. A meso-scaled averaging vol-
ume which contains several particles needs to be defined for
an averaging method. The overall behaviors of these particles
are averaged by certain mathematical approaches. There are
several kinds of averaging methods to obtain different con-
tinuum properties from the granular materials, such as the
void ratio, stress, strain, fabric tensor and rotation.
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Particle rotations and the associated frictional work play
an important role in understanding the behavior of granular
materials. Therefore, if granular materials need to be accu-
rately described, a model is needed to describe the discrete
rotation of each point as well as its translation. Micropolar
continuum theory, which is also known as Cosserat theory,
is an enhanced continuum theory which takes into account
the independent rotations inside the material. An important
assumption of micropolar theory is that the rotation of indi-
vidual material point can be different from the continuum
rotation. For granular materials, as can be seen in experiments
or DEM simulations, the particles in the shear band usu-
ally show larger rotations than those outside the shear band.
Moreover, the particle rotations are not equal to the rota-
tions in continuum mechanics. Another assumption related to
the rotation in micropolar continuum is that the stress tensor
is asymmetric [12,28,40]. By using micropolar continuum,
several researches [1,17,26,27,31–36] have shown that some
salient features of the granular materials can be well modeled.
However, a direct comparison of the micropolar rotation with
discrete rotations is not feasible. Hence, a rotational averag-
ing method is needed to obtain continuum rotation from the
translation and rotation of discrete particles.

Some examples of micropolar homogenization for 2D
granular material systems are given by Kruyt [19] and Ehlers
et al. [7]. Kruyt presented a theoretical framework of discrete
Cosserat (micropolar)-type granular materials for both static
and kinematic cases. The homogenization method of Ehlers
considers the particles on the boundary of the homogeniza-
tion volume. The optimized averaging area is found to be
about five times of the mean grain diameter. In [13,20,21],
an averaging method for the rotational degree of freedom
is given. The method is realized by summing up all the
rotations within the averaging volume weighted by the vol-
ume of particles. A general averaging method is proposed
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by Zhu et al. [42] for particle-fluid flow in a gas fluidized
bed.

However, the averaging methods above are very compli-
cated and depend highly on the shape, position and scale of
the averaging volumes [7,10]. Some methods do not take the
positions of particles into account, which is not correct since
particles in different positions (center or boundary of the
averaging volume) have different contributions on the over-
all rotation. A new method of rotation averaging for granular
material is proposed here. This averaging method is simple
yet works for both 2D and 3D cases. It is not restricted by
the size or position of the averaging volume. The method is
shown for granular material with circular shaped particles
(discs in 2D and spheres in 3D). However, it can be easily
applied to arbitrary shaped particles.

2 Rotation averaging method

According to Stokes’ theorem, the integral over the bound-
ary of some orientable manifold is equal to the integral of
its exterior derivative over the whole manifold. Similarly, in
averaging method, it is equivalent to consider all the elements
inside the averaging volume [19,21,42] or to consider all the
elements in the averaging boundary [7,8]. The method pro-
posed here considers the elements in the averaging boundary,
which is similar to the averaging method used by Ehlers et
al. [7]. However, the averaging volume is not formed by con-
necting the centers of all boundary particles in our approach.
A sphere or circle shaped averaging volume is used for rota-
tion averaging in 3D or 2D cases. The general steps of the
averaging method are shown in the following:

First, an averaging circle needs to be defined (an averaging
sphere in 3D case), the center and radius of the averaging cir-
cle can be chosen arbitrarily. All the particles which intersect
with this circle needs to be identified. If the radius, position,
velocity and rotational velocity of these particles are known,
the rotational velocity of the averaging circle can be calcu-
lated.

If we connect the particle centers and the center of the
averaging volume with straight lines and extend these lines
to the particle boundary, the intersect points between these
lines and the averaging circle (or sphere) can be find out. By
knowing velocity and rotation of a particle, the velocity of a
intersect point can be calculated by:

vi = vp + ωp × rpi (1)

where vi is the velocity of the intersect point, vp is the veloc-
ity of the particle center, rpi is the vector from the particle
center to the intersect point and ωp is the rotational velocity
of the particle (the rotational center of ωp is the center of the
particle).

