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Abstract Extracting features from original signals is a key

procedure for traditional fault diagnosis of induction

motors, as it directly influences the performance of fault

recognition. However, high quality features need expert

knowledge and human intervention. In this paper, a deep

learning approach based on deep belief networks (DBN) is

developed to learn features from frequency distribution of

vibration signals with the purpose of characterizing work-

ing status of induction motors. It combines feature

extraction procedure with classification task together to

achieve automated and intelligent fault diagnosis. The

DBN model is built by stacking multiple-units of restricted

Boltzmann machine (RBM), and is trained using layer-by-

layer pre-training algorithm. Compared with traditional

diagnostic approaches where feature extraction is needed,

the presented approach has the ability of learning hierar-

chical representations, which are suitable for fault classi-

fication, directly from frequency distribution of the

measurement data. The structure of the DBN model is

investigated as the scale and depth of the DBN architecture

directly affect its classification performance. Experimental

study conducted on a machine fault simulator verifies the

effectiveness of the deep learning approach for fault

diagnosis of induction motors. This research proposes an

intelligent diagnosis method for induction motor which

utilizes deep learning model to automatically learn features

from sensor data and realize working status recognition.

Keywords Fault diagnosis � Deep learning � Deep belief

network � RBM � Classification

1 Introduction

Failures often occur in manufacturing machines, which

may cause disastrous accidents, such as economic losses,

environmental pollution, and even casualties. Effective

diagnosis of these failures is essential in order to enhance

reliability and reduce costs for operation and maintenance

of the manufacturing equipment. As a result, research on

fault diagnosis of manufacturing machines that utilizes data

acquired by advanced sensors and makes decisions using

processed sensor data has been seen success in various

applications [1–3]. Induction motors, as the source of

actuation, have been widely used in many manufacturing

machines, and their working states directly influence sys-

tem performance, thus affecting the production quality.

Therefore, proper grasping of data reflecting the working

states of induction motors can obtain early identification of

potential failures [4]. During recent years, various

approaches for induction motor fault diagnosis have been

developed and innovated continuously [5–8].

Artificial intelligence (AI)-based fault diagnosis tech-

niques have been widely studied, and have succeeded in

many applications of electrical machines and drives [9, 10].

For example, a two-stage learning method including sparse

filtering and neural network was proposed to form an

intelligent fault diagnosis method to learn features from
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raw signals [11]. The feed-forward neural network using

Levenberg-Marquardt algorithm showed a new way to

detect and diagnose induction machine faults [12], where

the results were not affected by the load condition and the

fault types. In another study, a special structure of support

vector machine (SVM) was proposed, which combined

Directed Acyclic Graph-Support Vector Machine (DAG-

SVM) with recursive undecimated wavelet packet trans-

form, for inspection of broken rotor bar fault in induction

motors [13]. Fuzzy system and Bayesian theory were uti-

lized in machine health monitoring in Ref. [14]. Although

these studies have shown the advantages of AI-based

approaches for induction motor fault diagnosis, most of

these approaches are based on supervised learning, in

which high quality training data with good coverage of true

failure conditions are required to perform model training

[15]. However, it is not easy to obtain sufficient labelled

fault data to train the model in practice.

Furthermore, many fault diagnosis tasks in induction

motors depend on feature extraction from the measured

signals. The feature characteristics directly affect effec-

tiveness of fault recognition. In the existing literature,

many feature extraction methods are suitable for fault

diagnosis tasks, such as time-domain statistical analysis,

frequency-domain spectral analysis [16], and time-scale/

frequency analysis [17], among which wavelet analysis

[18], which belongs to time-scale analysis, is a powerful

tool for feature extraction and has been well applied to

processing non-stationary signals. Whereas, the problem is

that different features extracted from these methods may

affect the classification accuracy. Therefore, an automatic

and unsupervised feature learning from the measured sig-

nals for fault diagnosis is needed.

