
Assessing Energetic Pathways
and Time Lags in Estuarine Food

Webs

Dylan Sinnickson,* Holden E. Harris, and David Chagaris

Nature Coast Biological Station, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA

ABSTRACT

Detecting strong species interactions in food webs is

often challenging due to difficulties related to

adequate experimentation and the prevalence of

generalist diets throughout nature. A promising

new mathematical technique, empirical dynamic

modeling (EDM), has demonstrated the potential

to identify trophic interactions between popula-

tions by assessing time lags between associated time

series. We attempted to analyze trophic linkages

both within a subtropical estuary, as well as a

simulated, theoretical ecosystem, to determine how

energy moves through these systems. Additionally,

we intended to evaluate the technique’s ability to

detect biological relationships in ecosystems of

different complexity. In both datasets, we were able

to clearly identify strong consumer—resource

interactions, which were generally related to bot-

tom-up drivers. Overall, trophic connections at

lower trophic levels were more easily detected than

linkages higher in the food web. The ability of EDM

to detect food web interactions appeared to be

strongly influenced by the degree of observation

error exhibited in the data. In the empirical dataset,

several examples of bottom-up processes were

clearly evident including effects of discharge,

nutrients, and/or chlorophyll-a concentrations on

anchovies (Anchoa spp.), Gulf flounder (Paralichthys

albiguttata), and red drum (Sciaenops ocellatus). We

also observed instances where lengths of time lags

decreased as trophic level distances between con-

sumers and resources decreased (for example, An-

chovies, Gulf flounder, young-of-the-year

seatrout). This analysis demonstrates the promising

application of EDM to detect energetic pathways in

systems of varying complexity.
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HIGHLIGHTS

� Bottom-up dynamics were clearly identified in

simulated and empirical data

� EDM models detected the strongest food web

interactions at low trophic levels

� A negative relationship was evident between

observation error and strength of trophic inter-

actions
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INTRODUCTION

Describing energetic pathways within ecosystems is

a foundational objective of ecological research.

Although of significant scientific importance, the

ability of ecologists to definitively characterize

these pathways, and their associated drivers, is ra-

ther limited. Two principal reasons for this dilemma

include the difficulties in conducting controlled

experiments as well as the highly complex nature

of real-world ecosystems (Hilborn and Mangel

1997). This complexity results from the abundance

of species within nature, the various ways in which

they interact (for example, predation, competition,

grazing, decomposition), and the different envi-

ronmental drivers that affect populations. In these

dynamical ecosystems, an abiotic factor may di-

rectly affect the population of one species, but

numerous indirect effects may also be reflected

throughout the food web. Understanding these

indirect effects and their causal drivers is also

challenging due to state-dependent relationships

among multifactorial dynamics. State-dependent

relationships are nonlinear interactions between

variables of a given system, whereby the associated

coefficients between variables change in relation to

time and the state of the dynamical system (Priestly

1980; Rahmani 2017).

One way to study complex food webs is by

assessing time delays in energetic transfer. Biomass

production is not instantaneous, so the effects of

environmental change on biological communities

must inherently be observed at some given time

lag. This has been a recognized research topic in

both fisheries science and ecology broadly, exhib-

ited by the lagged effects that abiotic factors (for

example, temperature and discharge) have on fish

recruitment and catch (Pascual and Ellner 2000;

Moraes and others 2012; Isaac and others 2016).

Changes in environmental conditions can cause

bottom-up effects that initially impact lower

trophic level taxa, such as planktonic species, then

subsequently influence larval fish abundance

(Frederiksen and others 2006). These effects can

often be represented in a lagged, nonlinear manner

(Peebles 2002; Isaac and others 2016). In addition

to bottom-up effects, top-down control can be

evident in aquatic ecosystems by means of trophic

cascades (Carpenter and others 1987). Variability in

the populations of high trophic level predators may

have ecosystem wide impacts that can be observed

throughout the food web (Frank and others 2005).

Like bottom-up effects, top-down drivers can create

nonlinear changes within ecosystems (Pace and

others 1999).

Time lags and nonlinearity can be problematic

for more traditional statistical techniques, such as

linear regression, or when the relationships are

state dependent. A contemporary approach toward

addressing these issues is with empirical dynamic

modeling (EDM). The technique is a nonlinear

modeling tool that relies on time series data to find

causation between variables (Sugihara and others

2012; Chang and others 2017). In EDM, predictions

are made based on time lags between related time

series using Takens’ theorem (Takens 1981). This

theorem describes the reconstruction of an attrac-

tor manifold from a time series in a dynamical

system. This analysis has been utilized in a variety

of disciplines for its ability to discover causal time

series, as well as its forecasting potential (Deyle and

others 2016a, b; Tsonis and others 2015).

In biology, EDM has generally been imple-

mented to analyze simple, direct relationships.

Examples include predator—prey relationships be-

tween unicellular Didinium and Paramecium as well

as chlorophyll-a densities with respect to temper-

ature (Veilleux 1979; Sugihara and others 2012; Ye

and others 2015a). However, one of the more

complex ecological interactions where EDM has

been utilized was between northern anchovy (En-

graulis mordax), Pacific sardine (Sardinos sagax), and

sea surface temperature (Sugihara and others

2012) along the California coastline. It was previ-

ously believed that competition between Pacific

sardine and northern anchovy for prey resources

led to the observed decadal oscillating patterns of

abundance (Murphy and Isaacs 1964), but Sugi-

hara and others (2012) demonstrated using EDM

that temperature is potentially the more influential

factor driving their populations. Other examples

where EDM has been applied to food web inter-

actions include the assessment of bottom-up pro-

cesses in oligotrophic lakes and the effects of

climate change on biodiversity in lentic systems

(Frossard and others 2018; Chang and others

2020).