The the velocity vi leads to a rotational velocity of the
averaging circle (ωi ), the rotational cener of ωi is the center
of the averaging circle.

ωi = ra × vi
||ra ||2 (2)

where ra is the vector connecting the center of the averaging
circle and the intersect point.

By summing up all the ωi , the rotational velocity of the
averaging circle can be obtained. For 2D case, the averaged
rotational velocity is:

ωa = 1

2π

∑
αiωi (3)

where αi is the angle of the intersecting arc on the averaging
circle. In this way, the velocity of each intersect point is
weighted by the arc length on the averaging circle.

For 3D case, the averaged rotational velocity is:

ωa =
∑ 1

2

(
1 − cos

αi

2

)
ωi (4)

since the area of the spherical cap equals to 2π ||ra ||2(1 −
cos(αi/2)), while the area of the whole sphere is 4π ||ra ||2.
Here, αi is a conical angle of the projection of the spherical
particle on the projection sphere. The velocity of each inter-
sect point is weighted by the area on the averaging sphere.
For arbitrary shaped averaging volume, the determination of
surface area becomes very complicated and will not be dis-
cussed here.

Figure 1 shows an example of the averaging method in 2D,
the small circles in blue are particles and the large circle in
yellow is the averaging circle. For each particle, their veloc-
ities are shown, the particle velocity in the particle center vp

Fig. 1 Rotation averaging in 2D
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Fig. 2 Rotation averaging in 3D

(red), the velocity at the intersect point vi (magenta) and the
tangential projection of vi on the averaging circle (black).
By summing up all the tangential projection velocities, the
rotation of the averaging circle can be obtained.

Similarly, an example of 3D rotation averaging is shown
in Fig. 2, where the blue spheres are particles and the yel-
low sphere is the averaging sphere. Velocities of particles are
shown by red arrows. It can be noticed that in 2D case, almost
the whole averaging circle is intersecting with particles while
in 3D case, only a part of it has intersections with particles.
From our calculations, about 60% of the averaging sphere is
intersecting with particles in 3D case, while in 2D case it is
about 100%. This results are not very much dependent on the
specimen construction method, i.e. particle packing method.
Even for very loose packing in 2D case, the intersection per-
centage is still close to 100%. For 3D case, the difference
between dense and loose packing are not very large, but if
particles with different diameters are used, the intersection
percentage will increase, since some pores are filled by small
particles.

For other shape of averaging volumes, this method can still
be used. Finding out vi for each intersection point is the same.
However, ra should be different for each intersection points.
Also, we need to calculate circumference for 2D averaging
or surface area for 3D averaging and the weighting factor
of each particle, which can be very complicated for non-
spherical averaging volumes.

3 Hypothetical examples

Two hypothetical examples are used to show the performance
of the averaging method. First, a simple example containing

Fig. 3 A 2D example for rotation averaging

only 5 particles are shown with different scales of averaging
volumes. In Fig. 3, there are five particles with no transla-
tional velocity. The center particle rotates counter-clockwise
and other particles rotate clockwise. The all particles have the
same radius r and rotational speed ω. Hence, on the contact
points, there are only relative rolling without any slipping
between particles. The example is similar as gears in a plan-
etary gearbox system.

The center of the averaging circle is chosen to be coincide
with the center of particle in the middle, and the radius of
the averaging circle is R. If R ≤ r as shown in Fig. 4a, there
is only one intersect point and the intersecting arc length
is 2πR. Hence, the averaged rotation equals to the particle
rotation. If r < R < 2r (Fig. 4b), there are four intersect
points. The averaged rotation is counter-clockwise. For the

Fig. 4 Differnet rotation averaging results depending on the size of the
averaging volumes, a R < r,b r < R < 2r, c R = 2r,d 2r < R < 3r
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case R = 2r (Fig. 4c), the intersect velocities are zero, so the
averaged rotation is also zero, which means all the rotations
canceled out within the averaging volume. For R > 2r in
Fig. 4d, the averaged rotation is clockwise. Note that this
is just a hypothetical example, in which the particles have
no translational speed and very large rotations. In reality,
the averaged rotation will not change so much for different
averaging volume sizes.

