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Abstract This article demonstrates the solution to the
problem of the passage of air through the external wall barrier
and the influence of the materials type and its layer arrange-
ment on heat conductivity, in respect of building heat losses.
It shows how the temperature changes inside the wall bar-
riers and in a room while the external temperature changes.
Also, this article presents the mathematical model based on
fractional differential equation describing the analysed phe-
nomenon.
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1 Introduction

The process of heat transfer, being present in many techno-
logical disciplines, is very common, as it occurs wherever
temperature differences appear. Heat transfer is achieved in
three physically-different ways, that is through heat conduc-
tion, convection and radiation. Without any doubt, the heat
conduction is the most important form of the heat transfer
process. Next to the already-mentioned three types of heat
transfer there are also combinations of those types in the
forms of heat transmission (penetration) and heat permeabil-
ity. This work will investigate the heat flow through a com-
plex system, understood as a system made of the granulated
material, air and water. At the core of the heat transfer phe-
nomenon in a complex system lies temperature difference.
Therefore, one should look for solutions which allow prop-
erly defining the temperature distribution in its interior. A
more precise explanation of the phenomenon of heat trans-
fer between the constituents of a given process may allow
the better control of temperature changes. The empty spaces
between the granular material may be filled with, for exam-
ple, gas or water. Additionally, many connected phenom-
ena take place between the granular material. In the condi-
tions of fluctuating pressure and temperature chemical reac-
tions between bodies and the material filling the empty space
might occur. The number of phenomena and the multiplic-
ity of parameters cause problems with their description, and
because the phenomenon of the heat flow is connected both
with everyday life and with many technological disciplines
interest in the said subject is still current. In literature we can
find models describing heat flow through complex systems.
The three-phase porous material consisting of the granule
material framework and water and air filling the pores of the
material [3,15,18], as well as the system consisting of two
materials: solid bodies and fluid or air [10,21], are taken into
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consideration. In order to describe the heat flow, computa-
tional analysis, for example, the finite difference method, is
applied. Some problems with the method application are con-
nected with the boundary conditions and with the irregular
shape of the boundaries. The other method applied to describe
the phenomenon of heat flow is the finite-element method.
This method is used to examine heat flow and to investi-
gate other issues described with a differential equation of the
first and second order [9]. The common application of the
said methods in solving technical problems is a result of the
possibility of obtaining an equation result, which cannot be
solved in an analytical way, or its solution is too complex and
time-consuming [36]. The idea of the method of boundary
elements, also used to describe the analysed phenomenon, is
to reduce the given boundary element to a simultaneous inte-
gral equation, which is defined on the boundary of the given
closed and connected set and is equivalent to the reduction of
the problem size. The next method applied to the examination
of heat flow is a model prepared by Rajagopal and Massoudi
[30], where the material density is of great significance. This
model was used to examine various problems like the heat
flow in a vertical pipe [13] or the heat flow occurring due
to natural convection [27]. A very common method used in
granular media for prediction of global heat flux, isotherms,
and isofluxes is the Lattice Boltzmann Method. LBM is arel-
atively new simulation technique for complex fluid systems.
Due to its particulate nature and local dynamics, LBM has
several advantages over other conventional methods, espe-
cially in dealing with complex boundaries, incorporating of
microscopic interactions, and parallelization of the algorithm
[11,14]. The necessity to create a model of the heat flow
through complex systems has been already indicated in the
former publications. The granular materials were very often
treated as systems of barriers separated by air layers [19].
To define the heat flow through granular materials Prasolov
considered the granular structure as a system of a solid body
and a gas [29], while Smolukovsky [32] examined the granu-
lated materials in lowered-gas-pressure conditions, assuming
that the grains of the granular material are round. Kelly and
Schwarz [16] in their work analysed models of heat transfer.
In these models the physical geometry, which is reproduced
in all porous materials, is idealised and shown in a simplified
form.

On the basis of the literature it can be stated that taking
into account the classical approach to heat flow we apply the
Fourier—Kirchoff equation. But when we manage a complex
system, the classical approach is not the best solution. One of
the basic problems which appears while modelling the heat
flow in a complex system by classical equations is the mul-
tiplicity of interrelations, factors and coefficients necessary
to describe the structure of the examined system. Defining
general interrelations, which will allow the defining of heat
conductivity in complex system, is complicated because of
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the heat qualities of the particular elements, and porosity as
well as the moisture content. Therefore, it is necessary to
create new models.