Among studies utilizing EDM, these models are

generally applied to lower trophic level taxa, as

model performance tends to be associated with

lifespan of study species (Ye and others 2015a;

Munch and others 2018; Anneville and others

2019; Rogers and others 2020; Cai and others 2020;

Luken 2020;). A review by Munch and others

(2018) found that predictive ability of EDM was

highest for species with shorter generation times.

Some of the key uncertainties in aquatic ecology

include the relative importance of bottom-up ver-

sus top-down drivers, planktonic versus detrital

pathways, and the role of forage fish in ecosystems,
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with conflicting evidence for different positions.

One of the major obstacles that scientists experi-

ence when attempting to investigate these food

web related hypotheses is the difficulty of con-

ducting experiments that can mechanistically ex-

plain changes in predator—prey populations at

population scale resolution. This study demon-

strates how EDM can be applied to ecological re-

search to identify species interactions and trophic

pathways in food webs without the constraints of

traditional experimentation.

The objectives of this study were to (1) test

whether EDM can detect time lags associated with

trophic linkages in a simple, theoretical system

forced with bottom-up and top-down drivers, (2)

analyze the influence of observation error on EDM

performance, and (3) use EDM to determine time

lags and species interactions in food webs using

real-world long-term monitoring data of fish

abundance from a diverse subtropical estuary. We

assessed the efficacy of EDM using simulated time

series from a dynamic food web model with dif-

ferent combinations of top-down and bottom-up

influences and different amounts of assumed

observation error added to the simulated data. We

utilized EDM and the simulation model to evaluate

how well the known time lags and food web

interactions could be detected under top-down

versus bottom-up control and with varying degrees

of observation error in the simulated data. Model

performance was also evaluated relative to the

trophic level of study species. Following the suc-

cessful application on the simulation data, we then

applied EDM to determine time lags and causality

from a long-term fisheries independent monitoring

program and assess whether this methodology

would be adequate for real world applications in

field ecology and fisheries science. Based on these

findings, we discuss the utility and limitations of

EDM for ecological research in systems with mul-

tifactorial, nonlinear dynamics.

METHODS

Simulated Datasets for EDM

We constructed the operating model using Ecopath

with Ecosim (EwE, Christensen and Walters 2004),

because it provides a framework to simulate trophic

dynamics, can represent both bottom-up and top-

down food web processes, and it has been

demonstrated to replicate historical patterns in

real-world, complex ecosystems (Chagaris and

others 2015a, b; Kao and others 2016; Sinnickson

and others 2021). EwE models typically include all

trophic levels within an ecosystem, from detritus

and primary producers to top predators. In Ecosim,

a system of differential equations is utilized to

model biological production within each functional

group based on a series of input parameters and

changes in predator and prey abundances. Con-

sumption by predators in Ecosim is modeled based

on foraging arena theory, whereby prey biomass is

partitioned into vulnerable and invulnerable states

(Christensen and others 2005; Ahrens and others

2012), and the exchange rates between those states

are described by the vulnerability parameters,

which govern predation rates, energy flows, and

biomass dynamics. There is one vulnerability

parameter (vij) for each prey i and predator j

interaction, and high values (> 10) allow for

strong ‘top-down’ dynamics because prey rapidly

move into the vulnerable state where they can be

consumed by the predator. Low vij values (vij
1.0) restrict flow into the vulnerable pool, result-

ing in very small changes to baseline predator

biomass and predation mortality rates, making the

prey item ‘bottom-up’ controlled (Christensen and

others 2005). Time lags in EwE are an emergent

property of the model that result from the varying

input parameters describing biomass production

and consumption across trophic levels, such that

biomass of short-lived groups (plankton) will re-

spond more quickly to changes in prey than long-

lived species. With respect to simulating datasets,

the driving factors in EwE models can be con-

trolled. For example, primary production and

predator abundances can be altered, and the bio-

mass of each functional group in the model can be

simulated under those prescribed treatments. The

output provided by EwE includes monthly time

series of biomass for all species or functional groups

(aggregated groups of species), resulting from the

combination of all direct and indirect trophic pro-

cesses, which provides a good test dataset for EDM.

The Florida Estuary (FLE) Model

The FLE model was a simple, hypothetical model

consisting of eight functional groups and two fish-

ing fleets (Figure 1). The model included state

variables for detritus, phytoplankton, zooplankton,

benthic invertebrates, a forage fish, an invertivore

fish, a generalist fish, and a piscivorous fish. The

basic data inputs for biomass, mortality, produc-

tion, consumption, and diet were based on both

previous modeling experience with EwE (Sinnick-

son and others 2021) as well as an intuitive

understanding of estuaries and energetic require-

ments for achieving mass-balance of the system.
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The hypothetical food web in the FLE model was

specified to represent different trophic levels and

diet breadth. Four of the consumer groups fed on

just one prey item, while the piscivore and gener-

alist fish fed on multiple prey times. In the initial

stable state, the fishing mortality rates for pisci-

vores, generalists, and forage fish were 0.2, 0.2, and

0.5, respectively. Regarding the vulnerability

parameters, these values were scaled to trophic

level and ranged from 1.2 to 10. Specifically, vul-

nerability rates for all prey items of piscivores,

generalists, invertivores, forage fish, benthic

invertebrates, and zooplankton were 10, 7.7, 5.5,

5.5, 1.2, and 1.2, respectively.

Due to the variable diets, vulnerabilities, and

basic input parameters for our study species, we

hypothesized that EDM performance may exhibit

variability for the different trophic interactions

throughout the model food web. To account for the

differences in data inputs, we assessed EDM per-

formance with respect to each functional group’s

net efficiency. This is a comprehensive term that

describes the rate at which a species assimilates

consumed food into new biomass (Christensen and

others 2005). The equation for net efficiency is the

following:

Net Efficiency ¼ Production

Productionþ Respiration

whereby net efficiencies are positively related to

production rates and negatively related to respira-

tion rates. Additionally, net efficiencies are also

related to trophic levels and turnover rates of

functional groups because biomass will inherently

decrease higher in the food web to ensure mass

balance and fundamental thermodynamic princi-

ples. Low trophic level species will have higher

production rates to account for high rates of mor-

tality and fast generation times. Consequently, this

leads to higher net efficiencies for these groups. The

opposite is generally true for higher trophic level

taxa, which are longer-lived species with slow

turnover rates. For each food web interaction, we

assessed EDM performance relative to the net effi-

ciency rate of the respective consumer.

