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ABSTRACT

Quantifying uncertainty is important to establish-

ing the significance of comparisons, to making

predictions with known confidence, and to identi-

fying priorities for investment. However, uncer-

tainty can be difficult to quantify correctly. While

sampling error is commonly reported based on

replicate measurements, the uncertainty in

regression models used to estimate forest biomass

from tree dimensions is commonly ignored and has

sometimes been reported incorrectly, due either to

lack of clarity in recommended procedures or to

incentives to underestimate uncertainties. Even

more rarely are the uncertainty in predicting indi-

viduals and the uncertainty in the mean both rec-

ognized for their contributions to overall

uncertainty. In this paper, we demonstrate the ef-

fect of propagating these two sources of uncertainty

using a simple example of calcium concentration of

sugar maple foliage, which does not require

regression, then the mass of foliage and calcium

content of foliage, and finally an entire forest with

multiple species and tissue types. The uncertainty

due to predicting individuals is greater than the

uncertainty in the mean for studies with few

trees—up to 30 trees for foliar calcium concentra-

tion and 50 trees for foliar mass and calcium con-

tent in the data set we analyzed from the Hubbard

Brook Experimental Forest. The most correct

analysis will take both sources of uncertainty into

account, but for practical purposes, country-level

reports of uncertainty in carbon stocks can safely

ignore the uncertainty in individuals, which be-

comes negligible with large enough numbers of

trees. Ignoring the uncertainty in the mean will

result in exaggerated confidence in estimates of

forest biomass and carbon and nutrient contents.
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HIGHLIGHTS

� Predicting attributes of a single individual is more

uncertain than the mean.

� With large numbers of individuals, uncertainty

in the mean is more important.

� Both sources are important in small samples,

which has not previously been recognized.

INTRODUCTION

In some contexts, it can be important to predict the

likelihood of outcomes for individuals, such as risks

to human health (Bogardus and others 1999) or

failures in equipment (Heng and others 2009). In

others, it is important to predict the likely proper-

ties of means, such as a population of voters

(Wlezien and others 2013) or a portfolio of

investments (Zaimovic and others 2021). While the

statistics for reporting uncertainties in either the

prediction of individuals or the estimates of means

are both well known, methods for computing the

combined effect of both sources are not. Impor-

tantly, ecosystem science operates at scales in

which both sources of uncertainty are commonly

relevant.

Establishing statistical confidence in forest bud-

gets is essential to research, management, and

policy goals. Forest elemental budgets are needed

to understand nutrient limitation, uptake, and

harvest removals. At larger scales, forest carbon

accounting is increasingly important to climate

mitigation efforts (Keith and others 2021). In

international carbon finance for climate mitigation,

uncertainty in estimates of emission reductions

from deforestation is important to determining

payments made (Yanai and others 2020).

Long-term monitoring of forest carbon and

nutrient budgets is not usually based on destructive

harvests, but depends instead on measuring tree

attributes such as diameter and height, converting

these to biomass using allometric relationships

developed from a destructive sample of trees

(Box 1), and converting biomass to carbon and

nutrient contents based on measured concentra-

tions. There are thus multiple sources of uncer-

Box 1: Uncertainty in regression

The construction of allometric regression models is fundamental to most studies of forest biomass and

nutrient content, because harvesting trees to obtain direct measures is destructive. Fortunately, there are

consistent relationships between tree biomass and non-destructive measures such as diameter and height,

which can be obtained for a sample that is representative of the forest of interest. These relationships are

non-linear, but a log–log relationship is often very linear. Thus, we commonly construct simple linear

regression models with data from a sample A of n trees used to construct the allometric model, of form:

ŶA;i ¼ âþ b̂XA;i þ eA;i; ð1Þ

where bYA;i = the estimate of the dependent variable, usually something difficult or expensive to measure

(in our example, log-transformed foliar biomass) in tree i of sample A.

XA,i = an independent variable, usually some simple tree dimension (in our example, log-transformed tree

diameter), in tree i of the sample A used to construct the allometry,

ba;bb = intercept and slope parameter estimates, computed by least squares techniques (Draper & Smith,

1998), and

eA,i = a random error term in the tree i of the sample A, assumed to be normally and independently

distributed with a mean of zero and a constant variance (r2). Specifically, it defines a random draw from a

distribution defined by rZ0, where Z0 � Nð0; 1Þ is a standard normal random variable, and r is the residual

standard deviation of the regression:

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 YA;i � ŶA;i

� �2

n� 2

s

;

where YA,i = the ith value of Y used in constructing Eq. (1),
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tainty in these estimates (Yanai and others 2012)

and many possible ways to make mistakes in

accounting for them.

Sampling error, which is due to spatial variation

in tree and forest properties across the landscape, is

commonly the biggest contributor to uncertainty in

forest inventory (for example, Holdaway and oth-

ers 2014; McRoberts and others 2016) and is easily

quantified using replicate plots. Measurement

error, for example of tree diameter and height, can

also be quantified by replicate measurements, as

are commonly made in the quality assurance pro-

cess (Yanai and others 2022). Natural variation in

the concentration of carbon (McRoberts and others

2016) and nutrients (Yang and others 2016) in tree

tissues is also readily quantified by replicate mea-

surements. In contrast, the uncertainty in predict-

ing tree biomass based on tree dimensions is more

difficult to quantify correctly, because it requires

understanding how to propagate uncertainty in

regression models.