In this paper has been proposed mathematical model based
on fractional calculus, which is used in many fields, such
as engineering, chemistry, electrical and electromechanical
systems, etc. The basic mathematical ideas of fractional cal-
culus were developed by the mathematicians Leibnitz, Liou-
ville, Riemann and others and today is fast-growing part of
mathematics (Podlubny, Magin, Mainardi, West). Fractional
calculus is particulary useful in describing the dynamics of
complex systems. During the last decades of the nineteenth
century (1892) Heaviside introduced the idea of fractional
derivatives in his study of electric transmission lines. Sebaa
[31] used fractional calculus describe the viscous interac-
tions between fluid and solid structure in human cancellous
bone. Kulish [20] used fractional calculus to fluid mechan-
ics. Assaleh [2] proposed a novel approach for speech signal
modelling using fractional calculus in presented. Fellah and
Depollier [12] used application to the sound waves prop-
agation in rigid porous materials. Soczkiewicz [33] frac-
tional calculus used in the theory of viscoelasticity. Pod-
lubny’s work [28] contains information about the applica-
tions of fractional calculus to various problems of mechanics,
physics and engineering. West in [35] describes how to use
the fractional operators in the modelling of complex phenom-
ena. After the analysis of this work we have observed that
the spatial fractional derivatives have long-range interactions
and may have deep physical implications when modelling a
complex phenomenon. The application of fractional calcu-
lus in bioengineering was presented by Magin in [24,25].
Such fractional order models provide an improved descrip-
tion of the observed bioelectrode behaviour. Mainardi, in
work [26], shows how the fractional calculus provides a
suitable method of describing dynamical properties of lin-
ear viscoelastic media with the problems of wave propa-
gation and diffusion. The book by Uchaikin [34] presents
detailed motivation for fractional differential equations in
various branches of physics.

The growing number of such applications indicates that
there is a significant demand for better mathematical models
of real objects, and that the fractional calculus provides one
of many possible approaches regarding the way to more ade-
quate mathematical modelling of real objects and processes,
especially when we are dealing with complex systems. Some
process can describe models approach in classical equation
but suggest that additional mathematical tools may be needed
to better describe this complex system. Fractional derivatives
have many properties in common with the classical ones, but
not all the properties are the same. These differences can be
used to describe complex phenomena that arise due to non-
local interactions and system memory. Classical approach
requires large number of coefficient and constitutive relations
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in order to minimize uncertainty in mathematical modelling.
However large number of coefficient generate uncertainty in
determination of their values. To reduce this uncertainty we
decided to apply fractional calculus, which requires low num-
ber of coefficients describes the analysed process. We lim-
ited our consideration only to steady state where the analysed
phenomenon depends only on location. This paper proposes
a description which does not investigate the structure but
assumes some degree of its heterogeneity. When abandon-
ing the classical equation and substituting it with an ordinary
differential equation including the left and right fractional
derivatives [4,5,7,8,22] we arrive at a model which has such
a quality that it does not investigate the structure and does
not include such a number of factors. Such equations are the
result of the modification of the principle of least action and
the application of the fractional rule of integration by parts
[5]. The considered problems faced in the process of heat
flow during the works will be analysed from the practical
and theoretical points of view. Computer simulations were
additionally supported by experimental tests in the research
station using a climate chamber in order to simulate the tem-
perature conditions.

2 The mathematical model

Here, mathematical analysis is used increasingly often for
designing wall barriers, such as, for example, fractional
differential equation, which requires a significantly-smaller
number of coefficients.

Therefore, for describing the phenomenon under consid-
eration, proposed are fractional equations with the left and
right Caputo derivatives in the form presented below.

“D§.CDY_T(x) +w™T(x) =0 (1)

where x € [0, b], o represents a degree of heterogeneity, w
represents a scale parameter and operators ¢ Dg,., CDZ‘_ are
defined as [17]

X
1 TM (1)

C no _
Do, T(x) = I'n—o)) (x—r7)ont]
0

dr, x>0 (2)

(=D" T™(2)

I'h—a) ) (t—x)*ntl

DY T(x) =

dtr, x<b (3)

where n = [a]+ 1. The first of the above derivatives is called
the left Caputo derivative and the next, the right derivative
respectively.