Simulation Scenarios

Environmental and fishing scenarios were imple-

mented in the FLE to simulate data under

assumptions of top-down and bottom-up processes

on trophic linkages. Experimental treatments were

conducted by utilizing forcing functions in Ecosim

to drive abundances of top predators and rates of

primary production within the FLE. The bottom-up

(BU) scenarios were created by driving rates of

primary production with an autocorrelated random

time series of primary production anomalies that

were applied as multipliers on the baseline pro-

duction rate. In the FLE, the primary production

multipliers were applied to the sole primary pro-

ducer group, phytoplankton. Top-down (TD) sce-

narios were implemented using fishing mortality

time series to drive changes in predator abun-

dances. Variable fishing mortality was applied to

the piscivore and generalist functional groups using

an autocorrelated random time series of fishing

effort. For both BU and TD time series, 600 random

numbers were selected from a normal distribution

with a mean of one and a standard deviation of 0.3.

The means from these distributions were weighted

(BU-2, TD-7), to generate the autocorrelation.

These 600 values represented 50 years of data at a

monthly time step. Simulations were also con-

ducted using a combination of bottom-up and top-

down drivers (BU + TD). Each simulation scenario

produced 50 years of monthly biomass outputs

which were then used as input data for the EDM

analysis (Figure 2). These time series were either

used directly as input to EDM or were modified to

include observation error. This error was incorpo-

rated to represent realistic ecological data from an

empirically collected monitoring program. The er-

ror scenarios were created by adding a normal

random deviate to the Ecosim biomass output

assuming coefficients of variation of 0.3 and 0.6.

We conducted three environmentally driven sim-

ulations (BU, TD, BU + TD) and three runs of

varying observation error (0.0, 0.3, 0.6) for a total

of nine different combined scenarios (Table 1). As

the FLE consisted of eight functional groups, the

nine model scenarios produced a total of seventy-

two simulated biomass time series.

Figure 1. Food web diagram of the Florida Estuary

model and its eight representative functional groups and

two fisheries. The size of each node is representative of

the group’s biomass densities. Links represent trophic

interactions through consumption or predation.
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Empirical Datasets for EDM

Long-Term Monitoring Data

In addition to using simulated model output from

EwE, we also applied EDM to empirically collected

ecological data on fish abundances from a sub-

tropical estuary. Long-term monitoring data were

collected by the Fisheries Independent Monitoring

Program (FIM) of the Florida Fish and Wildlife

Conservation Commission. Sampling was con-

ducted from 1997 to 2018 in the Suwannee estuary

using three different gear types. Briefly, two seines,

21.3 m and 183 m in length, were deployed in

shallow habitats, generally along shorelines, while

offshore seagrass meadows were sampled using a

6.1 m otter trawl. All sampling was conducted

monthly in a stratified random design. Due to the

use of multiple gear types and stratified random

sampling throughout the estuary, this allowed for a

robust representation of the entire fish community.

Along with measuring relative abundances of

estuarine fishes, water temperature data were also

collected at haul sites as well.

The fish taxa evaluated in this observed time

series analysis included species or aggregated tax-

onomic groups that were caught in at least five

percent of hauls of one gear type or one percent of

hauls of all gear types (Table 2). Taxa of particular

economic or recreational importance were broken

into age specific stanzas based on observed lengths

and known age-length relationships. This included

three age stanzas (young-of-year, intermediate,

adult) for red drum (Sciaenops ocellatus) and spotted

Figure 2. Biomass time series plots of the three simulation scenarios from the FLE without observation error. The x-axis is

represented by 600 monthly time steps, while the biomass densities are represented on the y-axis.

Table 1. Model Scenarios and EDM Results from the FLE

Model run Top-down (TD)/bottom-up (BU) Observation error

1 BU None

2 BU 0.3

3 BU 0.6

4 TD None

5 TD 0.3

6 TD 0.6

7 BU + TD None

8 BU + TD 0.3

9 BU + TD 0.6

Each model run consisted of applying either 0.3, 0.6, or no observation error to an environmental scenario consisting of either bottom-up, top-down, or both drivers.
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seatrout (Cynoscion nebulosus) and two stanzas for

mullet (juvenile and adult). Species that were not

caught in at least 50 months throughout the study

were excluded from the analysis.

In addition to the fisheries independent moni-

toring data, we also constructed time series of rel-

ative fishing effort to analyze the impacts of top-

down, anthropogenic drivers. These data were

collected monthly by the National Oceanic and

Atmospheric Administration’s (NOAA) Marine

Recreational Information Program (MRIP) (NOAA

2018) using the raw data and custom domain

analysis programs provided by the MRIP website.

We partitioned the MRIP data into four fishing fleet

time series. These data included the number of trips

taken by private and charter fleets, as well as the

total trips taken specifically targeting spotted

seatrout or red drum. Limitations in the MRIP data

prevented us from developing an estuary specific

fishing effort time series. Therefore, data from

counties surrounding the Suwannee River estuary

(for example, Levy, Dixie, and Citrus Counties)

were utilized to create relative time series of fishing

effort, and we assumed that trends in recreational

fishing effort from the adjacent counties would be

representative of the effort occurring in the

Suwannee River estuary itself.

Environmental data from the Suwannee estuary

were also assembled as potential bottom-up drivers,

including measurements of discharge (cf/s), total

nutrient concentrations (nitrogen and phosphorus,

lg/L), and chlorophyll-a (lg/L). Discharge (cf/s)

data were collected monthly from the United States

Geological Survey (USGS) at its Wilcox station,

which is approximately 40 km upstream of the

mouth of the Suwannee River (USGS 2020).