Limitations above can be overcome by deep learning

algorithms which follow an effective way of learning

multiple layers of representations [19]. Essentially, a deep

learning algorithm uses deep neural networks which con-

tain multiple hidden layers to learn information from the

input, but was not put into practice because of its training

difficulty until Geoffrey Hinton proposed layer-wise pre-

training algorithm to effectively train deep networks in

2006 [20]. Since then, deep learning techniques have been

advanced significantly and their successful applications

have been seen in various fields [21], including hand

written digit recognition [22], computer vision [23–26],

Google Map [27], and speech recognition [28–30]. In

addition, For natural language processing (NLP), deep

learning has achieved several successful applications and

made significant contributions to its progress [31–33]. In

the area of fault diagnosis, deep learning theory also has

many applications. For example, deep neural network built

for fault signature extraction was utilized for bearings and

gearboxes [34], while a classification model based on deep

network architecture was proposed in the task of charac-

terizing health states of the aircraft engine and electric

power transformer [35]. The deep belief network (DBN)

was also used for identifying faults in reciprocating com-

pressor valves [36]. Sparse coding was used to built deep

architecture for structural health monitoring [37], and a

unique automated fault detection method named ‘‘Tilear’’

using deep learning concepts was proposed for the quality

inspection of electromotor [38]. Furthermore, auto-encoder

based DBN model was successfully applied to quality

inspection [39], while a sparse model based on auto-en-

coder was shown to form a deep architecture, which real-

ized induction motor fault diagnosis [40].

Inspired by the prior research, this paper presents a deep

learning model based on DBN for induction motor fault

diagnosis. The deep model is built on restricted Boltzmann

machine (RBM) which is the building unit of a DBN and

by stacking multiple RBMs one by one, the whole deep

network architecture can be constructed. It can learn high-

level features from frequency distribution of measured

signals for diagnosis tasks. Including this section, this

paper is organized with 5 sections. Section 2 provides

theoretical background of the deep learning algorithm.

Section 3 presents the proposed fault diagnosis approach,

where the deep architecture based on DBN is described in

detail. Experiments are carried out in Section 4 to verify

the effectiveness of the proposed deep model, where

classification performance is discussed. Section 5 summa-

rizes the whole study and gives future directions.

2 Theoretical Framework

The DBN is a deep architecture with multiple hidden layers

that has the capability of learning hierarchical representa-

tions automatically in an unsupervised way and performing

classification at the same time. In order to accurately

structure the model, it contains both unsupervised pre-

training procedure and supervised fine-tuning strategy.

Generally, it is difficult to learn a large number of

parameters in a deep architecture which has multiple hid-

den layers due to the vanishing gradient problem. To

address this issue, an effective training algorithm, which

learns one layer at a time and each pair of layers is seen as

one RBM model, is proposed and introduced in Refs.

[41, 42]. As DBN is formed by units of RBM, the basic unit

of DBN, i.e., RBM, is introduced first.

2.1 Architecture of RBM

The RBM is a common used mathematical model in

probability statistics theory and follows the theory of log-

linear Markov Random Field (MRF) [36] which has several
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special forms and RBM is one of them. A RBM model

contains two layers: One layer is the input layer which is

also called visible layer, and the other layer is the output

layer which also called hidden layer. RBM can be repre-

sented as a bipartite undirected graphical model. All the

visible units of the RBM are fully connected to hidden

units, while units within one layer do not have any con-

netion between each other. That is to say, there are no

connection between visible units or between hidden units.

The architecture of a RBM is shown in Figure 1.

In Figure 1, v represents the visible layer, i is the ith

visible unit, h is the hidden layer, and j is the jth hidden

unit. Connections between these two layers are undirected.

An energy function is proposed to describe the joint con-

figuration (v, h) between them, which is expressed as

E v; hð Þ ¼ �
X

i2visible
aivi �

X

j2hidden
bjhj �

X

i;j

vihjwij: ð1Þ

Here, vi, and hj represent the visible unit i and hidden

unit j respectively; ai, and bj are their biases. wij denotes the

weight between these two units. Therefore, the joint dis-

tribution of this pair can be obtained using the energy

function where h is the model parameter set containing a,

b, and w:

p v; hð Þ ¼ 1

Z hð Þ exp �E v; hð Þð Þ; ð2Þ

Z hð Þ ¼
X

v

X

h

exp �E v; hð Þð Þ: ð3Þ

Due to the particular connections in RBM model, it

satisfies conditional independent. Therefore, conditional

probability of this pair of layers can be written as:

p h vjð Þ ¼
Y

i

p hi vjð Þ; ð4Þ

p v hjð Þ ¼
Y

j

p vi hjð Þ: ð5Þ

Mathematically,

p hj ¼ 1 vj
� �

¼ r bj þ
X

i

viwij

 !
; ð6Þ

p vi ¼ 1 hjð Þ ¼ r ai þ
X

j

hjwij

 !
; ð7Þ

where r(x) is the activation function. Generally, r(x)=1/
(1?exp(-x)) is adopted.