We assume o € (0, 1), then Eq. (1) is supplemented by
boundary conditions as

r0)="Ty, T®) =T, “

2.1 An analysis of the error of approximate solutions

The analytical solution of Eq. (1) has the form of the infinity
series of composition of the left and right fractional integrals,
see [4,5,23]. Therefore, in our model we will use the dis-
crete form of the considered equation. The resultant numeri-
cal scheme should be tested in terms of the errors it generates,
as well as in terms of its order of convergence. We write the
discrete form of Eq. (1) follows to [4,6] as

To = T (x0)

i N
(Ax)~ 2 Zj:() [U(i» 7 zk:j v(N—J, N_k)Tk]+ 0™ T; =0
Ty = T(xn)

&)
fori =1,..., N — 1, where
v(i, j) =
(i—Dlme—jl-a forj =0
! (= j+DI=26-p'
re-—a) |+G—j—-Dn forj=1,..., i—1
1 forj =i
(6)
Let x € [0, 1] and boundary conditions
TO)=1,T1)=0 7

Then, the solution of Eq. (1) with conditions (7) has the fol-
lowing form

2o (=) (1 1) " (= x)°
S (me) " (115"

where I{* and I, denote the right and left fractional integrals

(17]
In particular, for @ = 0, solution of Eq. (1) simplifies to
the form

T (x) = ®)

Tx)=(1-x)*“ 9

We determine experimental estimation of the convergence
row (EOC) as [1,5]

error[N]
EOC =logy \ —————— (10)
error[2N]
where
error[N] =
31T (o) = Tol +3 1T o) = Tl + 205 T () = T
N
Y
In error calculations we take into account boundary con-
ditions (7) and w = 0. Errors generated by numerical

scheme (5) is shown by Table (1).

When the EOC values are put to analysis in Table 1, it
may notice that the convergence of our numerical systems (5)
equals O(h) and is independent of parameter «.
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Table 1 Errors and EOC generated by numerical scheme (5)

a=03 a=0.5 a=0.7

Ax Error EOC Error EOC Error EOC
= 1.51e—2 1.46e—2 1.05e—2
% 8.47e—3 0.83 8.19¢—3 0.83 6.05e—3 0.79
& 4.60e—3 0.88 4.41e-3 0.89 3.34e—3 0.86
ﬁ 2.44e—3 0.91 2.32e—3 0.93 1.80e—3 0.89
(@)1 - (b) 10 -

0.8

0.6 4
- ~
e No
= =

0.4 4

0.2

0.0 -

Fig. 1 Numerical solutions of Eq. (1) for boundary conditions (7) for: a @ = 1 and @ € {0,1;0,3;0,5;0,7;0,9}; ba = 0,5 and w €

{0;0,01; 0, 1; 1; 10}

Subsequently, examples for various values of parameters o
and w are calculated to graphically demonstrate how numer-
ical solutions for the Eq. (1) behave.

Figure 1apresents plots for the constant value of parameter
o = 1 and variables values of parameter «. In the Fig. 1b we
show the influence of parameter w € {0; 0, 01; 0, 1; 1; 10}
at the constant value of @« = 0, 5 on the solution.

3 Experimental setup

Heat-flow simulations and schedules of heat distribution for
wall barriers allow such a design of wall barriers as to max-
imally reduce the expenditures on utilisation of buildings.
External wall barriers significantly influence the energy per-
formance of a building. The knowledge of heat distribution
in these wall barriers will allow the correct assessment of
insularity. The paper presents the results and conclusions
of research pertaining to the heat flow through layers of
granular mass and concrete characterised by the following
properties: for granular material—unbound granular mate-
rials: Ay = 15405, ¢p, = 1,000e2%, pg, = 2,403,
and for concrete-bound granular material: A, = 1%, Cp. =
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840JkgK, pa, = 2, 100%, where A—thermal conductivity,
¢ p,—appropriate heat, p;—density. Temperature profiles in
a wall barrier filled with a layer of concrete were presented.
These profiles will compare with temperature profiles in wall
barriers with added layers of granulate. A well-insulated wall
barrier, as shown in Fig. 2, was created with a view to carrying
out the tests.

In the research a climate chamber [Series 3 LTCL600 cli-
matic chamber (TAS Ltd., West Sussex, UK)] was used which
allows the regulation of temperature in a space which sim-
ulates the surroundings. In the chamber a wall barrier was
placed, in which layers were changed in consecutive stages
of the experiment. These layers were properly insulated, and
the air void in the lower part of the wall barrier simulated the
room. After setting the parameters, the thermocouple data
collected in the course of the experiment were saved on a disc.