When a regression model is applied to a number

of trees to estimate their biomass, those estimates

are affected by uncertainties related to both how far

an observation for an individual tree may depart

from the regression model prediction and also how

accurately the regression model has captured the

true relationship between biomass and tree

bYA;i = the corresponding predicted value obtained from Eq. (1), and

n = number of observations used in constructing Eq. (1).

The standard deviation of the regression can also be used to quantify the precision of Eq. (1) in predicting

either a mean value or a specific individual value, both of which depend on the value of the independent

variable X for that particular individual, which we call X0.

Models such as Eq. (1) are usually constructed from data obtained from a sample of the population of

interest. Therefore, the model does not perfectly describe the population of interest; it is subject to error. For

example, if several random samples are drawn from the population, the parameter estimates will differ (a

little) from sample to sample.

The estimated value, bY0; is the same whether predicting a mean or an individual, but the uncertainty is

much larger when predicting an individual. Note that the difference between the uncertainty in prediction

of the mean (Eq. 2) and the uncertainty in prediction of an individual (Eq. 4) is the standard deviation of

the regression, r (Draper and Smith 1998).

Uncertainty in prediction of the mean for a particular value of x:

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
þ ðX0 � XAÞ2
Pn

i¼1ðXA;i � XAÞ2

s

ð2Þ

Uncertainty in prediction of an individual:

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1

n
þ ðX0 � XAÞ2
Pn

i¼1ðXA;i � XAÞ2

s

ð3Þ

The uncertainty in both cases is smallest when X0 equals the mean of the sample (XAÞ, and increases as

X0 deviates in either direction from XA.

Multiplying Eq. (2) or (3) by a t-statistic with (n-2) degrees of freedom at a specified value of a (com-

monly 0.05) gives a confidence interval for Eq. (2) or prediction interval for Eq. (3).

To illustrate confidence in Eq. (1), it is helpful to graph the regression line along with the sample data as

well as depicting confidence and prediction bounds for a range of X0 (Figure 3). The area within each of the

bounds represents where 95% of the predictions of the mean or of the individual predictions should lie.

Picard and others (2012) and Breidenbach and others (2016) give a more formal statistical description of

these intervals, together with generalized prediction formulae in matrix notation, which can be used for

more complicated models.

The use of Eqs. (2) or (3) requires the number of observations in the regression, n; the mean of the

observations, XA; and the sum of squared deviations of the X,
Pn

i¼1ðXA;i � XAÞ2. In the past, these statistics

were not commonly reported, but current practices make it more likely that they could be calculated from

published data sets (for example Falster and others 2015).

R. D. Yanai and others



dimensions (Box 1). Both of these sources of

uncertainty can be important, but they are rarely

evaluated in tandem. Some investigators have

represented the uncertainty of forest estimates by

propagating individual-level uncertainty, while

others have propagated uncertainty in the mean.

For example, uncertainty in the carbon content of

the Hubbard Brook Experimental Forest was based

on uncertainty in the prediction of individuals (Fa-

hey and others 2005), while uncertainty in forest

nitrogen content at Hubbard Brookwas based on the

uncertainty in themean (Yanai and others 2010). In

theNewZealand forest inventory, uncertainty in the

mean was used for volume, but uncertainty in

individuals was used for wood density (Holdaway

and others 2014). In a study in Canada, uncertainty

in individuals was used to describe plot-level

uncertainty (Paré and others 2013), and in another

in California, uncertainty in individuals was used in

remote-sensing-based carbon assessment (Gonzalez

and others 2010). Thus, previous investigators have

often ignored one or the other source of allometric

uncertainty. A complete uncertainty accounting

would propagate both the uncertainty in predicting

theproperties of an individual and theuncertainty in

estimating mean properties.

In this paper, we illustrate how to propagate

uncertainty in predicting mean properties, such as

those of a forest, and how this differs from the

uncertainty in predicting the properties of an indi-

vidual, such as a tree. We begin with a single

dependent variable, namely the calcium concen-

trationof leaves, to illustrate the effect of thenumber

of trees on the importance of accounting for indi-

vidual prediction. We then extend this analysis to a

regression model describing leaf biomass as a func-

tion of tree diameter, which is more complex. Our

final application is to a forest nutrient budget with

multiple species and tissue types. These analyses all

show that theuncertainty in predicting individuals is

important for small numbers of individuals but that

the confidence in the model (or the mean, in the

univariate case) is important in all cases and should

not be ignored. Understanding this difference is

essential to correctly propagating uncertainty in

estimates of forest attributes, including carbon stor-

age, at scales from the tree to the globe.

ILLUSTRATION

Uncertainty in the Univariate Case
of Nutrient Concentrations

Constructing forest nutrient budgets can require

estimating the concentrations of multiple elements

for multiple tissue types (because leaves, bark, and

wood differ in concentration) in multiple tree

species. We use the example of the concentration

of calcium in sugar maple leaves, a topic of concern

for sugar maple health (Horsley and others 2000),

to illustrate the uncertainty in the population mean

and the uncertainty in the prediction of an indi-

vidual.

Consider an idealized forest composed entirely of

sugar maple trees in which each individual tree has

a characteristic concentration of Ca in its foliage. In

this simplified forest, we ignore the fact that leaf

concentrations vary within a tree (sun leaves

commonly differ from shade leaves) and, for the

mean concentration of the forest, we ignore the

fact that some trees have more leaves than others.

We ask two questions: ‘‘What is the uncertainty in

estimating the mean Ca concentration of leaves in

the forest?’’ and ‘‘What is the uncertainty in esti-

mating the Ca concentration of the leaves of a

particular tree?’’ We were taught that to answer

the former question, which is about the population

mean, we should use the standard error of the

mean, while for the latter question, which is about

predicting an individual, we should use the stan-

dard deviation. However, both of these uncertain-

ties can be important, depending on the sample size

(Box 2).