For the second example, let us consider a plane strain test
with a shear band in the middle, as shown in Fig. 5. The
size of particles are small enough to be neglected in this
example. Therefore, we only consider the translation speeds
of particles. If the averaging circle does not intersect with
the shear band, the averaged rotation is zero. For example,
the averaging circle on the top, all particles intersect with
this averaging circle have the same velocity, so the rotations
canceled out. If the averaging circle intersect with the shear
band, like the averaging circle in the middle, the averaged
rotation is non zero.

These two hypothetical examples show that the results
obtained by the averaging method are qualitatively correct.
However, we have to make some assumptions and neglect
the translational or rotational speed of individual particles in
these examples, which makes these two examples far from
the reality. Hence, discrete element simulations are carried
out in the next section to test the performance of the averaging
method.

4 Discrete element method simulations

Discrete element methods (DEM) have been widely used to
study the rotational behavior in granular materials [4,14,18,

Fig. 5 Rotation averaging of a plane strain test

24,27,37,39]. In order to apply the rotation averaging method
on discrete particles, two DEM simulations of plane strain
tests with different boundary conditions are carried out. The
DEM simulations follow three general steps: model genera-
tion, isotropic loading and biaxial loading. The commercial
DEM software package PFC 3D is used here. In PFC 3D,
there are two kinds of elements: ball and wall. Ball elements
are used to model discrete particles and the wall elements are
used to apply boundary conditions.

First, six walls are generated to apply boundary conditions
for the plane strain test, two fixed walls with a distance of
20 mm in the out-of-plane (Y) direction and four walls in X
and Z directions, see Fig. 6. The size of the model is 40 mm
× 20 mm × 20 mm. Then, balls are generated within the
area between the walls to model granular materials. For the
generation of balls, the radius expansion method is used.
First, balls with smaller radius are randomly generated in
the space. Then, the radius of balls are expanded to obtain
the desired void ratio. Due to the radius expansion, there are
big overlaps between balls. In order to avoid this, several
steps of calculations are carried out until a statical state is
reached. During the generation of balls, all the walls remain
stationary. In this model, there are 150,000 balls with a void
ratio of 0.67. Radius of balls are distributed linearly, the ratio
of largest to smallest ball radii is 3:2, the average radius of
particles is 0.244 mm. The friction coefficient on the ball
surface is 0.577.

The second step is isotropic loading in which the model is
loaded to an isotropic stress state in X and Z directions. This
is realized by a servo mechanism. If the wall stress is larger
than the required stress, the wall will move away from the
balls, if the wall stress is smaller than the required stress, the
wall will move towards the balls, see Eq. (5).

Fig. 6 DEM model of biaxial test, initial model generation
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Fig. 7 Flexible stress boundary condition

�r = αA

kwall
n

(σwall − σ req) (5)

where �r is the wall displacement in one step, A is the wall
area, kwall

n is the contact stiffness on the wall, σwall and σ req

are the wall stress and the required stress, α is a relaxation
factor between 0 and 1. kwall

n is calculated by summing the
contact stiffness of all the balls in contact with the wall. In this
way, the model can be loaded to the required isotropic stress
(6000 kPa is used in this simulation), which is the starting
point of biaxial loading.

During the biaxial loading, the lower wall is fixed and
the upper wall moves down with a constant speed, while
the stresses in the horizontal direction stay constant. Hence,
stress boundary conditions need to be applied in X direc-
tion. Both rigid and flexible stress boundary conditions are

used here. Rigid stress boundary condition can be realized
by applying the servo mechanism [Eq. (5)] on the two walls
perpendicular to X direction.

The same model with flexible stress boundary conditions
are also simulated. The flexible stress boundary condition
is applied through the following steps. First, the balls on
the boundaries are distinguished from other balls. This is
realized by going through all the contacts on each ball, if all
the contact points are in the inside half of the ball, the ball is
considered as a ball on the boundary. For example in Fig. 7
all the boundary balls are shown with red color.

