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Abstract The current morphological wavelet technologies

utilize a fixed filter or a linear decomposition algorithm,

which cannot cope with the sudden changes, such as

impulses or edges in a signal effectively. This paper pre-

sents a novel signal processing scheme, adaptive morpho-

logical update lifting wavelet (AMULW), for rolling

element bearing fault detection. In contrast with the widely

used morphological wavelet, the filters in AMULW are no

longer fixed. Instead, the AMULW adaptively uses a

morphological dilation-erosion filter or an average filter as

the update lifting filter to modify the approximation signal.

Moreover, the nonlinear morphological filter is utilized to

substitute the traditional linear filter in AMULW. The

effectiveness of the proposed AMULW is evaluated using a

simulated vibration signal and experimental vibration sig-

nals collected from a bearing test rig. Results show that the

proposed method has a superior performance in extracting

fault features of defective rolling element bearings.

Keywords Morphological filter � Lifting wavelet �
Adaptive � Rolling element bearing � Fault detection

1 Introduction

Rolling element bearings, one of the most important and

frequently used components in engineering machinery,

play a critical role in system performances [1]. Effectively

detecting the defects of rolling element bearings can pro-

vide an assurance for the reliability of machine sets.

When a localized fault occurs on the surface of the inner

race, outer race or rolling element, the vibration signal

would present repetitive peaks which are further modulated

by rotational frequencies of machine components. The

impulses contain important information about the bearing

health status. Therefore, the extraction of cyclic faulty

intervals is the essential task in bearing fault detection.

Many methods, such as wavelet transform [2], empirical

mode decomposition [3], higher order spectrum [4], mor-

phology filter [5] and order tracking [6] have been applied

successfully in bearing fault detection and fault diagnosis.

Wavelet transform (WT) is one of the most popular signal

processing technologies among them. However, the clas-

sical WT, both continuous and discrete, are linear [7].

Because of the fact that a signal often contains information

at many scales or resolutions, multi-resolution approaches

are indispensable for a thorough understanding of such a

signal. Therefore, it is desired to extend WT to nonlinear

area.

The lifting scheme, proposed by Sweldens [8], has

provided a useful way to design nonlinear wavelets. The

flexibility and freedom offered by the lifting scheme have

attracted researchers to develop various nonlinear WTs,

including morphological ones. Not until 2000, Heijmans

and Goutsias [9, 10] firstly gave the theoretical presentation

of a general framework for constructing morphological

wavelet (MW). The theoretical foundation of MW is

extending the classic wavelet from the linear domain,
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which is based on convolution, to the nonlinear domain,

which is based on morphological operations. In this way,

the MW does inherit the multi-dimension and multi-level

analysis of wavelet while only involving the purely time

domain analysis. As a consequence, a very high compu-

tational efficiency is achieved.

Following the work of Heijmans and Goutsias [9, 10],

morphological gradient wavelet [11, 12], morphological

undecimated wavelet (MUDW) [13–15] and morphological

undecimated wavelet slices [16] were proposed and applied

for fault detection and fault diagnosis. A major disadvan-

tage of MW and the extended version is that the filter

structure is fixed in the whole analysis process, which

cannot cope with the sudden impulses and stationary data

accurately in one signal at the same time. In many appli-

cations, it is desirable to have a filterbank that somehow

determines how to shape itself according to the signal

being analyzed. Based on this consideration, Piella and

Heijmans [17] proposed an adaptive update lifting wavelet

(AULW). The basic idea underlying AULW is to employ

different update lifting filters to modify the approximation

signal according to the signal local gradient information.

However, the essence of AULW is still linear wavelet

decomposition. The effectiveness of employing AULW to

process the real mechanical vibration signals is actually

compromised.

A new method of morphological lifting scheme, an

adaptive morphological update lifting wavelet (AMULW)

is proposed in this study. The aim of AMULW is to address

the disadvantages both from the linear wavelet decompo-

sition and from the fixed filter in AULW and MW. In

AMULW, the nonlinear morphological dilation-erosion

filter, as well as the average filter, is adaptively adopted in

the update lifting scheme according to the geometry of the

signal. Consequently, the impulsive features would be

strengthened and the noise would be suppressed

effectively.

The rest of this paper is organized as follows: Section 2

briefly introduces the fundamentals of MW; Section 3

proposes the AMULW; the advantage of AMULW over the

AULW and MUDW is demonstrated by using a simulated

vibration signal in Section 4; Section 5 applies the pro-

posed AMULW technique to experimental signals of roll-

ing element bearings and demonstrates the detection ability

of AMULW for an inner race fault bearing and an outer

race fault bearing; Conclusions are drawn in Section 6.