Nutrient and chlorophyll-a data were both col-

lected by the Project COAST program, which sam-

ples monthly at ten fixed locations in the

Suwannee estuary (unpublished data Frazer 2018).

These environmental metrics were utilized to rep-

resent bottom-up drivers on the food web. After

assembling all fish and environmental variables

and interpolating over months with missing data,

the empirical time series ranged from 1997 to 2015

sequenced at monthly time steps.

Fish Abundance Time Series Standardization

Because of variable environmental conditions that

affected the catchability of study species, we stan-

dardized the fish abundance densities using delta

lognormal generalized linear models (GLM) (Lo

and others 1992; Maunder and Punt 2004; Grüss

and others 2019). Variables for which we con-

trolled included depth, month, location, gear type,

year, temperature, dissolved oxygen, salinity, bot-

tom type (for example, mud, oyster, sand, struc-

ture, unknown), and shoreline type (for example,

emergent vegetation, mangrove, oyster, structure,

terrestrial, none). A zero-inflated approach was

used by fitting a binomial GLM to estimate the

probability of a nonzero catch and fitting a log-

normal GLM to the nonzero data to estimate the

mean catch-per-unit effort (CPUE). Akaike infor-

mation criterion (AIC) was used to select the most

parsimonious binomial and lognormal GLM’s

(Akaike 1974). The ‘‘delta’’ model estimates were

then made following Grüss and others (2019) by

multiplying the least squared means from both

model components to obtain an overall standard-

ized CPUE. Although relatively infrequent, missing

values were interpolated using a seasonally ad-

justed linear interpolation from the ‘‘timetk’’

package for RStudio (Dancho and Vaughan 2021).

Table 2. Species and Functional Groups Selected for Analysis from the Empirical Dataset

Commercial taxa Forage fish Miscellaneous

Blue crab Anchovies Catfish

Gulf flounder Clupeids Ladyfish

Redish YOY Killifish Lizardfish/Toadfish

Red drum 1–4 Mojarra Other demersals

Spot Mullet YOY Other sciaenids

Sheepshead Mullet 1+ Other decapods

Spotted seatrout YOY Pinfish Other small pelagics

Spotted seatrout 1–2.5 Silversides Puffers/filefish

Shrimp

Small flatfishes

Stingrays

In total, twenty-seven different nekton time series were assessed.
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This methodology was applied to 4% of all biomass

time series values.

Empirical Dynamic Modeling

Empirical dynamic modeling is an approach to

analyzing nonlinear relationships between time

series of a given dynamical system (Sugihara and

others 2012; Chang and others 2017; Deyle and

others 2018). If causality is evident between two

variables, their time series will be reflective of a

manifold within the system, thereby allowing

cross-mapping between their historic values

(Sugihara and others 2012; Chang and others

2017). Empirical dynamic modeling operates by

first analyzing the time series and subsequently

inferring the associated manifold. In this paper, we

focus on simplex projections to describe the com-

plexity of the system’s manifold as represented by

the number of embedding dimensions, and con-

vergent cross-mapping (CCM) to assess time-lagged

causation and cross-prediction between time series.

All EDM analyses were conducted using the

‘‘rEDM’’ package (Ye and others 2016).

Time series Standardization

Separate EDM analyses were run on the simulated

data from the FLE model and the empirical data

from the Suwannee River estuary, using the same

methods to standardize and analyze the data. The

time series used in the EDM simulation test in-

cluded monthly biomass output from the FLE

model of each environmental scenario (BU, TD,

BU + TD). Regarding the FLE output, three time

series were created from each environmental sce-

nario by applying differing degrees of observation

error. In total, we utilized simulated time series of

biomass for eight functional groups from each of

the nine scenarios. In the real-world application of

the Suwannee River estuary, the data included

thirty-five empirically collected time series of

monthly fish abundance, fishing effort, and water

quality data assembled from the FIM, USGS, MRIP,

and Project COAST sampling programs. Prior to

running EDM, each time series of the simulated

and empirical datasets was standardized to remove

seasonality and non-stationarity (Chang and others

2017) using multiplicative time series decomposi-

tion. To determine the stationarity of the biomass

metrics, we used an augmented Dickey—Fuller test

and differenced the data accordingly. Lastly, each

time series was normalized with a z-score trans-

formation.

Simplex Estimation

Simplex is a form of nearest neighbor forecasting,

whereby the shortest Euclidean distance is found

between separate points in a given state space

(Deyle and others 2018). This technique allows for

the assessment of a system’s dimensionality (Sugi-

hara and May 1990; Chang and others 2017),

known as the embedding dimension (E), which

describes the amount of predictor variables (lagged

coordinate variables) necessary to adequately de-

scribe a given dependent variable (Sugihara and

May 1990; Hsieh and others 2005). Simplex cal-

culates Pearson correlation coefficients (q) for each
number of embedding dimensions, and the highest

q value generally demonstrates the appropriate

value for E. After assembling the time series of fish

biomass, 2/3 of the data were subset into the ‘‘li-

brary’’ dataset and 1/3 into the ‘‘prediction’’ data-

set. The ‘‘library’’ data were the training data for

the model, while the ‘‘prediction set’’ were the data

on which the model was tested. This was followed

by finding the appropriate number of embedding

dimensions, the E value with the highest q, by

using the simplex function. Simplex was applied to

each time series described previously.

Convergent Cross-Mapping

Lastly, we used convergent cross-mapping to

identify interactions between paired variables,

while accounting for time lags that may be un-

known. This technique relies on how time delayed,

historic values of a certain variable can effectively

predict the values of another variable (Sugihara

and others 2012; Ye and others 2015a). The CCM

approach can identify causal interactions because if

an explanatory variable has an influence on a re-

sponse variable, then the explanatory variable will

leave its signature within the historic time series of

the response variable. Causality can be inferred if

the response variable can accurately predict values

of the independent variable within a time series

(Sugihara and others 2012). If time lags are pre-

sent, the independent variable will be mapped at

some specified time interval within the time series

of the dependent variable (Ye and others 2015a).