2.2 Training RBM

In order to set the model parameters, the RBM needs to be

trained using training dataset. In the procedure of training a

RBM model, the learning rule of stochastic gradient des-

cent is adopted. The log-likelihood probability of the

training data is calculated, and its derivative with respect to

the weights is seen as the gradient, shown in Eq. (8). The

goal of this training procedure is to update network

parameters in order to obtain a convergence model.

o log pðvÞ
owij

¼ \vihj [ data �\vihj [ model: ð8Þ

Parameter update rules are originally derived by Hinton

and Sejnowki, which can be written as:

Dwij
¼ e \vihj [ data �\vihj [ model

� �
; ð9Þ

where e is the learning rate, the symbol\�[data represents

an expectation from the data distribution while the symbol

\�[model is an expectation from the distribution defined by

the model. The former term is easy to compute exactly,

while the latter one is intractable to compute [43].

An approximation to the gradient is used to obtain the

latter one which is realized by performing alternating

Gibbs sampling, as illustrated in Figure 2(a).

Later, a fast learning procedure is proposed, which starts

with the visible units, then all the hidden units are

i

jh

v

wij

Hidden units

Visible units

Figure 1 Architecture of RBM

v

h

P(h|v)

Data T1 T=infinity

v

h
P(h|v)

Data Reconstructed Data
P(v|h)

(a)

(b)

Figure 2 (a) Alternating Gibbs Sampling; (b) A quick way to learn

RBM
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computed at the same time using Eq. (6). After that, visible

units are updated in parallel to get a ‘‘reconstruction’’ by

Eq. (7), as illustrated in Figure 2(b), and the hidden units

are updated again [44]. Model parameters are updated as:

Dwij ¼ e vihj
� �

data
� vihj
� �

recon

��
: ð10Þ

In addition, for practical problems that come down to

real-valued data, Gaussian-Bernoulli RBM is introduced to

deal with this issue. Input units of this model are linear

while hidden units are still binary. Learning procedure for

Gaussian-Bernoulli RBM is very similar to binary RBM

introduced above.

2.3 DBN Architecture

DBN model is a deep network architecture with multiple

hidden layers which contain many nonlinear representa-

tion. It is a probabilistic generative model and can be

formed by RBMs as shown in Figure 3. It illustrates the

way of stacking one RBM on top of another. DBN archi-

tecture can be built by stacking multiple RBMs one by one

to form a deep network architecture.

As DBN has multiple hidden layers, it can learn from

the input data and extract hierarchical representation cor-

responding to each hidden layer. Joint distribution between

visible layer v and the l hidden layers hk can be calculated

mathematically from conditional distribution P(hk-1|hk) for

the (k–1)th layer conditioned on the kth layer and visible-

hidden joint distribution P(hn-1, hn):

P v; h1; . . .; hn
� �

¼
Yn�1

k¼1

P hk�1jhk
� �

 !
P hn�1; hn
� �

: ð11Þ

For deep neural networks, learning such amount of

parameters using traditional supervised training strategy is

impractical because errors transferred to low level layers

will be faint through several hidden layers and the ability to

adjust the parameters is weak for traditional back propa-

gation method. It is difficult for the network to generate

globally optimal parameters. Here the greedy layer-by-

layer unsupervised pre-training method is used for training

DBNs. This procedure can be illustrated as follows: The

first step is to train the input units (v) and the first hidden

layer (h1) using RBM rule(denoted as RBM1). Next, the

first hidden layer (h1) and the second hidden layer (h2) are

trained as a RBM (denoted as RBM2) where the output of

RBM1 is used as the input for the RBM2. Similarly, the

following hidden layers can be trained as RBM3,

RBM4,…, RBMn until the set number of layers are met. It

is an unsupervised pre-training procedure, which gives the

network an initialization that contributes to convergence on

the global optimum.

For classification tasks, fine-tuning all the parameters of

this deep architecture together is needed after the layer-

wise pre-training, as shown in Figure 4. It is a supervised

learning process using labels to eliminate the training error

and improve the classification accuracy [45, 46].