The introductory stage of the experiment consisted of
entering suitable parameters in the climate chamber and
obtaining temperature profiles, in particular wall barriers,
with the temperature being maintained at —12 °C, both in
the internal, central (of the wall barrier), and external part of
the wall barrier. Then the external temperature (in the upper
part of the chamber) was gradually being increased. Data
collected from thermocouples presented the way in which
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N thermocouples position
direction of heat flow plesp

—— %160 mm
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granular -7 80 mm
T OXX 60 mm
o 40 mm

(c)

Fig. 2 Schematic arrangement of thermocouples in the research sta-
tion: a in the bulkhead filled with concrete—bulkhead 1, b in the bulk-
head filled with concrete and two granular layer on the inside and
outside—bulkhead 2, ¢ in the bulkhead filled with concrete and granular
layer on the inside—bulkhead 3, d in the bulkhead filled with concrete
and granular layer on the outside—bulkhead 4

temperature changed in a layer of concrete (Fig. 2a), in a
layer of concrete with layers of granular material on both
sides (Fig. 2b), in a layer of concrete with layers of granular
material on the internal side (Fig. 2c) and on the external side
(Fig. 2d).

The four cases presented in Fig. 2 were examined so as
to determine the influence of the arrangement of the layer
of granular material on the thermal conductivity of a wall
barrier.

4 Results

Presented below are the results of the tests of airflow through
a wall barrier and temperature profiles for wall barriers con-
structed of various material layers. Temperature values inside
the external wall barriers and the temperatures inside the
room at individual time steps for each wall barrier were deter-
mined. The research was conducted for four wall barriers as
described above and shown in Fig. 2. In each phase the ther-
mocouples were distributed at the same heights (Fig. 2). The
thermocouple placed at the height of 40 mm was placed in an
air void which simulated the room, whereas the thermocou-
ple placed at the height of 160 mm was placed as designed on
the external side of the wall barrier. Before the experiment,
the temperature in each layer and in the room was —15 °C. It
was gradually increased up to the value of 25 °C. The Figs.3,
4, 5 is the result of research conducted, and present tempera-
ture change curves in the examined wall barriers, depending
on the type, arrangement and the thickness of materials.

In this paper we consider four bulkheads:

— bulkhead 1 (concrete § = 100 mm)

691
25 T T T T T T T
1 —a— bulkhead 1
20 —o— bulkhead 2|
---&-- bulkhead 3
15 —w— bulkhead 4|4
o 10 -
[
[
5 57 T
®
2 o0+ 4
£
2
-5 g
-10 -
-15 -

40 60 80 100 120 140 160
depth of placement of thermocouples [mm]

Fig. 3 Temperature profiles for four wall barriers with various layers
for the external temperature of 0 °C

25 T T T T T T T

20 -

temperature [’C]

—a— bulkhead 1|

—o— bulkhead 2

---O-- bulkhead 3|

—w— bulkhead 4

T T T T T T T T T T T T T

40 60 80 100 120 140 160
depth of placement of thermocouples [mm]

Fig. 4 Temperature profiles for four wall barriers with various layers
for the external temperatures of 15 °C

— bulkhead 2 (granular material/concrete/granular material
6 =20/40/20 mm)

— bulkhead 3 (granular material/concrete § = 50/50 mm)

— bulkhead 4 (concrete/granular material § = 50/50 mm)

where granular material has parameters A, = 1.5.7%, ¢p, =

1,000 e,

ke = le, ¢p = 84072, p = 210045 The layers
were insulated from the external environment and the direc-
tion of heat flow could be consider as one-dimensional. The
charts presented in Figs. 3, 4, 5 present temperature distrib-
ution obtained from various thermocouples in the course of
the four stages of the experiment which examined the four
types of external walls. The data selected were obtained at
the moment when the temperature of the surroundings was
—15°C, and then increased to 0—15 °C and to 25 °C respec-
tively.

pd, = 2403% and concrete has parameters
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temperature ['C]
(4]
1
1

59 —a— bulkhead 1|
—o— bulkhead 2

-10 ---&-- bulkhead 3|
1 —w— bulkhead 4

T . T ¥ T ¥ T ' T L T ¥ T
40 60 80 100 120 140 160
depth of placement of thermocouples [mm]

Fig. 5 Temperature profiles for four wall barriers with various layers
for the external temperatures of 25 °C

In addition, at the figures was presented measurement
uncertainties. These parameters are related to the result of
the measurement is characterized by dispersion of results that
can be attributed to the measured value. These uncertainties
have been calculated and presented in the graphic form. Ana-
lyzing deviations of measurements can be seen that did not
affect significantly the quality of the results.

Based on Charts 3—5 we observe that the temperature in the
combination of concrete and granulated layers increased at
the highest rate. Nonetheless, a difference in temperature pro-
files can be observed in these layers, which are particularly
visible at the point of convergence of the layers. The exper-
iment started when the temperature in each wall barrier was
—15 °C. When the external temperature increased to 0 °C, the
temperature in wall barrier 3, in the first layer (granular mate-
rial) was decreasing at rather a slow rate, while temperature in
the next layer in concrete started decreasing more rapidly. In
wall barrier 4 it is evident that in the first (concrete) layer the
temperature rapidly decreased, while the temperature profile
in the granular material started stabilising.