To illustrate the difference between a sample

mean and the true population mean, we generated

Ca concentrations for the trees in an imaginary

forest, randomly assigning values from a distribu-

tion with a mean of 5 mg/g and a standard devia-

tion of 0.5 mg/g (Figure 1). In nature, we never

know the true mean, but in this case, we created

the imaginary forest with known concentration.

We then randomly selected 12 trees for our sample,

from which we took an imaginary sample of leaves

and obtained a mean of 5.279 mg/g with a standard

deviation of 0.477 and a standard error (SE) of

0.139 mg/g (Figure 1, solid black circle). The mean

of a sample does not return the true population

mean, which is important to the concept of the

uncertainty in the mean. The SE describes the

standard deviation of the distribution of estimates

of the sample mean over different samples.

The number of trees to which our estimate will

be applied is also important. To illustrate the effect

of inventory size, we imagined our forest to have a

density of 500 trees/ha, such that plots containing

10, 30, 50, 100, 1000, or 10,000 trees could be

considered to represent areas of 0.02, 0.06, 0.1, 0.2,

2, or 20 ha. The plot area is not important to our

estimates, but it helps convey what might be real-

istic numbers of trees to characterize for various

Propagating Uncertainty in Predicting Individuals



purposes. We used the Monte Carlo approach

(Figure 2, Box 3) to determine the uncertainty of

the estimates. R code demonstrating these analyses

is available (Drake and others 2023).

Using the estimated mean and standard devia-

tion of our imaginary sample of 12 trees, we ran-

domly sampled possible values of foliar Ca

concentrations in trees for each of these various

plot sizes, and we did this repeatedly to illustrate

the uncertainty related to the prediction of indi-

viduals (left column of panels in Figures 3 and 4),

the uncertainty related to the estimate of the mean

(middle column, Figures 3 and 4), and the com-

bined uncertainty due to both the mean and indi-

viduals (right column, Figures 3 and 4).

When we predict the values of individual trees

and average them within each iteration, there is

considerable variation among iterations for small

plot sizes (left column, 10 trees, Figure 3). The

coefficient of variation (standard deviation divided

by the mean) across the iterations is about 3%. As

the plot size increases, however, the variation

among iterations declines and eventually converges

on our estimate of the mean (left column, 10,000

trees, Figure 3). Recall, however, that our estimate

of the mean is not the true mean (Figure 1). This

approach exaggerates our confidence in the esti-

Box 2: Analytical solution for the uncertainty in the mean of a small sample: univariate
case

We commonly represent uncertainty in the estimated mean value of a population of interest using the

standard error of the mean. In some cases, we are also interested in the uncertainty in the prediction of

individual values. In this paper, we have asked an unconventional question, but one that should be often

relevant: What is the uncertainty in predicting the mean value of an attribute of a small number k of

individuals when we are not confident of the true mean of the population? The answer depends in part on

the uncertainty in the estimate of the mean of the population sampled, which would be smaller if it had

been based on a larger sample n. It will also depend on the number of individuals, k, to which we apply it.

In the body of this paper, we show this relationship using Monte Carlo simulation. In this Box, we provide

the analytical solution.

We use n to describe the number of observations used to obtain an estimate of a population mean

through the study A, in our case, of foliar calcium. The mean XA is

Pn

i¼1
XA;i

n
, where XA;i is the concentration

of calcium in the leaves of tree i. The sample variance r2 is

Pn

i¼1
ðXA;i�bXA;iÞ

2

n�1
and the standard deviation, r; is

ffiffiffiffiffi

r2
p

. The uncertainty in the mean is r
ffiffi

n
p , called the standard error of the mean. This describes the spread of

the discrepancy between our sample mean and the true population mean.

We use k to describe the number of individuals in the population from the inventory I to which we apply

this estimate. What is the uncertainty of the estimated mean foliar calcium concentration of these k

individuals? If we were confident of the true population mean (which we are not- we only have a sample,

not the true value), the standard error of the mean foliar calcium for k trees would be r
ffiffi

k
p . To take account of

the uncertainty in the estimated population mean, r
ffiffi

n
p , we combine these two independent terms, using the

sum of the variances, r2
k
þ r2

n
. This is called a normal mixture, meaning that the mean, not just the distri-

bution around the mean, is also normally distributed. Taking the square root to find the standard error of

the mean gives r
ffiffiffiffiffiffiffiffiffiffi

1
n
þ 1

k

q

. This result does not take account of the uncertainty in our estimate ofr, which

would require use of Student’s t-distribution instead of the normal distribution or a Taylor expansion.

Including it would only increase the uncertainty that we are pointing out has been underestimated in the

past.

This formula reduces to r
ffiffi

n
p , the standard error of the mean, as k approaches infinity. For an individual

(k = 1), it differs from the standard deviation r: the uncertainty is r
ffiffiffiffiffiffiffiffiffiffiffiffi

1
n
þ 1;

q

which approaches r with

increasing n. When either n or k are small, as is often the case in forestry applications, it is important to use

r
ffiffiffiffiffiffiffiffiffiffi

1
n
þ 1

k

q

to characterize the uncertainty rather than the standard error, r
ffiffi

n
p ; or the standard deviation, r.

R. D. Yanai and others



mate, as it ignores the uncertainty we have in the

mean. We know that the average of the trees in the

sample (5.279) was a poor estimate of the popula-

tion mean, because we created the sample from an

imaginary forest with a true mean concentration of

5.000.