3 DBN-based Fault Diagnosis

Based on the DBN, a fault diagnosis approach for induction

motor has been developed, as illustrated in Figure 5, where

the DBN model is built to extract multiple levels of rep-

resentation from the training dataset.

Vibration signals are selected as the input of the whole

system for fault diagnosis as they usually contain useful

information that can reflect the working state of induction

motors. However, there exists correlation between sampled

data points. This is difficult for DBN architecture to model

as it does not have the ability to function the correlation

between the input units which may influence the following

classification task. Therefore, in this study the vibration

signals are transformed from time domain to frequency

domain using Fast Fourier Transform (FFT), and then

frequency distribution of each signal is used as the input of

the DBN architecture. This is beneficial to classification

v

h1

h2

hn-1

W1

W2

hn

RBM1

RBM2

RBMn

 

Figure 3 Architecture of DBN

Pre-trained 
network

Labels

Output layer

Fine-tuning

Figure 4 Supervised fine-tuning process
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task during the training procedure. Specifically, DBN

learns a model that generates input data, which can obtain

more intrinsic characteristics of the input, thus improving

classification accuracy eventually. In this module, DBN

stacked by a number of RBMs is built and then trained by

training dataset from data preparation module to obtain the

model parameters. The DBN training process is shown in

Figure 6. Input parameters of the architecture will be first

initialized including a set of neuron numbers and hidden

layer numbers, together with training epochs. Each layer of

the architecture is then trained as a RBM unit, and the

output of lower-layer RBM is used as the training input for

the next layer RBM.

After layer-by-layer learning, synaptic weights and

biases are settled and the basic structure is determined.

Classification process is then followed to predict the fault

category. It is a supervised fine-tuning procedure and the

proposed method adopts the back-propagation training

algorithm to realize fine-tuning which uses labeled data for

training, so that it can improve the discriminative ability

for classification task. The unsupervised training process

trains one RBM at a time and afterwards supervised fine-

tuning process using labels adjusts weights of the whole

model. The difference between DBN outputs and the target

label is regarded as training error. In order to obtain the

minimum error, the deep network parameters will be

updated based on learning rules.

After training the DBN model, all the DBN parameters

are fixed, and the next procedure is to test the classification

capability of the trained DBN model and classification rate

is calculated as an index for evaluation. The vibration

signal is the input of the constructed fault diagnosis system,

and its output indicates working states of the induction

motor.

4 Experimental Verification

4.1 Experimental Setting

To evaluate the proposed approach for fault diagnosis of

induction motors, experimental studies are conducted using

a machine fault simulator illustrated in Figure 7. It simu-

lates six different conditions during motor operation and

vibration signals are measured corresponding to different

working states. The descriptions of each operation condi-

tions are listed in Table 1 [47].

These acquired vibration signals are used to test the

DBN-based fault diagnosis system. These vibration signals

are divided into training datasets and testing datasets sep-

arately, and both datasets are randomized before being used

in the DBN model.

Input: Vibration signals
(Health state & different fault states)

Training set Testing set

Training

Testing

Weights
Biases

Data Preprocessing

Data Label

RBM1

RBM2

RBMn-1

RBMn

Unsupervised
 learning

...

Supervised
 fine-tuning

DBN

Trained DBN

Output: 
Fault tag &

Classification rate

Fast Fourier Transform(FFT)

Figure 5 DBN-based fault diagnosis procedure

Start

Input parameters initialization, 
input Dataset

Layer i=1

Train RBMi using RBM 
learning rule

Save representation of RBMi,
save weights and biasees

If i<=number 
of layers

Fine-tuning all 
parameters

i=i+1

End

Supervised learning for 
classification

Figure 6 Training process of the DBN model
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4.2 Comparison Approaches

According to Hinton’s theory [30], parameters of the DBN

architecture are initialized in advance. The input layer has

1000 units for vibration signals, and the output layer is

built with 6 neurons indicating the target classes corre-

sponding to six different operation conditions. The deep

model has 4 hidden layers with each containing 500 neu-

rons. Training epochs is set to be 100, and learning rate of

the RBM learning process and fine-tuning procedure are set

as 0.01 and 0.1, respectively. Threshold value of training

error is set to be 0.12.