When the external temperature continued as above zero,
the temperature in wall barrier 1 started increasing more
rapidly, while the rate of temperature increase was reduced
through wall barrier 4. The smallest increase in temperature
was noted in wall barrier 2, where it can observe that the
temperature profile in layers of granular material in wall bar-
riers was not so sharp as that in concrete layers. Since the
heat conductivity of the framework of the material is better
in granular material than the heat conductivity of air, air filled
inter-granular spaces act as an insulator.

Apart from temperature distribution in the external walls,
the air temperatures inside the room were also determined.
Figures 3, 4, 5 also presents internal temperature values for
the room that were collected from a thermocouple placed
40 mm deep. At external temperature of 0 °C inside the room
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in both cases of mixed wall barriers (barriers 3 and 4) the
temperature was —10 °C. The temperature inside the room
measured when the layer of concrete was insulated on both
sides with layers of granular material, was —12.5°C. The
temperature inside the room for wall barrier 1 increased at
the lowest rate. The temperature inside the room was —13 °C
while the external temperature increased to 0 °C. When the
external temperature increased to 15°C, a greater discrep-
ancy can observe in the temperatures inside the room. When
the temperature continued at 25 °C, the temperature in the
wall barrier 3 was equalising at the highest rate. At the same
time, the temperature in the room with wall barrier 4 was
increasing at the lowest rate.

In the next part of this paper presents the results of bulk-
head 4 filled with granular material and concrete (Fig. 2).
During the study collected data from thermocouples placed
inside the bulkhead have produced temperature profiles. On
their basis selected a steady-state. Presented below is the
comparison of experimental results for external temperatures
of 0°C and 15°C respectively with airflow for the wall with
the best parameters, i.e. wall barrier 4, with numerical analy-
sis results. Data selected based on the experiment described
earlier allowed the determination of temperature profiles in
individual wall barriers. Approximate temperature profiles
were determined based on Eq. (1). Figures 6 and 7 present
the effects of the procedure carried out.

In numerical simulations was used the discrete form of
Eq. (1) for the following parameters « € {0,4;0, 6}, €
{0, 003; 0, 022} and boundary conditions:

T(40) = —11.5°C, T(160) = 0 °C for (Fig.6)
— T(40)=0°C, T(160) = 16 °C for (Fig.7).

experimental data i
a=04[] ®=0.003[1/m]

0 4 n

temperature [°C]
[=>]
L

1 ' 1 v I M I ' I ' 1 v I
40 60 80 100 120 140 160
depth of placement of thermocouples [mm]

Fig. 6 A comparison of the numerical solution of Eq. (1) with data
obtained in the experiment for an external temperature of 0 °C at wall
barrier 4
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16 1 O experimental data 7

a=0.6[] ©=0.022 [1/m] i

temperature [°C]

-2 T T T T T T T T T T T T T
40 60 80 100 120 140 160
depth of placement of thermocouples [mm]

Fig. 7 A comparison of the numerical solution of Eq. (1) with data
obtained in the experiment for an external temperature of 15 °C at wall
barrier 4

Experimental data come from heat-flow simulations distri-
bution for bulkhead allow such a design of wall barriers as
to maximally reduce the expenditures on utilisation of build-
ings.

5 Concluding remarks

The article discusses temperature profiles for wall barriers
composed with various layers of concrete and a granular
material. The research was conducted in variable temperature
and humidity conditions. Granules were used as insulators for
layers made of concrete. In the obtained temperature distribu-
tions, as compared to humidity distribution, the temperature
differences were in accordance with the results estimated
with the use of a mathematical model. Adding an excessive
amount of insulator did not result in enhanced conditions.
Moreover, the results suggest that a wall barrier consisting
of a layer of concrete and an insulation layer on its external
side has the best properties. Because this type of complex
systems in classic model requires to determine a large num-
ber of factors resulting from the structure of the studied sys-
tem. Using fractional differential equations as mathematical
description of the complex system gives an advantage that it
does not penetrate into the structure of the analyzed system.
This approach assumes only a certain degree of heterogene-
ity. The great advantage of this model reveals a significant
reduction of number of coefficients which are necessary to
describe the studied complex phenomena. The results pre-
sented in this study show that the proposed model describes
well the temperature profile in the bulkhead, in steady regime.
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