Alternatively, we can represent uncertainty in the

mean Ca concentration of the trees on a plot using

the uncertainty in our estimate of the mean, de-

scribed by the standard error of the mean. Here, we

ignore variability among individuals; all the trees on

a plot are assigned the same concentration at each

iteration of the Monte Carlo, chosen randomly from

a distribution defined by the mean and SE of our

imaginary sample. Because individuals are not as-

signed different concentrations, the variation in the

10,000 iterations of the Monte Carlo is the same

regardless of the number of trees in a plot (center

column of panels in Figures 3 and 4). The uncer-

tainty due to this source is about 3% of the mean,

regardless of the number of trees. The uncertainties

shown by the histograms in the figures are summa-

rized using coefficients of variation in Table 1.

Finally, we illustrate the uncertainty in the mean

foliar Ca of trees on a plot as a function of plot size

when both sources of uncertainty are accounted

for. In each iteration of the Monte Carlo simula-

tion, a random error in the mean is selected based

on the SE of the sample, which applies to all the

trees in the plot for that iteration, and an additional

error is randomly sampled for each tree, based on

the SD of the sample (right column of panels in

Start Monte Carlo 
Error Propaga�on

Pick a random error of 
the mean based on the 
SE or CI of the sample

Enough 
itera�ons

?

Obtain mean 
proper�es and 

variability of a sample

Obtain “inventory” 
data to which to apply 

these sampled 
proper�es

For this individual, pick a 
random error from the 

SD or the PI

Add this individual to 
the others in the 

inventory

Describe distribu�on 
of results

Calculate an 
es�mate for this 

individual using the 
current es�mate of 

the mean

All 
individuals

?

Represent 
uncertainty 

in individuals
?

Yes

No

Yes

Calculate an 
es�mate for this 

individual using the 
current es�mate of 
the mean and error 

of the individual

YesNo

No

Figure 2. Flowchart of the steps in the Monte Carlo

calculation of uncertainty in means, with or without

accounting for uncertainty in individuals. The

uncertainty in the mean is defined by the SE of the

mean, in the univariate case, or, in the case of regression,

the confidence interval (CI). The additional uncertainty

in the prediction of an individual is defined by the SD of

the mean or the prediction interval (PI).

Leaf calcium concentration (mg g−1)
2 3 4 5 6 7 8

True mean, µ=5

Estimated mean

x =5.3

Figure 1. Illustration of sampling from a true underlying

distribution. Suppose that there is a true underlying

distribution of leaf calcium concentrations with a mean

of 5 mg g-1 (solid black distribution with vertical dashed

line illustrating the mean). This distribution is not

observed directly. Rather, we collect samples from that

distribution (open circles), which can be averaged to

produce an estimate of the mean (solid black circle). In

this case the estimated mean of 5.3 mg g-1 is higher than

the true mean.
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Figures 3 and 4). With small numbers of trees, the

uncertainty in the individual predictions con-

tributes to the overall uncertainty: For 10 trees,

ignoring either source of uncertainty gives a coef-

ficient of variation of 3%, where the correct com-

bined uncertainty is 4% (Table 1). The same result

could be obtained by summing in quadrature:

32 + 32 = 4.22 (the variance of a sum is the sum of

the variances, if the variances are independent, and

the variance is the square of the standard devia-

tion). With large numbers of trees, uncertainty in

the individuals is not important, and the estimates

based on the uncertainty in the mean approach the

correct value of � 3% (Figure 4, Table 1).

Uncertainty in Regression: The Mass
of Leaves

The mass of trees and of tree tissues are usually

predicted by allometric models, because measuring

tree mass directly at the scale of a plot or a forest is

impractical and destructive. Instead, tree diameters

are measured and used to predict the mass of

leaves, branches, bark, roots, and stem wood using

allometric models, commonly based on a linear

regression of log-transformed diameter and mass

(Box 1). The predictions of these allometric models

are not perfect, of course, and have uncertainty. To

illustrate uncertainty in predictions of mass ob-

tained by this method, we used data from 14 sugar

maple trees that were cut down and weighed at the

Hubbard Brook Experimental Forest, USA (Whit-

taker and others 1974). We fit a regression model

predicting the logarithm of foliar mass from the

Box 3: A numerical approach: Monte Carlo Simulation

There are analytical solutions to simple cases of error propagation (Boxes 2 and 4). For example, the

variance of a sum is the sum of the variances of the individual terms, if the terms can be assumed to be

independent. In the case of forest biomass, however, the calculations can be too complex to be solved

analytically. For example, a mixed species forest may be characterized using allometric models specific to

each of several species. Tree tissues vary dramatically in concentration, and thus estimates of forest nutrient

content are obtained using allometric models for the mass of each tissue type, multiplied by estimates of

nutrient concentration for each tissue type. If a nutrient budget depends on 25 log–log regressions

describing 5 tissue types (leaves, branches, stem wood, stem bark, and roots) and 5 species (for example,

Whittaker and others 1979), a different approach to error propagation is needed (Yanai and others 2010).

A Monte Carlo simulation can be used to characterize uncertainty in a complex result by simple repe-

tition, thanks to modern computing capability. An early application of the approach was the approximation

of the value of p, estimated by dropping needles to find the fraction that cross a grid (Siniksaran 2008).