2 Morphological Wavelet

Figure 1 illustrates a one stage uncoupled MW decompo-

sition scheme [10].

Consider a family Vj, Vj?1 and Wj?1 of signal spaces.

There are two analysis operators w"
j and x"

j which together

decompose a signal in the direction of increasing j. The

signal analysis operator w"
j maps a signal from Vj to Vj?1

and the detail analysis operator x"
j maps a signal from Vj to

Wj?1.

w"
j ðw

#
j ðxÞ þ x#

j ðyÞÞ ¼ x x 2 Vjþ1; y 2 Wjþ1

x"
j ðw

#
j ðxÞ þ x#

j ðyÞÞ ¼ y x 2 Vjþ1; y 2 Wjþ1

ð1Þ

where x is the approximation signal and y is the detail

signal. The signal and detail analysis operators correspond

to a low pass and a high pass filter, respectively [10].

On the other hand, a synthesis operator ? proceeds in

the direction of decreasing j. For the purpose of yielding a

complete signal representation, the analysis mapping (w"
j ,

x"
j ): Vj ? Vj?1 9 Wj?1 and synthesis mapping (w#

j þ x#
j ):

Vj?1 9 Wj?1 ? Vj should be inverse of each other, which

means the following condition should be satisfied:

w#
j w

"
j ðxÞ þ x#

jx
"
j ðxÞ ¼ x x 2 Vj ð2Þ

This condition is called the perfect reconstruction [17].

A raw signal x0 can be decomposed with the following

recursive analysis scheme:

x0 ! x1; y1f g ! x2; y2; y1f g ! � � �
! xn; yn; yn�1; yn�2; � � � ; y2; y1f g

ð3Þ

And x0 also can be exactly reconstructed from xn, yn, yn-

1, yn-2, …, y2, y1 through the recursive synthesis

scheme shown in Eq. (4).

xj ¼ w#
j ðxjþ1Þ þ x#

j ðyjþ1Þ
j ¼ n� 1; n� 2; � � � ; 0

ð4Þ

In MW, the analysis operator w"
j and the synthesis

operator w#
j are morphological operators. Some MWs have

been established, such as morphological Haar wavelet [18].

Figure 1 Schematics of MW
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3 Adaptive Morphological Update Lifting Wavelet

3.1 Principles of AMULW

The schematic of the proposed AMULW in one stage is

illustrated in Figure 2. In AMULW, the update lifting is

applied to modify the approximation signal, while the

detail signal remains unchanged in the decomposition

process, namely y01 ¼ y1.

The AMULW comprises three main steps. First, the raw

signal x0 is split into two parts, producing an approximation

signal x1 and a detail signal y1. This partition can be ful-

filled by some special wavelet transform. The simplest one

is to directly split x0 into odd and even samples [19]:

x1 ¼ w"ðx0ÞðnÞ ¼ x0ð2nÞ
y1 ¼ x"ðx0ÞðnÞ ¼ x0ð2nþ 1Þ

ð5Þ

Then, a two-valued decision map D is used to control

the choice of the update filter, which is expressed as

follows:

DðnÞ ¼
1 gðnÞ[ T

0 gðnÞ� T

(
ð6Þ

where T is the threshold value; g(n) denotes the local

gradient information of adjacent three samples in a signal,

which is defined as:

gðnÞ ¼ x1ðnÞ � y1ðn� 1Þj j þ y1ðnÞ � x1ðnÞj j ð7Þ

Subsequently, the approximation signal x1 is updated

using the information hidden in the detail signal y1,

yielding a new approximation signal x01. If D(n) = 1, the

morphological dilation-erosion filter is used as the update

operator U1:

U1ðnÞ ¼ y1ðn� 1Þ ^ y1ðnÞ � y1ðn� 1Þ _ y1ðnÞ ð8Þ

x01ðnÞ ¼ x1ðnÞ þ U1ðnÞ ¼ x1ðnÞþ
y1ðn� 1Þ ^ y1ðnÞ � y1ðn� 1Þ _ y1ðnÞ

ð9Þ

where _ represents morphological dilation operation and ^
represents morphological erosion operation.