The appropriate time lag was found by comparing

the association between the present state of the

response variable and different lags on historic

values of the predictor variable using Pearson’s

correlation coefficient.

A critical element of CCM which allows for the

assessment of interacting time series is that of

convergence. If an increase in the length of the
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analyzed time series results in greater predictive

performance of the CCM outputs, then the model

displays convergence (Sugihara and others 2012).

Convergent cross-mapping can be described by the

equation.y t þ tp
� �

¼ FðxðtÞÞ �
PEþ1

i¼1 yðti þ tpÞ(Sugi-
hara and others 2012; Deyle and others

2018):where the response variable is represented

by ‘y’ at time ‘t’ and time ‘tp’ is the prediction time.

In this analysis, time lags were assessed at a

monthly time step. Again, ‘E’ represents the

number of embedding dimensions, or the amount

of coordinate variables. For the CCM analysis, the

optimum E from the simplex assessment was used

as the relevant number of embedding dimensions.

The response and independent variables used in

the CCM analysis consisted of all combinations of

functional groups within the simulated and real

ecosystems. Each functional group was paired with

every other functional group as both a response

variable and as a predictor variable, resulting in

n*(n - 1) combinations in both the simulation test

and empirical application, where n is the number

of species or functional groups. In total, there were

fifty-six interactions for each of the nine EwE sce-

narios (n = 8) and 1190 interactions in the empir-

ical dataset (n = 35). In the CCM models of the

simulated and empirical datasets, time lags were

assessed up to 40 months before the current time

step.

We identified potential causal trophic linkages

from the CCM analysis by detecting interactions

that both had high q values (for example, the effect

of one species on another taxon was high at a

certain lagged interval), and the relationship be-

tween q and time lag length was distinctly dome

shaped. In these interactions, we documented the

maximum value of q and the corresponding time

lag. When comparing results between the envi-

ronmental simulations, we used the 0.0 observa-

tion error scenario as the baseline condition. For

the tests on observation error, we utilized the

BU + TD simulation as the baseline condition

when formulating results and conclusions.

In both the simulation test and empirical analy-

sis, interactions between all time series were as-

sessed. While each interaction from the simulation

test is presented, in the empirical analysis, only

interactions from select sub-food webs are de-

scribed. The sub-food webs were obtained from an

ecosystem model previously built for the Suwan-

nee system (Sinnickson and others 2021) and are

intended to simplify the results and interpretation,

while highlighting interactions assumed to be

ecologically important based on known food web

interactions. These subwebs included energetic

pathways from physical factors and primary pro-

ducers to three predatory fish species [Gulf floun-

der (Paralichthys albiguttata), red drum, and spotted

seatrout] and one pelagic forage fish [anchovies

(Anchoa spp.)].

RESULTS

Simulation Test

Detecting Top-Down Versus Bottom-Up Effects

When EDM was applied to the simulated data with

no observation error (model runs 1, 4, and 7), we

consistently found that interpretable and mean-

ingful trophic linkages were only detected by EDM

when bottom-up drivers were implemented on the

system (Figure 3) and when these interactions oc-

curred at lower trophic levels. Measurable lags

were only identified in model runs 1 (BU) and 7

(BU + TD) with bottom-up processes, as opposed to

model run 4 (TD), where these lags were not dis-

cernable (Figure 3).

In the bottom-up (BU) and combined (BU + TD)

scenarios, the strongest interactions with high

maximum q values (q > 0.9) were consistently

found at low trophic levels (Figure 3). These in-

cluded the connections between benthic inverte-

brates, zooplankton, phytoplankton, and detritus,

where lags ranged from 0 to 5 months. Domed

shaped relationships between q values and time

lags were very clearly defined at the base of the

food web (Figure 3). For example, benthic inver-

tebrates and zooplankton interacted with their

primary dietary items, detritus and phytoplankton,

respectively, at lags of 3 and 2 months (q > 0.97,

q > 0.97, Figure 3). Trophic interactions were also

evident for the mid-trophic level taxa, forage fish

and invertivores, but to a lesser extent. These

groups were influenced by detritus, planktonic

taxa, and invertebrates at lags of 0–7 months with

q values ranging between 0.73 and 0.86 (Figure 3).

For the predatory groups (piscivores and general-

ists), interaction strengths tended to be weak.

Generalists appeared to be mildly impacted by

detritus, planktonic groups, and invertebrates in

model run 1 (BU) (q > 0.79, lag = 1–9) (Figure 3).

Although q values were relatively high, the domed

relationship between q and time lag length was

poorly defined (Figure 3).

In the assessment of CCM skill with respect to

net efficiency, a similar phenomenon was evident.

Net efficiencies and CCM q were directly related,

but both variables generally decreased moving up

the food web as higher trophic level species tend to
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have slower turnover rates and would respond less

to the higher frequency dynamics of their prey.

Efficiencies ranged between 0.075 (pisci-

vores—highest trophic level consumer) to 0.353

(zooplankton—lowest trophic level consumer)

(Figure 4). Overall, we observed a strong, linear

relationship between net efficiencies and CCM q
(Figure 4; BU + TD; q = 0.71 + 0.78*Net Effi-

ciency; R2 = 0.73).

When comparing model run 1 (BU) and 7

(BU + TD), the effects of detritus, planktonic

groups, and invertebrates on generalists appeared

to be dampened when top-down drivers were

implemented (Figure 3). For piscivores, the appli-

cation of top-down processes in model run 7

(BU + TD) appeared to change the direction of the

interaction compared to model run 1 (BU). From

model run 1 to model run 7, maximum q of pisci-

vores predicted by invertebrate, planktonic, and

detrital groups shifted from positive to negative

lags, demonstrating that these groups only affected

piscivores when variable fishing effort was applied

(Figure 3).