More complex questions faced the physicists developing nuclear weapons at Los Alamos in 1946. Stanislaw

Ulam was out sick, playing solitaire, and thinking about how to calculate the probability of winning. This

would be extremely difficult to solve analytically, but it is not difficult, if one is home sick, to estimate by

playing many games of solitaire following random shuffles of the deck. ‘‘Monte Carlo’’ was the secret code

used to describe this approach during the development of the atomic bomb, which was a reference to

Ulam’s uncle who liked to gamble at the Monte Carlo Casino in Monaco (Metropolis 1987).

The Monte Carlo approach to error propagation involves making a calculation many times, each time

with a different random sample of the input values that reflects their uncertainty (the distribution of

possible values). After many iterations, the distribution of the many results is used to characterize the

uncertainty of the result due to the uncertainty in the inputs (for example Figs. 3–4). The Monte Carlo

approach is easy to implement, but it is also easy to make mistakes in representing the uncertainty in the

inputs and in deciding at what level to randomly select values. For example, if a root:shoot ratio is used

across multiple forest types, a single value should be dealt to all the forest types at each iteration, or

uncertainties in forest biomass will be underestimated (Yanai and others 2020). In the case addressed in this

paper, uncertainty in individual predictions should be applied independently for each individual but

uncertainty in the mean, or the confidence in a regression, should be applied simultaneously for all

individuals at each iteration (each deal of the inputs).

R. D. Yanai and others



logarithm of tree diameter (Figure 5) and obtained

the same parameter estimates reported by Whit-

taker and others (1974). This model is analogous to

estimating the mean in the case of calcium con-

centration (Figure 1) in that the parameter values

of the regression model are estimates based on a

sample. We used this regression model to predict

the mass of leaves in plots with different numbers

of trees:

ŶI;i ¼ 1:09þ 1:993 � XI;i

where bYI;i is the estimate of log10(leaf biomass, in

kg) and XI;i is log10(diameter, in cm) of tree i of

inventory I. Summing the leaves on the plot re-

quires back-transformation of logarithmic units,

which incurs a bias (Baskerville 1972). For sim-

plicity, we ignore this bias in this illustration. An-

other way to avoid bias is to characterize the

relationship without the log transformation using a

nonlinear model.

We illustrate the uncertainty in predicting indi-

viduals and uncertainty in the mean (referred to as

the regression ‘‘model fit’’) using Monte Carlo error

propagation, just as we did for uncertainty in

concentration. An analytical approach to combin-

ing these two sources of uncertainty is provided in

Box 4. We created imaginary inventory data for

plots containing 10, 30, 50, 100, or 1000 trees. We

wanted each imaginary plot to have the same dis-

tribution of tree sizes, to avoid having different leaf

masses per unit area for different plot sizes in our

simulated results. So we selected 10 of the sugar

maple trees in the Whittaker data set and used

them 1, 3, 5, 10, or 100 times each.

For the uncertainty in the model fit, we ran-

domly sampled values of an error term defined by

Eq. (3) in Box 1. The same error term was applied

to all the trees, until the next iteration of the Monte
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Figure 3. Monte Carlo simulation of uncertainty for a

simple univariate example of leaf Ca concentration for 5,

30, or 10,000 trees. Monte Carlo sampling can be used to

quantify the uncertainty in the prediction of an

individual by randomly assigning a value to each

individual based on the SD of the mean, the

uncertainty in the estimate of the mean by randomly

selecting a mean at each iteration of the Monte Carlo

based on the SE of the mean, or both randomly selecting

a mean at each iteration based on the SE and randomly

selecting individual departures from the mean based on

the SD.

Figure 4. Estimates of uncertainty in the calcium

concentration of the leaves of sugar maple trees in plot

sizes ranging from 0.02 to 20 ha (10–10,000 trees). Each

distribution is the result of 10,000 Monte Carlo iterations.

For all the Monte Carlo simulations, we sampled from a

distribution defined by a sample of 12 trees that had a

mean foliar Ca concentration of 5.28, a SD of 0.48, and a

SE of 0.14 mg/g. For the uncertainty in predicting an

individual, we assigned each tree a concentration

randomly selected from a distribution defined by the

mean and the SD. For the uncertainty in predicting the

mean, at each iteration we assigned all the trees in the

plot the same Ca concentration randomly selected from a

distribution defined by the mean and the SE. For the full

uncertainty analysis, we simulated both sources of error:

We randomly selected a mean for all the trees in the plot

at each iteration, and we also randomly selected from the

additional variability due to individual samples to predict

the Ca concentration of each tree.
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Carlo, when a new error term was selected (Fig-

ure 2). This single random sample was retained for

all trees within an iteration; if the allometric

equation was biased high or low relative to the

underlying true value, that bias would affect the

estimates for all trees in the inventory. This pro-

cedure allowed us to quantify the uncertainty in

model fit.

The uncertainty in the prediction of individuals is

evaluated independently for each tree; thus, as the

number of trees on the plot increases, the uncer-

tainty in the mean decreases (Figure 6), as was the

case for the foliar concentration example (Fig-

ure 4). With a large number of trees, the uncer-

tainty in the regression is underestimated, because

each iteration of the Monte Carlo returns a similar

result. In other words, all the estimates agree on

the best-fit prediction based on the allometric

sample of 14 trees, although the 14 trees do not

perfectly characterize the population they repre-

sent. Obviously, this approach does not correctly

describe the uncertainty in the result.