If D(n) = 0, the average filter is utilized as the update

operator U0:

U0ðnÞ ¼ y1ðn� 1Þ þ y1ðnÞ ð10Þ

x01ðnÞ ¼
1

3
ðx1ðnÞ þ U0ðnÞÞ

¼ 1

3
ðx1ðnÞ þ y1ðn� 1Þ þ y1ðnÞÞ

ð11Þ

Correspondingly, x1 can be easily reconstructed from x01
and y01 as Eq. (12) or (13). Once x1 is obtained, the syn-

thesis signal x0 is also easy to get.

x1ðnÞ ¼ x01ðnÞ þ y1ðn� 1Þ _ y1ðnÞ � y1ðn� 1Þ ^ y1ðnÞ
ð12Þ

x1ðnÞ ¼ 3x01ðnÞ � y1ðn� 1Þ � y1ðnÞ ð13Þ

The above analysis process is limited to the scope of one

stage decomposition. A raw signal x0 can be decomposed

into multiple levels as a multiple stage decomposition

involves:

x0 ! x01; y
0
1

� �
! x02; y

0
2; y

0
1

� �
! � � �

! x0n; y
0
n; y

0
n�1; y

0
n�2; � � � ; y02; y01

� � ð14Þ

On account of the presence of the decision map D, the

update lifting operator U can be adaptively selected to

modify the approximation signal. The morphological

dilation-erosion filter is adopted to strengthen the impul-

sive features when there is an impulse in a signal, while the

average filter is employed to smooth a signal at the time

when the signal amplitudes vary weakly.

3.2 The Selection of the Threshold T

The function of the threshold T is to distinguish the sta-

tionary data and the impulses in a signal. If T is too large,

some useful impulsive information might be smoothed by

using the average filter; on the contrary, if T is too small,

some tiny fluctuations might be treated as impulses. In the

present paper, T is defined as:

T ¼ k �maxðgðnÞÞ k 2 ½0; 1� ð15Þ

In order to reduce the adverse effects of the threshold T,

we perform the AMULW multiple times with k increasing

from 0 to 1, with a step size of 0.1. As a result, 11 analysis

results would be obtained. Then, characteristic frequency

intensity coefficient (CFIC) [20] of the above 11 signals are

computed. The CFIC can be expressed as:

CFIC ¼

PN
i¼1

Aifc

PM
j¼1

Afj

ð16Þ

where Aifc is the amplitude of the ith harmonic of the fault

characteristic frequency, N is the number of the harmonics

of the fault characteristic frequency, Afj is the amplitude of

Figure 2 Schematic of AMULW
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the frequencies analyzed, and M is the number of all fre-

quency components.

The CFIC represents the portion of the fault frequency

amplitude to the overall frequency amplitude. A larger

value of CFIC implies a better fault detection performance.

Other statistic criterion, such as kurtosis [21], smoothness

index [22], crest factor [23], peak energy [24] and fusion

criterion of kurtosis, smoothness index and crest factor

[25], can also be used as a guide to select the fault relevant

information. In this study, CFIC is employed. The signal

with the largest CFIC value is picked out from the whole

11 candidates and only this signal will be utilized in the

fault detection.

3.3 Perfect Reconstruction

Assume that a, b and c are lifting wavelet coefficients:

x01ðnÞ ¼ ax1ðnÞ þ by1ðn� 1Þ þ cy1ðnÞ ð17Þ

Ref. [17] has proved in theory that in order to fulfill

perfect reconstruction, it requires:

aþ bþ c ¼ M ð18Þ

where M is a constant and usually set as 1.

In Eq. (11), a ¼ b ¼ c ¼ 1=3, which meets the

requirement of Eq. (18). For Eq. (9), we discuss the

influence of the value of y1(n-1) and y1(n) on perfect

reconstruction. In summary, there are three situations:

Case 1: y1(n - 1)[ y1(n), at this moment Eq. (9) can

be simplified as

x01ðnÞ ¼ x1ðnÞ þ y1ðnÞ � y1ðn� 1Þ ð19Þ

Case 2: y1(n - 1)\ y1(n), at this moment Eq. (9) can

be simplified as

x01ðnÞ ¼ x1ðnÞ þ y1ðn� 1Þ � y1ðnÞ ð20Þ

Case 3: y1(n - 1) = y1(n), at this moment Eq. (9) can

be simplified as

x01ðnÞ ¼ x1ðnÞ ð21Þ

Regardless the value of y1(n - 1) and y1(n), the situa-

tions in Eqs. (19)–(21) accords with the requirement of

Eq. (18). Therefore, the proposed AMULW fits the perfect

reconstruction condition.