Then, a force pointing towards the center of the model
is applied on the boundary ball. The magnitude of the force
depends on the radius of the ball.

Fb = Pπr2 (6)

where Fb is the force applied on the boundary ball, P is the
required pressure of the stress boundary conditions and r
is the radius of the ball. In this way, required pressures are
applied to all the balls on the boundaries.

Founding boundary balls and applying load is carried out
in each step of the DEM simulation, to make sure that the
balls on the boundaries can be correctly found and the load-
ing can be correctly applied in each time step. Since the stress
boundary is applied separately on each ball, large deforma-
tions in the radial direction are allowed.

For both stress boundary conditions, the model is loaded
until shear bands can be clearly observed. The results of rigid
boundary condition are shown in Fig. 8 and the results of
flexible boundary condition are shown in Fig. 9. Colors are
used to show the rotational speeds in Y direction of each
particles. Red and yellow show high and medium rotational
speed in clockwise direction, magenta and blue show high

Fig. 8 Biaxial test simulation with rigid stress boundary condition, vertical strain 6.47, 11.4 and 15.8%
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and medium rotational speed in counterclockwise direction,
while green means rotational speed is equal to or close to zero.

It can be seen that for both boundary conditions, shear
bands appear in the simulations. The model with rigid stress
boundary condition have several shear bands which conju-
gate each other at the boundaries. The model with flexible
stress boundary condition gives one main shear band with
much larger particle rotations. However, these shear bands
are so far only shown by discrete rotations of individual par-
ticles, averaged rotations will be shown and discussed in the
next section.

5 Rotation averaging results

The rotation averaging method shown above is applied to
the DEM models in the last section. As discussed before, the
method is not restricted by the position and size of averaging
volume. Hence, it is applied to different positions of the DEM

models with different diameters of the averaging sphere. In
order to avoid averaging spheres outside the material bound-
ary, only the center part of the model (size 20 mm × 10 mm)
is used for rotation averaging, as shown in Fig. 10.

Taking the mean diameter of particles d50 as a reference,
the diameters of averaging sphere from 4d50 to 12d50 are
used. The mean diameter of particles is 0.488 mm, there-
fore the diameters of averaging spheres range from 1.952 to
5.856 mm. The center points of the averaging spheres do not
need to coincide with particle center points or any other par-
ticular points. Hence, the averaging method is carried out in
the middle of plane strain direction (y = 10 mm) for every
1 mm in x and z direction, which is about twice the mean par-
ticle diameters. Therefore, 11×21 = 231 averaging spheres
are used each time. The positions of averaging spheres are
shown in Fig. 11.

For each point, the averaged rotation in x, y and z direc-
tion can be obtained by the rotation averaging method. Since
plane strain problems are considered here, the rotation in y

Fig. 9 Biaxial test simulation with flexible stress boundary condition, vertical strain 8.87, 9.75 and 10.6%

Fig. 10 Part of the DEM model used for rotation averaging
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Fig. 11 Positions of averaging spheres with diameters of 4d50 and
12d50

direction is the most interest. The rotational speeds in x and z
directions are close to zero as will be shown in next section.
Hence, only the results of averaged rotational velocity in y

direction for both DEM simulations are plotted in Figs. 12
and 13. In order to see the differences between the averaging
results, different color scales are used.

For both models, it can be seen that the rotational behavior
can be well captured by the averaging method. From the
averaged results, shear bands can be clearly distinguished
from the rest part of the model due to the large rotations. In
Fig. 12, all four shear bands in different directions can be
seen from the averaging results.The rotational speed of the
shear band in the upper left corner clearly has larger rotation
than other shear bands.

Regardless of the relative positions between the averag-
ing volume and particles, the method is able to give a result
of averaged rotational speed. For large averaging volumes,
the overall rotational behavior in the volume covered by the
averaging sphere can be obtained. While small averaging
spheres give the localized rotational behaviors. It means that
researchers can choose the position and size of the averaging
volumes freely depending on the problem and the scale they
need.