For the top-down scenario, not only were strong

connections not exhibited (model run 4, TD), but

even when top-down drivers were combined with

bottom-up drivers (model run 7, BU + TD), the

results did not differ substantially from the scenario

with solely bottom-up processes (Figure 3). Also,

when the system was driven by bottom-up pro-

cesses, detectable trophic interactions were gener-

ally observed in the bottom-up direction. Prey

populations were found to influence predator

populations, but predators did not exhibit signifi-

cant impacts on prey items, with the exception of

Figure 3. Convergent cross-mapping analysis of the trophic interactions in the FLE. Time lags and q values are

demonstrated on the x and y-axes, respectively. The bottom-up (BU, black) driven scenario represents model run 1, the

top-down (TD, blue) simulation depicts model run 4, and the combined scenarios (BU + TD, orange) represents model run

7. No observation error was utilized in these runs.
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the influence of zooplankton grazing upon phyto-

plankton (q > 0.96, lag = 0–1 months) (Figure 3).

Effects of Observation Error on Detecting
Lagged Interactions

As expected, we found that EDM performed best

when observation error was low, resulting in

higher q values and more defined time lags (Fig-

ures 5, 6). For example, in the BU + TD scenario, q
values decreased for linkages between detrital,

planktonic, and invertebrate groups when obser-

vation error increased, but defined interactions

were still clearly evident (Figures 5, 6). For most

interactions, decreases in q were relatively pro-

portional to the degree of error implemented. For

the interactions between detrital, planktonic, and

benthic invertebrate groups, q values decreased by

approximately 0.14–0.24 when comparing inter-

actions from the no error and high error scenarios.

Regarding the influence of phytoplankton on zoo-

plankton, maximum q decreased from 0.97 to 0.73

between the no error and high error simulations

(lag = 0–3 months) (Figures 5, 6). Smaller changes

were observed in the zooplankton (predictor) and

benthic invertebrate (response) relationship, as q
decreased from 0.98 to 0.84 (lag = 3–6 months)

(Figure 5). On the contrary, at high trophic levels,

the strength of relationships appeared to weaken in

the high error scenario. In the bottom-up direction,

generalists and invertivores demonstrated incon-

sistent and weak relationships with invertebrates,

planktonic species, and detritus when high

amounts of error were applied (Figure 5). These

changes were notably greater higher up the food

web, as forage fish, invertivores, and generalists

demonstrated large changes in CCM skill with prey

species when error was implemented. For example,

maximum q values depicting the effect of inverte-

brates on invertivores decreased from 0.78 to 0.44

when comparing the no error (model run 7) and

high error scenarios (model run 9) (Figure 5). For

the effect of zooplankton on forage fish, maximum

q decreased from 0.85 to 0.42 in model run 7 to

model run 9 (lag = 0–2 months). In some circum-

stances, such as the relationship between detritus

and invertivores and detritus and generalists, the

high degree of observation error almost completely

eliminated the ability of EDM to detect a relation-

ship (Figure 5). In general, error did not appear to

impact the estimated time lags.

Figure 4. Convergent cross-mapping skill (q) with respect to net efficiency rates in Ecopath. The net efficiency describes

the rate at which food is assimilated into new biomass of the consumer. Net efficiencies are provided for each consumer

taxon in each of the trophic interactions. Legend is ordered with respect to trophic level of response group. A strong

positive relationship is evident between CCM skill and net efficiency. Confidence intervals (± 95%) are represented in

grey. Results are from the BU + TD scenario with no observation error.
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Empirical Time Series Analysis

In the empirical dataset, we observed significant

lagged interactions in the sub-food webs that de-

scribe trophic pathways connecting environmental

factors to four specific taxa: anchovies, Gulf

flounder, spotted seatrout, and red drum. For an-

chovies, we observed a strong connection from a

bottom-up signal, as abundance interacted with

bottom-up processes relating to river discharge

(q > 0.60; Figure 7), nutrient concentrations

(q > 0.61; Figure 7), and chlorophyll-a (q > 0.60;

Figure 7). The effects from the abiotic factors ap-

peared to be longer, as discharge and nutrient

concentrations influenced anchovies at lags of

approximately 7–8 and 2–4 months, respectively,

while impacts from biotic chlorophyll-a levels ap-

peared to be faster, at lags at 0–1 month (Figure 7).

Similar bottom-up signals were also observed

when assessing the lagged relationships of Gulf

flounder (Figure 8). Interactions between Gulf

flounder and its direct prey items constituted the

shortest time lags, as blue crabs (q > 0.55; Fig-

ure 8) and pinfish (q > 0.60; Figure 8) popula-

tions interacted with flounder abundances at lags of

4–5 and 5–8 months, respectively. Indirect effects

relating to eutrophication and primary production

were also observed but at longer intervals. For

example, concentrations of chlorophyll-a

(q > 0.29, lag = 9–11; Figure 8) exhibited inter-

actions with Gulf flounder abundance at lags of 9–

11 months, while relationships with nutrient con-

centrations were demonstrated at 9–14-month

intervals (q > 0.51; Figure 8).

When assessing the sub-food web for spotted

seatrout, we also observed lagged interactions from

Figure 5. Observation error simulations in the BU + TD scenario of the FLE. Plots depict relationships between q values

and time lags from the assessment of trophic linkages using convergent cross-mapping. The no error (orange), 0.3 error

(red), and 0.6 error (black) simulations represent model runs 7, 8, and 9, respectively. Relationships demonstrate how

different degrees of observation error have detectable impacts on trophic interactions strengths.
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bottom-up processes (Figure 9). The abiotic factors

of discharge and nutrients demonstrated lagged

interactions with seatrout that were notably longer

than lags with prey items. For the YOY stanza,

correlations with discharge (q > 0.56; Figure 9)

and nutrients (q > 0.33; Figure 9) were exhibited

at approximately 15 and 11 months, respectively

(Figure 9), while prey items of anchovies

(q > 0.58; Figure 9) and shrimp (q > 0.39; Fig-

ure 9) demonstrated interactions at shorter inter-

vals. This was similarly reflected for the

intermediate age stanza, as lags from discharge

(q > 0.63; Figure 9) and nutrients (q > 0.41;

Figure 9) were exhibited at 9 and 14 months,

whereas interactions with clupeids (q > 0.43;

Figure 9), YOY mullet (q > 0.76; Figure 9), and

decapods (q > 0.70; Figure 9) ranged from 0 to

5 months.