For the number of hidden units in each layer, networks

with small number of hidden units may not learn enough

representations for future tasks while networks with large

numbers of neurons may increase the possibility of over-

fitting, which cause poor generalization in untrained data-

set. From the literature, there is no formula to calculate an

exact number of neurons being used, but the number of

neurons within a range is effective in practice. As the input

neurons are 1000, number of units for each hidden layer is

selected as 500 to avoid both too narrow and too compli-

cated network structures. In addition, the relationship

between numbers of hidden units and classification per-

formance of the network are also discussed in the next

section.

In order to verify the effectiveness of the proposed

approach in actual applications of fault diagnosis for

induction motors, comparative experiments have been

carried out, and some are listed here:

(1) Original vibration signals are used directly as input

of soft-max function;

(2) Original vibration signals are used directly as input

of the BP network with one hidden layer;

(3) Original vibration signals are preprocessed to extract

time domain features including mean value, root

mean square (RMS) value, shape factor, skewness,

kurtosis, impulse factor and crest factor [3], then 7

selected features are used as input of the BP

network;

(4) 4 features including shape factor, impulse factor,

crest factor and kurtosis are used as input of the BP

network,

(5) Signals are preprocessed with 5-layer wavelet packet

decomposition to get 63 sub-frequency bands, then

the energy features at all sub-frequency bands are

used as input of the BP network.

In addition, another comparative experiment is carried

out where unprocessed raw vibration signal is used directly

as the input data.

4.3 Results and Discussion

In this validation experiment, training dataset and testing

dataset contain vibration signals from all six working

states. The proposed DBN-based fault diagnosis system is

used to classify these six different working states at the

same time. All learning algorithms are repeated 50 times

and the average classification rates are calculated, as listed

in Table 2. In this case, training dataset has 1200 samples

(200 samples for each working state), while testing dataset

Figure 7 Experimental facility [47]. 1. Opera meter, 2. Induction

motor, 3. Bearing, 4. Shaft, 5. Loading disc, 6. Driving belt, 7. Data

acquisition board, 8. Bevel gearbox, 9. Magnetic load, 10. Recipro-

cating mechanism, 11. Variable speed controller, 12. Current probe

Table 1 Motor Condition Descriptions [47]

Condition Description

HEA Normal motor Healthy motor without defect

SSTM Stator winding

defect

3 turns shorted in stator winding

UBM Unbalanced

rotor

Unbalance caused by 3 added washers

on the rotor

RMAM Defective

bearing

Inner race defect bearing in the shaft

end

BRB Broken bar Broken rotor bars

BRM Bowed rotor Rotor bent in center 0.01’’

Table 2 Classification Rate with Different Methods

Model Classification rate (%)

Soft-max 17.88

BP network 80.67

7 time domain features ? BP 85.61

4 time domain features ?BP 81.39

Wavelet packet analysis ? BP 95.33

DBN 95.67

FFT?DBN 99.98
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has 600 samples (100 samples for each working state).

99.98% classification rate is achieved in testing datasets.

The results from a comparative study are also listed in

Table 2. From the diagnosis results, the first method

failed in the fault diagnosis task. Using original vibration

signals without preprocessing, BP network with 1 hidden

layer cannot achieve accurate classification. For time

domain analysis, different features used in the tests give

different results, which mean accurate classification needs

manual intervention to pick proper features to do the task

of fault diagnosis. The wavelet analysis method provided

similar results as compared to the DBN using unprocessed

vibration data, but it needs the signal preprocessing first

and the results also rely on whether the extracted features

are good for the task, while the DBN using frequency

distribution of the signals achieved the highest classifi-

cation rate in all experiments. In addition, the proposed

DBN-based approach combines feature learning and

classification together to improve the efficiency of fault

diagnosis. These experiments proved that proposed

approach is an effective way for fault diagnosis of

induction motors.

For traditional fault diagnosis approaches, as the raw

vibration signal always contains many noise interference,

one essential step is the data preprocessing to eliminate

noise and extract the relevant information from them for

classification. Hence, a robust and effective feature

extraction requires some high-quality engineering experi-

ence and professional knowledge that are often challenging

and hard to be obtained. Compared with traditional fault

diagnosis approaches, DBN-based deep learning architec-

ture can automatically learn representations from the input

and reduce the manual work so that it can reduce the

influence of artificial factors.