To include both sources of uncertainty, we added

to the estimates in the Monte Carlo for the model

fit a random sample of the standard error of the

regression (Eq. 2 in Box 1). The results regarding

the uncertainties of leaf mass (Figure 6) are visually

similar to the results regarding leaf Ca concentra-

tion (Figure 4), but the uncertainties are larger

(Table 1). For the smallest plot size (10 trees), the

uncertainty of predicting individuals is the largest

component, at 16%. At all inventory sizes, the

uncertainty of predicting means is about 12%. The

combined effect of the two sources is 20%, con-

sistent with summing in quadrature

(162 + 122 = 202). Propagating both uncertainties

is worthwhile up to about 1000 trees, after which

the uncertainty of predicting individuals is < 1%

of the mean (Table 1).

Uncertainty in Nutrient Contents:
Concentration Times Mass

Finally, we illustrate the Monte Carlo propagation

of uncertainty in nutrient contents, which requires

multiplying concentration and mass. For the cal-

cium content of leaves on a plot, we used the foliar

Table 1. Uncertainty in the Calcium Concentration of Sugar Maple Foliage (Conc), the Mass of Leaves
(Mass), and the Calcium Content of Leaves (Content) in Plot Sizes Ranging from 1 to 10,000 Trees (0.002–
2 ha) Estimated by Three Different Approaches (Uncertainty in Individuals, Uncertainty in the Mean, and
Both), as Indicated by the Coefficient of Variation (Standard Deviation Divided by the Mean) of the Monte
Carlo Simulations Depicted in Figures 4 (Concentration), 6 (Mass), and 7 (Content)

# of trees Uncertainty in individuals Uncertainty in the mean Both

Conc Mass Content Conc Mass Content Conc Mass Content

10 3 16 17 3 12 12 4 20 21

30 2 9 10 3 11 12 3 15 15

50 1 7 8 3 12 12 3 14 14

100 1 5 5 3 12 12 3 13 13

1000 0 2 2 3 12 12 3 12 12

10,000 0 1 1 3 12 12 3 12 12

We used 10,000 Monte Carlo iterations because there was visible variation due to random sampling when we used only 1000.

Figure 5. The diameter of a tree is a good predictor of the

mass of its leaves. The log of leaf mass is a linear function

of the log of tree diameter at breast height (DBH). The

orange envelope shows the confidence interval, and the

yellow shows the prediction interval (see Box 1).
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Box 4: Analytical Solution for the Uncertainty in the Mean of a Small Sample:
Regression

As in the case of a mean (Box 2), we can derive an analytical solution for the combined uncertainty in

individuals and uncertainty in regression. Suppose we want to apply the regression in Eq. (1) to estimate

the total biomass, or equivalently, the mean biomass per tree, in an inventory I of k trees. Let XI,i represent

the measured log(diameter) of the ith tree in the sample of k trees in the area I, and YI,i the true (as opposed

to predicted) log(biomass) of the same tree. Note that these k trees differ from the n trees used in the A

allometric study (Box 1). Then we have,

YI;i ¼ âþ b̂XI;i þ rZI;i; i ¼ 1; 2; :::; k ð4Þ

Here the random standard normal variates ZI,i may be assumed independent from one tree to the next.

Averaging both sides of Eq. (4) over i from 1 to k, we obtain

YI ¼ âþ b̂XI þ rZ0=
ffiffiffi

k
p

; ð5Þ

where Z0 represents the standard normal variate that arises after averaging the ZI,i in Eq. (5).

Let l be the mean population parameter of log-transformed DBH over the entire area, a quantity that is

not observed directly, but which is estimated by X. Indeed, we may again posit an exact probabilistic

relationship of the form

XI ¼ lþ rXZ1=
ffiffiffi

k
p

; ð6Þ

where Z1 is another standard normal, independent of Z0, and rX is the standard deviation of the population

of XI values.

By substituting Eq. (6) into Eq. (5) we obtain:

YI ¼ baþ bblþ bbrXZ1=
ffiffiffi

k
p

þ rZ0=
ffiffiffi

k
p

We want to quantify the uncertainty when YI is used as an estimate of EðYIÞ ¼ aþ bl, the true average log-
biomass per tree in the area. To do that, we use a development based on mixture distributions. Let ðX;YÞ be
jointly distributed random variables. Then Var Yð Þ ¼ EðVarðY jXÞÞ þ VarðEðY jXÞ; and

Var âþ b̂XI

� �

¼ E Var âþ b̂XI jXI

� �� �

þ Var E âþ b̂XI jXI

� �� �

ð7Þ

Since â and b̂ are unbiased and independent of XI , Eðâþ b̂XI jXIÞ ¼ E âð Þ þ E b̂
� �

XI ¼aþ bXI . Thus, the

second term in Eq. (7) becomes Var aþ bXIð Þ ¼ b2Var XIð Þ ¼ b2r2x=k:
Using standard regression formulas for variance and covariance of the regression coefficients requires

some care, since the X in those formulas is different from the average of the sample in the inventoried plot.

Defining the sum of squares SSðXAÞ ¼
Pn

i¼1ðXA;i � XAÞ2. Thus, the first term in Eq. (7), defining the variance

of the estimator, can be derived through Eq. (1): Varðâþ b̂XI jXIÞ ¼ r2 1
n
þ XI�XAð Þ2

SS XAð Þ

� �

:

Since
E XI�XAð Þ2

SS XAð Þ ¼ E XIð Þ2þ2XAE XIð ÞþX
2

A

SS XAð Þ ¼ r2X
kSS XAð Þ þ

l�XAð Þ2
SS XAð Þ ; the first term of Eq. (7) isr

2

n
þ r2r2X

kSS XAð Þ þ
r2 l�XAð Þ2

SS XAð Þ ; and

the uncertainty of the estimator, according to Eq. (7), isVar âþ b̂XI

� �

¼ r2
n
þ r2r2X

kSS XAð Þ þ
r2Xb

2

k
þ r2 l�XAð Þ2

SS XAð Þ : Using

Eq. (5), the uncertainty of the estimation results in E YI � a� blð Þ2¼ Var YIð Þ ¼ Var âþ b̂XI