For the red drum age classes, we observed several

bottom-up signals, as well as a potential example of

recruitment effects (Figure 10). Both nutrients

(q > 0.42; Figure 10) and discharge (q > 0.42;

Figure 10) interacted with YOY red drum at short

time lags, ranging from 0 to 2 months. The inter-

mediate aged stanza (1–4 years) also exhibited

interactions with a series of variables but at longer

time lags relative to YOY red drum. We observed

associations between nutrient concentrations and

intermediate aged red drum (q > 0.52, lag = 30–

32 months; Figure 10), as well as from prey items

such as pinfish (q > 0.58, lag = 24–29 months;

Figure 10) and decapods (q > 0.51, lag = 21–

22 months; Figure 10). In addition to the bottom-

up impacts, we also observed a likely effect from

recruitment. Intermediate aged red drum appeared

to demonstrate a mild causal relationship with YOY

red drum at a lag of 30–32 months (q > 0.24;

Figure 10).

DISCUSSION

In simulation testing scenarios, several common

tendencies were observed. We found that (1) EDM

performed best when bottom-up processes were

included in the simulations, whereby lower trophic

level taxa impacted higher level groups through the

process of nutrient inputs, primary, and secondary

production; (2) EDM was less capable of detecting

lagged connections higher in the food web; and (3)

observation error had a significant impact on EDM

model performance. In general, we observed that

the effects of observation error increased with

trophic level. While these trends were evident,

these results should be interpreted within the

context of a highly simplified system. Even in this

confined system where all trophic dynamics were

Figure 6. Convergent cross-mapping skill with respect to level of observation error and functional group. Plot represents

the effect of phytoplankton on upper trophic level taxa through bottom-up effects in the FLE. Functional groups are

colored and ordered in relation to their representative trophic level. Results are from the BU + TD scenario.
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clearly established, EDM was still unable to distin-

guish certain ecological relationships. This likely

reflects the significant complexity that is repre-

sented even in simple systems.

An important concept to consider when assessing

results from EDM is how to interpret results of

modeled parameters and potential causation. For

example, while CCM can detect important system

interactions, it cannot describe the direction of

these relationships. Although this is a significant

limitation of these models, recent developments

have been made addressing this issue (Deyle and

others 2016a, b; Chang and others 2021). Addi-

tionally, another potential concern is that EDM

may describe causal effects between time series

even if mechanisms for such causality do not exist.

These models may incorrectly detect causation be-

tween synchronous time series that do not influ-

ence one another but instead covary over time.

Potential examples of this phenomenon may exist

in the relationships between discharge with popu-

lations of anchovies and YOY seatrout and red

drum. This is possible due to the seasonal dynamics

of both discharge rates and life-history patterns of

these fishes. This concern can easily be circum-

vented by refining research questions and focusing

on known or hypothesized connections. Within

ecology, this can be done by highlighting known

trophic interactions through simplified sub-food

webs, a methodology employed by this study.

Although we found stronger interactions associ-

ated with bottom-up processes than top-down

forces in the FLE, the discussion over the more

influential driver continues throughout the con-

Figure 7. Food web diagram demonstrating energetic transfer to anchovies along with associated CCM results. In the food

web diagram, trophic pathways were informed by Sinnickson and others (2021). Sizes of nodes represent amount of

biomass in functional groups, while linkages represent energetic transfers through consumption. The CCM plot depicts

factors influencing anchovy abundances in the Suwannee River estuary. Time lags (months) are represented on the x-axis,

while the strength of the relationship at time lags is depicted by Pearson’s correlation coefficient along the y-axis.
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temporary literature. Historically, some have sug-

gested that ecosystems, particularly aquatic sys-

tems, are more influenced by top-down processes

(Carpenter and others 1987; Estes and Duggins

1995; Estes 1996; Kay 1998; Frank and others

2005; Heck and others 2007). Although many

systems are significantly regulated by top-down

control, examples of bottom-up regulation in

aquatic environments abound. In particular, high

rates of eutrophication have been observed

throughout many ecosystems globally, and these

changes at the base of the food web have signifi-

cantly influenced trophic pathways within these

respective systems (Rabalais and others 2002;

Kemp and others 2005; Chislock and others 2013;

Liu and others 2018). This has been particularly

evident in subtropical ecosystems, where irradiance

levels and nutrient concentrations have been ob-

served as significant drivers of ecosystem dynamics

(Lapointe 1997; Bledsoe and Phlips 2000; Lehrter

and others 2009). While we more readily detected

bottom-up rather than top-down drivers in the FLE

Figure 8. Food web diagram depicting energetic pathways to Gulf flounder along with associated CCM results. The food

web diagram was informed by Sinnickson and others (2021). Sizes of nodes and width of linkages represent amounts of

biomass. The CCM plot demonstrates ecological factors related to Gulf flounder abundances. The x-axis is represented by

time lags (months), while the y-axis is depicted by Pearson’s correlation coefficient. Gulf flounder appear to be affected

more quickly by factors that are of a higher trophic level.
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model, most real-world ecosystems, especially

those supporting fisheries, are likely influenced by

a combination of both processes (Mackinson and

others 2009).