Fig. 12 a DEM results. b–f Rotation averaging results with different averaging diameters: 4d50, 6d50, 8d50, 10d50 and 12d50, colorbars show the
rotational speed in clockwise direction, model with fixed boundary conditions (color figure online)
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Fig. 13 a DEM results. b–f Rotation averaging results with different averaging diameters: 4d50, 6d50, 8d50, 10d50 and 12d50, colorbars show the
rotational speed in clockwise direction, model with flexible boundary conditions (color figure online)

The rotational speed obtained with the averaging should
be the total spin of the material. If micropolar theory is con-
sidered, total spin equals to micropolar spin plus the vorticity.
Vorticity (or macroscopic spin) is defined by:

w := 1

2
( �∇v − v �∇) . (7)

where v is the velocity.
According to Eq. (1), the velocity vi depends on vp and

ωp×rpi . If these two parts are separated, we can get two aver-
aged rotations, the sum of these two averaged rotations is the
averaged rotation of the general method. The contributions
of vp and ωp × rpi can be quantified. The averaged results
of all 435 points in Fig. 12b are taken. The norm of the aver-
aged rotational velocity depending on vi , vp and ωp × rpi
are calculated. Taken rotational velocities depending on vi to
be 100%, the percentages of rotational velocities depending
on ωp × rpi are shown in Fig. 14.

It can be seen that the percentage of ωp × rpi vary a lot
for different points. The contribution of ωp × rpi are small
for most of the averaging points, but it can also be more than
±80% in some extreme cases. Therefore, it is meaningless
to separate the contributions of vp and ωp × rpi .

6 Comparison with another method

The rotation averaging method presented in Guo and Zhao
[15] and Zhao and Guo [41], which is similar to the methods
used in many other literatures [13,20,21], is applied on the
DEM models above for comparison. Their method to obtain
the accumulated average particle rotation θ for a RVE pack-
ing is defined as:

θ = 1

Np

∑

Np

θp (8)
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Fig. 14 The percentages of rotational velocities depending on ωp×rpi

where Np is the number of particles, θp is the accumulated
rotation of an individual particle.

The method is applied to the same locations in the DEM
models as in the last section. Three different diameters for
the averaging sphere is used: 4d50, 8d50 and 12d50, where
4d50 is the mean grain diameter in the model. The results of
rotations in y direction are shown in Figs. 15 and 16.

It can be seen that results are qualitatively similar to the
results obtained by the general rotation averaging method
presented in this paper, see Figs. 12 and 13. For both meth-
ods, the direction of averaging rotation agrees consistently
with the inclination of the shear band, although the discrete
particle rotation could be in different directions within shear
bands. However, if we take a close look at the values of
the averaged rotations, the method of Eq. (8) shows a scale-
dependency for both DEM models. The larger the averaging
volume, the smaller averaged rotations. While the general

Fig. 15 Averaging results with Eq. (8) for averaging diameters 4d50, 8d50 and 12d50, model with fixed boundary conditions

Fig. 16 Averaging results with Eq. (8) for averaging diameters 4d50, 8d50 and 12d50, model with flexible boundary conditions
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rotation averaging method does not show scale-dependency
for any of the DEM models. Also, the averaged rotations
obtained by Eq. (8) are larger than those obtained by the
general rotation averaging method.

There are several differences between these two methods.
The method of Eq. (8) calculates the averaged rotations of
all particles in the averaging volumes, but it does not take the
particle’s size, position or velocity into account. The gen-
eral rotation averaging method only considers the particles
in the boundary, but since all the particles have interac-
tions in between, the behaviors of boundary particles depend
very much on the particles inside the averaging volume.
By taking the particle velocities into account, the vorticity
of the particle velocities is considered in the general rota-
tional averaging method. The method of Eq. (8) is performed
on the RVE packing, therefore it does not need to define
a rotational center. While the general rotation averaging
method depends very much on the position of the rotational
center.