� �

þ
Var rZ0=

ffiffiffi

k
p� �

; and substituting,

E YI � a� blð Þ2¼ r2

n
þ r2

k
þ r2r2X
kSS XAð Þ þ

r2Xb
2

k
þ r2 l� XAð Þ2

SS XAð Þ ð8Þ
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calcium concentrations (Figure 4) and multiplied

them by the foliar masses of each tree (Figure 6),

running through all the trees on the plot in each of

10,000 Monte Carlo iterations, to obtain the

uncertainty in estimates of plot-level foliar calcium

content (Figure 7). Again, we see that ignoring

uncertainty in the mean gives incorrectly small

uncertainties, especially for large inventories (Fig-

ure 7). The uncertainties for calcium content are

numerically very similar to those for mass (Table 1)

because the contribution of uncertainty in con-

centration was relatively small.

The approach illustrated here can be adapted to

quite complex calculations. To estimate the calcium

contents of trees in a mixed species forest requires

estimates of concentration and biomass of multiple

tissue types (leaves, branches, bark, wood, and

roots), across multiple species. We did this calcu-

lation for the reference watershed at Hubbard

Brook using allometric models (Whittaker and

others 1974) and concentrations of calcium (Likens

and Bormann, 1970) for 7 tissue types of 6 species.

The 13-ha watershed was divided into 208 0.0625-

ha plots, and in a 0.01-ha subplot of each plot,

The uncertainty of the estimator baþ bbXI , i.e., its variance, should be distinguished from the uncertainty of

the estimation. The former is the same as Eq. (7), but without the second term. Only the first two terms

appear in the non-regression form of this problem considered in Box 2. In use, one must replace the

(unknown) parameter values r; rX ; l, and b with their estimators. Also, one would normally take the

square root of Eq. (8) as the final estimate of the uncertainty.

Figure 6. Estimates of uncertainty in the mass of sugar

maple leaves in plot sizes ranging from 0.02 to 20 ha (10–

10,000 trees). Each distribution is the result of 10,000

Monte Carlo iterations. For all the Monte Carlo

simulations, we sampled from the uncertainty in a

regression of leaf mass as a function of stem diameter.

For the uncertainty in predicting an individual, each tree

was assigned a random prediction error (Eq. 2). For the

uncertainty in predicting the mean, all the trees in the

plot were assigned the same random sample of the error

in the regression (Eq. 3) for each iteration of the Monte

Carlo. For the full uncertainty analysis, we simulated

both sources of error: We randomly selected the error in

the regression for all the trees in the plot at each

iteration, and we also randomly selected a residual error

to determine the foliar mass of each tree. The y axis is

scaled to best show the distributions; the most narrow are

cut off at the top.

Figure 7. Estimates of uncertainty in the calcium

content of sugar maple leaves in plot sizes ranging from

0.02 to 20 ha (10–10,000 trees). Each distribution is the

result of 10,000 Monte Carlo iterations. The calcium

content of leaves on the plot is the sum of the calcium

contents of all the trees, which is obtained by multiplying

the foliar mass (Figure 4) times the calcium

concentration (Figure 2). For the uncertainty in

predicting an individual, we ignored uncertainty in the

mean. For the uncertainty in predicting the mean, we

ignored uncertainty in the individuals. For the full

uncertainty analysis, we included both sources of error.

The y axis is scaled to best show the distributions; the

most narrow are cut off at the top.
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species and diameter of all trees > 2 cm dbh were

recorded (Whittaker and others 1974). Fifteen

species were tallied, and those not included in the

allometric and chemical data sets were represented

by species thought to be similar. These calculations

are available as an Excel workbook (Lilly and oth-

ers 2023). In this case, with a total of 3990 trees,

the uncertainty in forest calcium stocks associated

with prediction of individuals was 0.8%, the

uncertainty in the mean was 4.8%, and including

both resulted in an uncertainty of 4.9% (Figure 8).

Thus, in this case with an extensive inventory of

many trees, the uncertainty in the mean was

nearly equivalent to the uncertainty of both sour-

ces together. Although the uncertainty of both

sources together is always higher, it would be only

infinitesimally higher with an infinite number of

trees. Thus, instances with very large inventories

can likely ignore the uncertainties of individuals.

DISCUSSION

It is common to describe uncertainty of forest-scale

estimates using the SE of the mean (or of the

regression) and to describe the distribution of

individual observations using the SD (of the resid-

uals, in the case of regression). It is less common to

recognize situations in which both sources of

uncertainty are important. Here we have shown

that uncertainty in individuals is important, in

addition to uncertainty in mean properties, when

the number of individuals is small. Thus, when

experimental treatments involve small numbers of

trees, it would be wise to include uncertainty in

individuals in error propagation. At the other ex-

treme, when thousands of trees are involved,

uncertainty is grossly underestimated if uncertainty

in the mean is omitted from error propagation. An

example of this from the remote sensing field re-

sulted in an estimate of forest carbon with < 1%

uncertainty, despite using an allometric model with

considerable uncertainty (Gonzalez and others

2010). In reporting carbon emissions or emission

reductions for climate mitigation at the scale of

entire countries, uncertainty in individuals can

safely be ignored.