Figure 8 shows the detailed label distribution in the

verification experiment using DBN model and FFT-DBN

model, respectively. The results indicate that FFT-DBN

model has better classification capability in the task of fault

diagnosis for induction motors than DBN model as FFT-

DBN model only has 1 misclassification sample while

DBN model has confusion in label 2, 3 and 5. It also

illustrates that frequency distribution of the signal is suit-

able in the application of DBN model, while DBN archi-

tecture cannot well model the temporal information of

input data which may influence the following classification

process.

In Figure 9, the training error and the classification rates

of these two model are shown. From the comparison, FFT-

DBN model has faster convergence and better classifica-

tion rate. There is a fluctuation during the learning process

in DBN model which means the architecture may not be

stable enough to learn an accurate model for the classifi-

cation task.

4.4 Effects of Scales and Depths of DBN

Architecture

Experiments are conducted in this section to study the

relationship between classification performance and dif-

ferent deep architectures in induction motor applications.

Both DBN model using time-domain signals and FFT-

DBN model using frequency distribution of the signals are

investigated, and the comparison results are provided and

discussed.
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Figure 8 Label distribution of testing dataset. (a) DBN model using

time-domain vibration signal. (b) FFT-DBN model using frequency-

domain signal
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In the experiment, hidden neurons from 10 to 100 and

from 100 to 1500 are considered. The hidden layers are

explored as deep as 6 layers. Each group of experiments

are repeated 50 times and the average classification rates

are calculated as the evaluation index for deep architecture.

Both DBN model and FFT-DBN model are tested, and the

results are shown in Figure 10.

From the results, DBN model is sensitive to the scales

and depths of the architecture as there are obvious differ-

ences between the classification rates from different net-

works. DBN architecture with 4 hidden layers (green line

in Figure 10(a)) has the best classification rate. DBN with

only 1 hidden layer cannot model the input data exactly,

and when the hidden layers are increased to 5 and 6, the

classification results become unstable which indicates the

model encounters the problem of overfitting. In other

words, the trained model is too complex to model the input

so that the generalization ability becomes worse. On the

other hand, when neuron number is under 100, the classi-

fication rates from DBN model are below 90%. As the

number of neurons increases, the classification rate

improves and when the number of neurons increases to

1000, the classification rate begins to decrease, indicating

too much neurons may cause overfitting that influences

classification capability of the model.

Compared with classification results of the DBN model,

the results of the FFT-DBN model is much stable, shown in

(a)

(b) 
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Figure 9 (a) Training error and (b) classification rate of the proposed

FFT-DBN model and DBN model. (a) Training error with the epochs.
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and hidden neurons both in (a) DBN model and (b) FFT-DBN model
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Figure 10(b). There is little fluctuation with the increase of

hidden neurons, but the classification rates are all above

99% except two extreme individuals. One is a network with

6 hidden layers and each hidden layer has 10 hidden units

which is too narrow to learn enough representations and the

other is the network of 5 hidden layers with 1500 neurons

at each hidden layer which has the possibility of overfitting

as the input data is not so complex. However, generally,

FFT-DBN model performances well in various network

structures, both in accuracy and stability.

From the comparison, DBN model using time-domain

signals has less classification rates in various architectures

than the one using frequency distribution of the signals,

which means DBN architecture cannot well model signals

that correlate between input units. Lacking of time-domain

information leads to an inaccurate model of the input data.

Therefore, using frequency distribution as input to the

DBN architecture gives a good alternative solution in fault

diagnosis task for induction motors.

5 Conclusions

This paper presents a deep learning model based on DBN,

where frequency distribution of the measured data is used

as input, for fault diagnosis of induction motors in manu-

facturing. The construction of this deep architecture uses

restricted Boltzmann machine as a building unit, and uses

greedy layer-wise training for model construction. The

presented approach makes use of strong capabilities of

DBN, which can model high-dimensional data and learn

multiple layers of representation, thus can reduce training

error and improve classification accuracy. Experimental

studies are carried out using vibration signals to verify the

effectiveness of the DBN model for feature learning, pro-

viding a new way of feature extraction for automatic fault

diagnosis in manufacturing.

In future work, methods to improve the performance of

the DBN model in fault diagnosis will be explored. Gen-

eralization ability of the model will also be investigated to

overcome the problem of overfitting. Using both labeled

and unlabeled datasets to train the DBN model is also of

interest. In addition, the performances corresponding to

different model parameters need to be further researched.

Open Access This article is distributed under the terms of the
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