4 Simulated Signal Analysis

A vibration signal s(t) of rolling element bearing under an

inner race fault condition is simulated [26] to evaluate the

effective of the proposed AMULW. The sampling fre-

quency fs of signal s(t) is 4096 Hz and the samples are

4096. The signal s(t) is made up of three parts:

sðtÞ ¼ s1ðtÞ þ s2ðtÞ þ s3ðtÞ ð22Þ

where s1(t) is the periodic impulse response model of a

defective bearing [21]:

s1ðtÞ ¼
X
i

Aiuðt � iT � siÞ þ nðtÞ ð23Þ

where i is the number of impulses; Ai is the amplitude

modulator; T stands for the fault impacts repetitive period,

which gives the reciprocal of fault characteristic frequency

fc; si represents the minor and random time fluctuation

around T; n(t) denotes the stationary noise; and u(�) is fault
impulse function:

uðtÞ ¼ e�at sinð2pf0t þ uÞ ð24Þ

where a is the decay parameter, f0 the fault excited reso-

nance frequency and u the original phase.

For an inner race fault, Ai in Eq. (23) can be simplified

as [27]

Ai ¼ A0 þ A0
0 cosð2pfAðiT þ siÞ þ uAÞ ð25Þ

where A0 and A0
0 are the mean and maximum of the

amplitude modulator, respectively; fA equals to the shaft

frequency; iT þ si denotes the special time point at the ith

impulse; and uA is related to the location of the sensor.

The parameters for the simulation of vibration signal

s1(t) are shown in Table 1.

In Eq. (22), S2(t) = 0.2sin(2p10t) ? 0.4

cos(2p25t) simulates two interference frequencies, s3-
(t) represents a Gaussian white noise. The signal-to-noise

ratio of s(t) is 0 dB.

Figure 3 presents the simulated signal s(t) and its cor-

responding fast Fourier transform (FFT) spectrum. As it

can be seen that the fault related characteristic frequency

16 Hz along with its harmonics are totally overwhelmed by

the interference signals (10 and 25 Hz) and the noise.

The approximation signal obtained by AMULW is

presented in Figure 4(a). This approximation signal

obtained by AMULW is at level 3 of the decomposition

process. Wavelet decomposition algorithm is the down-

sampling procedure that the length of approximation signal

and detail signal would halve as the decomposition level

increasing. Suppose that the length of raw signal is L, the

data number of approximation signal and detail signal

Table 1 Parameters used in the simulation of signal s1(t)

i A T si n(t)

16 [3, 4] 1/16 0 0

a f0 / /A

100 600 0 0

1308 Y.-F. Li et al.
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would be L=2n after n decompositions. Therefore, only 512

samples are shown in Figure 4(a). The parameter k is set at

0.2 because at this time the analysis result has the maxi-

mum CFIC value. As shown in Figure 4(b), the impulsive

characteristic frequency of 16, 32, 48, 64 and 80 Hz are

identified clearly and the interferences of 10 and 25 Hz are

totally restrained.

The simulated signal shown in Figure 3(a) is analyzed

by AULW [17]. Figure 5 displays the analysis results in the

time domain and its FFT spectrum. Although some

impulsive characteristic frequencies are detected, 10 Hz

and 25 Hz as well as other interferences are still present.

Comparing with Figure 4(b), the AULW is less effective

than the proposed method to extract impulsive features and

restrain interferences.

The MUDW [14] procedure is applied to the simulated

signal with three levels of decomposition. The approxi-

mation signal at level 3 and its frequency spectrum are

shown in Figure 6. MUDW is a non-decimation decom-

position method and it omits down-sampling in the forward

transform. Therefore, the approximation signal and the

detail signal are of the same length as the raw signal

whatever level they are at. Unfortunately, the spectral line

25 Hz in Figure 6(b) is visually obvious, which comes
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from the interference signal s2(t). Hence, in this case,

AMULW is more effective in extracting the features.

5 Experimented Lab Signal Analysis

In this section, the performance of the proposed AMULW

is graphically evaluated by using vibration signals of roll-

ing element bearings. The experiment was conducted at

Engineering Reliability, Prognostic and Health Manage-

ment Laboratory, University of Electronic Science and

Technology of China. The experimental set-up consists of a

shaft, two bearings and a bevel gearbox. It is driven by a

2.24 kW three phase electrical motor controlled by a motor

speed controller. The bearing system is under consideration

for fault diagnosis. An accelerometer (with sensitivity of

100 mV/g and frequency range 0–10 kHz) and a shaft

encoder are used for capturing the vibration signals and

rotating speed signals simultaneously. The whole set-up

arrangement is displayed in Figure 7.