Whether uncertainty in individuals is likely to be

negligible depends on the specifics of the case and

the number of trees in the inventory. Four con-

trasting forest types were evaluated for allometric

uncertainty in estimates of forest biomass (Lin and

others 2023), and the four case studies differed in

the relative importance of uncertainty in predicting

individuals. The greatest uncertainty in predicting

individuals was in a semi-arid site with multi-

stemmed trees, where the model fit was poor.

Small uncertainties were observed where model fit

was good, as was the case in a monoculture plan-

tation and in a subtropical jungle with hundreds of

trees contributing to the allometric model. In the

example we developed in this paper, based on data

from the Hubbard Brook Experimental Forest, the

number of trees needed for uncertainty in the

prediction of individuals to be smaller than uncer-

tainty in the mean was less for calcium concen-

tration (about 10 trees) than for foliar mass or

calcium contents (closer to 30 trees) (Table 1). The

uncertainty in predicting individuals was less than

1% of the mean with only 50 trees for foliar con-

centration but with 10,000 trees for foliar mass or

calcium content (Table 1). It will always be most

correct, but sometimes by a very small margin, to

include both sources of uncertainty.

There are other ways to represent uncertainty in

regression models than the approach represented

here, which is based on Monte Carlo sampling

(Box 3) of uncertainty derived from parametric

statistics (Box 1). Bootstrapping is an approach that

involves refitting the model to random samples of

the data (with the same sample size). Another ap-

proach is to randomly sample values of the model

parameters (the slope and intercept), accounting

for the covariance between them. Bayesian ap-

proaches estimate the uncertainty in model

parameters using probability distributions. All four

approaches give similar results (Lin and others

2023), except that bootstrapping may result in

Figure 8. Estimates of uncertainty in the calcium

content of trees in the reference watershed at the

Hubbard Brook Experimental Forest, based on

allometry and calcium concentrations of leaves,

branches, bark, wood, and roots of 6 tree species and

an inventory of 3990 trees.
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greater uncertainty if the allometric sample size is

small and includes outliers. Thus, the choice of

approach can be made on practical considerations

such as user familiarity. Our final example, which

was the most complex, was conducted in Excel,

with the aid of macros to attain 10,000 iterations

(Lilly and others 2023). The others were coded in R

(Drake and others 2023).

Analytical approaches to error propagation

(Boxes 2 and 4) are easier to implement than

numerical approaches when the calculations are

simple. When they are complex, as is often the case

for ecosystem budgets and country-level account-

ing of carbon emissions, a Monte Carlo approach is

more attractive. Importantly, the Monte Carlo ap-

proach does not require any assumptions about the

distributions of the inputs, whereas the analytical

solution depends on the inputs being normally

distributed. Our Monte Carlo results agreed with

results of the analytical approach in the case of

calcium concentrations, which we sampled from a

normal distribution, but not in the case of leaf

biomass, for which we used 10 trees from the

Whittaker data set. The disagreement is greatest

when the number of trees is small and their vari-

ability is high (rX , Box 4).

There are many other sources of uncertainty in

estimating carbon and nutrient storage in forests

besides the uncertainty in allometric models. For

deforestation, forest degradation, and forest

growth, the greatest source of uncertainty is the

estimation of the area mapped as forest, when

these are based on remote sensing (Esteban and

others 2020; Neeff 2021). In plot-based national

forest inventories, sampling error is the most

important source, which reflects spatial variation.

This source of uncertainty, characterized by the SE

of the estimate, depends on the variability across

sample plots and the number of sample plots,

which can be designed to attain a target confidence.

Lesser sources of uncertainty include the root-to-

shoot ratio, when belowground biomass is esti-

mated from aboveground biomass, the wood den-

sity, when allometric models provide volume, and

the carbon fraction of biomass (McRoberts and

others 2016). The uncertainty in allometric models

may be among the more important of these lesser

sources.

The uncertainty in allometric models is not lim-

ited to the uncertainty in the model: In most cases,

there are a variety of possible models to select, each

of which would give a different answer (Melson

and others 2011; Picard and others 2015). Thus,

model selection error is a source of uncertainty in

forest budgets. In addition, the selection of trees for

allometric models may induce a bias: Trees may be

selected for good form, omitting those with dam-

aged crowns, forks, or stem rot, and thus the

models are not based on a representative sample of

the population to which they will be applied. These

sources of error, in which the model does not

accurately describe the trees to which it is applied,

are more difficult to quantify than the error in the

model, which is the source addressed in this paper.

Reporting uncertainty is important, not only in

forest accounting, but in all endeavors in which

uncertainty is high. In environmental sciences,

uncertainty is not reported as often as it should be.

Based on a random sample of 139 papers published

in 2019 (Yanai and others 2021), fewer than half of

eligible sources were reported, with sampling error

the most often reported (for example, in 84% of

vegetation studies). Only four papers in the sample

used biomass models; none of them reported model

uncertainty (Yanai and others 2021). In country-

level carbon accounting, rates of uncertainty

reporting are improving. Since 2018, at least 50%

of the national reference levels reported to the

United Nations Framework Convention on Climate

Change have propagated uncertainty in estimates

of forest carbon emissions, whereas from 2014 to

2017, rates ranged from 0 to 40% (Yanai and others

2020). Whether these uncertainties are correctly

quantified is another matter. Since payments for

reducing emissions from deforestation and forest

degradation (REDD) depend on the reported

uncertainties in emission reductions, there are

financial incentives to underestimate them. We

hope that this paper will help increase the accuracy

of uncertainty reporting in forest accounting, for

purposes ranging from research and forest man-

agement to carbon finance for climate mitigation.
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