7 Size dependence of the method

It is well known that the results of the averaging methods
depend on the size of the averaging volume. To determine
this relationship for the general rotation averaging method,

we plot the averaged rotational velocity for three points in
each DEM model with different averaging diameter. The ratio
between the diameter of the averaging volume and the mean
grain diameter da/d50 range from 2 to 19. The three points
locate in the upper right corner (4, 33 mm), the lower left
corner (18, 5 mm) and the middle (10, 20 mm) of the center
part of the model, see Fig. 10. For rigid boundary simulation,
the results of averaged rotational velocities in y direction
are plotted in Fig. 17. For flexible boundary simulation, the
results are plotted in Fig. 18.

It can be seen that the averaged rotational velocities vary
a lot for da/d50 < 5, while for da/d50 > 10 the differences
of averaged rotational velocities are not significant. For the
points inside or close to a shear band (The first and second
point in Fig. 17, the second and third point in Fig. 18), the
averaged rotational velocity trends to converge to a nonzero
value.

The aim of this paper is to present a unique averaging
method which can be used for different scales. If microscale
problems are considered (da < 10d50), the averaged rotation
depends very much on the size of the averaging volume.
For macroscale problems, the size of averaging volume
da = 10d50 would be a proper choice for calculation since the
averaged results trend to reach a stable value for this aver-
aging size. A circular shaped averaging volume might not
always be the best choice, especially when the particles in

Fig. 17 Dependence of averaged rotational velocity in y direction on da/d50 for three points in rigid boundary plane strain test

Fig. 18 Dependence of averaged rotational velocity in y direction on da/d50 for three points in flexible boundary plane strain test
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the averaging circle have different behaviors. In these cases,
the general rotation averaging methods need to be modified
according to the shape of the averaging volume as mentioned
in Sect. 2.

8 Time averaging

In order to see the change of averaged rotation over time, the
averaged rotational speeds are measured with our averaging
method in every 100 DEM steps. The measurement started
from a time step in which the shear bands have been fully

developed and the model undergoes a stable deformation.
Therefore, the stability of the averaging method over time
can be tested. Totally 11 measurements are taken. Two dif-
ferent diameters for the averaging volume are used da = 6d50

and da = 10d50. The averaging results for both DEM simula-
tions inside and outside the shear band are shown in Figs. 19
and 20, in which the averaged results in all directions are
given. For comparison, the same coordinate values are used
for averaging sphere with da = 6d50 and da = 10d50 in the
same position. However, the averaging results in different
positions are shown with different coordinate values to make
the plots easy to read.

Fig. 19 Averaging results over time for DEM simulation with rigid stress boundary conditions

Fig. 20 Averaging results over time for DEM simulation with flexible stress boundary conditions
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It can be seen from the figures that the averaged rotations
do not change very much over time, which means that this
averaging method is relatively stable over time. Note that
although the curves for rotations outside shear band in Fig. 19
show very large fluctuations, the change is actually not very
large since the coordinate values on rotational velocity axis
is very small in these two plots.

The time fluctuation for large averaging volume is less
than for the small average volume. The reason can be that
many rotations canceled out in large averaging volumes. Sim-
ilar variations of the rotational speeds are given by averaging
volumes of different sizes, which means that the method is
stable by changes of averaging volume sizes. It can also be
seen in the plots that the rotational speed in x and z direction
(ωx and ωz) is almost zero, while ωy can have large positive
or negative values. This can be expected since plane strain
conditions are considered here.

In the last section, it is already shown qualitatively that the
rotational speed inside the shear band is larger than outside
the shear band. From Figs. 19 and 20, we can calculate that
the rotational speed inside the shear band is about 5 times
larger than outside the shear band. The averaged rotations
could be reduced by adding contact moments between balls.

9 Conclusions

A general rotation averaging method for granular materials in
2D and 3D cases are shown in this paper. Unlike conventional
methods which require complicated averaging geometry and
calculations, the new method is simple and has very low
restrictions. In order to test the method, DEM simulations
for plane strain tests with different boundary conditions are
carried out. The rotation averaging method is applied to dif-
ferent parts of the model with different averaging volumes.
The results show that the bulk rotational behavior of the DEM
model can be well captured by the general rotation averaging
method. The time averaging shows that the method is also
very stable.
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