5.1 Analysis of the Vibration Signal of Bearing

with an Inner Race Fault

For the rotor with a rotating speed at 1800 r/min, vibration

signal of the defective bearing with an inner race fault and

its FFT spectrum are illustrated in Figure 8, sampled at a

frequency of 20480 Hz. The theoretical rotational fre-

quency fr of the shaft is 30 Hz and ball pass frequency in

inner race (BPFI) is 163 Hz. But the BPFI cannot be

identified in Figure 8(b).

The AMULW method is applied to the rolling element

bearing vibration signal presented in Figure 8(a). Fig-

ure 9(a) shows the approximation signal at the third level

of AMULW decomposition. The parameter k is determined

as 0.2 according to multiple trials as well. Figure 9(b) plots

the frequency spectrum where the defective feature fre-

quencies of the bearing can be identified. The BPFI toge-

ther with its second-order and third-order harmonics,

2BPFI and 3BPFI, side frequencies BPFI - 2fr,

BPFI ? 2fr, 2BPFI - 2fr, 2BPFI ? 2fr, 3BPFI - 2fr, and

the second harmonic of modulation frequency 2fr are all

detected. These frequency components clearly indicate an

inner race fault on the bearing.

In Figure 10, the analysis results of AULW are pre-

sented, from which it can be found that the 4fr and 3BPFI

could be clearly detected in the Fourier spectrum, while the

BPFI and its side frequencies are not particularly evident.

Therefore, the accuracy of using AULW to diagnose this

inner race fault bearing is actually poor.

Figure 11 demonstrates the analysis results of MUDW.

In Figure 11(b), some characteristic frequencies are
Figure 7 Experimental setup
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detected, such as BPFI, 2BPFI, 3BPFI, BPFI ? 2fr,

BPFI - 2fr, etc. These frequency components indicate an

inner race fault on the bearing. The effectiveness of

employing MUDW to detect this bearing fault is much

better than AULW. However, these fault related features

shown in Figure 11(b) is not as apparent as Figure 9(b).

5.2 Analysis of the Vibration Signal of Bearing

with Outer Race Fault

The vibration signal of a bearing with a fault in outer

race was collected at the sampling frequency of

20480 Hz. The shaft rotation frequency fr and ball pass

frequency in outer race (BPFO) are 30 Hz and 107 Hz,

respectively. Figure 12 shows the time waveform and the

FFT spectrum of this signal. The fault frequency BPFO

cannot be determined, as shown in the FFT spectrum of

Figure 12(b).

The AMULW analysis results are shown in Figure 13.

The approximation signal at the third level of AMULW

decomposition and its FFT spectrum, are presented in

Figure 13(a) and (b) respectively. The parameter k is

selected at 0.2. The BPFO and its second harmonic 2BPFO

and third harmonic 3BPFO can be clearly identified in

Figure 13(b). There is a good match between the estimated
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analysis: (a) time-domain waveform, (b) FFT spectrum
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Figure 12 Vibration signal of outer race fault bearing: (a) time-

domain waveform, (b) frequency spectrum
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Figure 13 Vibration signal of outer race fault bearing after AMULW

analysis: (a) time-domain waveform, (b) FFT spectrum
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features and the actual fault features associated with the

rolling element bearing with the outer race defect.

Figures 14 and 15 describe the analysis results of

AULW and MUDW, respectively. The frequency spectrum

in Figures 14(b) and 15(b) are not suitable for indicating a

bearing with an outer race fault. Therefore, both of the two

methods fail to identify this fault. The ability of AULW

and MUDW for detecting the rolling element bearing with

outer race fault is inferior to AMULW.

6 Conclusions

In this paper, an AMULW with perfect reconstruction is

developed to detect rolling element bearing faults. Com-

pared with Fourier transforms using the same filter and

wavelets being translation and dilation of one given func-

tion, lifting scheme adapts local data irregularities in the

transform process. In the proposed AMULW, two filters

are adaptively employed. The nonlinear morphological

dilation-erosion filter is effective to extract impulses while

the average filter is suitable for removing noise. Therefore,

AMULW can reasonably process a non-stationary

mechanical vibration signal comprising of impulses and

interferences. The experimental evaluation results have

shown that the proposed AMULW is capable of extracting

the impulsive features of the bearing vibration signals. It

outperforms AULW in detection both of an inner race fault

and an outer race fault of a rolling element bearing and it

outperforms MUDW in detection of an outer race fault of a

rolling element bearing.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.
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