A notably similar analysis to our study was

conducted by Luken (2020), whereby the author

utilized CCM to assess both top-down and bottom-

up impacts within a reservoir ecosystem. She

evaluated relationships between chlorophyll-a,

zooplankton, and larval shad (Dorosoma cepedi-

anum), and, like our study, found that bottom-up

drivers tended to have stronger impacts on popu-

lations than top-down processes. Although

chlorophyll-a was found to impact zooplankton

biomass and zooplankton biomass affected larval

shad densities, the study did not directly assess the

impact of chlorophyll-a on shad.

Like the simulated data assessment, in our

empirical dataset, we also observed several signifi-

cant examples of bottom-up drivers influencing

food web interactions. This was exemplified by

biotic and abiotic factors having strong, lagged

interactions with anchovies, Gulf flounder, spotted

seatrout, and red drum (Figures 7, 8, 9, 10). In the

former three relationships, we found that there was

generally an inverse relationship between the

trophic level of the predictor groups and the length

of the time lag (Figure 11). River discharge and

nutrients demonstrated the longest lagged effects,

while the biotic variables and prey species affected

anchovies, Gulf flounder, and YOY seatrout more

quickly (Figure 11). For example, moving up the

food web from discharge rates to nutrients levels

and subsequently chlorophyll-a concentrations,

these factors influenced anchovy densities at lagged

intervals of approximately 8, 3, and 0 months,

respectively (Figure 5). This phenomenon was also

demonstrated with Gulf flounder, as nutrient and

chlorophyll-a concentrations affected flounder

densities at lags of 13 and 10 months, while prey

items such as pinfish and blue crabs exhibited lag-

ged effects at 6 and 4 months (Figure 8).

Figure 9. Food web diagram demonstrating energetic pathways to spotted seatrout along with associated CCM results. The

food web was informed by Sinnickson and others (2021). Sizes of nodes represent amount of biomass within functional

groups, while width of lines depict biomass leaving taxa. The CCM plots depict factors influencing YOY spotted seatrout

abundances (left) and intermediate aged seatrout (1–2.5 years) (right). Time lags (months) are represented on the x-axis,

while Pearson’s correlation coefficient is represented on the y-axis, demonstrating the strength of the relationship at given

time lags. For both age stanzas, direct prey items appear to influence seatrout populations more quickly relative to the

physical, abiotic factors.
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One difficulty in detecting top-down interactions

was that some of the higher trophic level fish

which inhabit the estuary were not able to be in-

cluded in the analysis. This was due to their sea-

sonal availability patterns marked by missing data

that resulted in the removal of these time series

from the assessment. Some of these taxa included

adult seatrout (2.5+ years), jack crevalle (Caranx

hippos), Spanish mackerel (Scomberomorus macula-

tus), and bonnethead (Sphyrna tiburo).

In all simulated scenarios, we consistently ob-

served that as trophic level increased, the ability to

detect lagged interactions decreased. It appeared

that the third trophic level, secondary consumers,

was the threshold for which strong trophic inter-

actions could be consistently observed. Relation-

ships between tertiary consumers and lower

trophic level groups were generally mild or difficult

to distinguish. One possible explanation for this

phenomenon is system inefficiency. Biological

Figure 10. Food web diagram representing energetic transfers to red drum within the Suwannee River estuary and

associated CCM results. The food web diagram was informed by Sinnickson and others (2021). Nodes range from detritus

and primary producers at the first trophic level, to red drum between the third and fourth trophic levels. Widths of

linkages and sizes of nodes represent amounts of biomass. The CCM plots demonstrate environmental factors influencing

YOY red drum and intermediate aged red drum (1–4 years). Time lags (months) and Pearson’s correlation coefficient (q)
are represented on the x and y-axes, respectively. Young-of-year red drum appear to be affected by variables relatively

quickly, while the intermediate aged fish are affected at lags ranging from 20 to 33 months.
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production is not a completely efficient process, as

species lose energy through respiration and defe-

cation. Baird and Ulanowicz (1989) demonstrated

how energetic efficiency decreases with an increase

in trophic level. They found that first and second

order trophic level species transferred approxi-

mately 85 and 36% of their energy to the next

trophic level, respectively. Energetic efficiency then

drops to approximately 10% for the following three

trophic levels. We may hypothesize that trophic

efficiencies need to exceed 30% for EDM to detect

energetic pathways. If energy is being lost at each

successive trophic level, we should only expect to

observe minimal changes in predatory populations

when there are significant fluctuations in primary

production rates. These small changes in predator

densities may not be substantial enough for

detection with EDM.

Another explanation for weaker signals at high

trophic levels could relate to diet compositions.

During the construction of the FLE, lower trophic

level taxa were specialists, while predatory fish had

more generalist diets. This could in part explain the

lack of strong interactions between forage fish and

invertivores with predators. This variability in diet,

combined with the high trophic level of predators,

creates a series of different energetic pathways for

biomass to accumulate up the food web. In the FLE,

biomass was transferred to piscivores and general-

ists through five and three energetic pathways,

respectively, while all lower trophic level groups

obtained energy from a single pathway. It is likely

that predators are not strongly linked to individual

species at lower trophic levels because energy can

transfer through many different taxa to reach ter-

tiary consumers. Understanding the implications of

energetic inefficiencies, diet compositions, and

trophic pathways will be important for applying

EDM to real-world ecosystems. Even in relatively

simple systems with low biodiversity, there can still

be a significant amount of trophic complexity. Fu-

ture research should consider amending our EwE

simulation model in order create alternate scenar-

ios, whereby predatory species have more con-

strained diets, such as in cold-water systems.

It is likely that our assessment of the relationship

between net efficiencies and CCM skill successfully

elucidates the impacts of both system inefficiencies

and Ecopath parameterization on EDM perfor-

mance. Net efficiencies will inherently incorporate

both factors, and our assessment revealed a strong,

linear relationship between net efficiency and CCM

q (Figure 4; BU + TD; q = 0.71 + 0.78*Net Effi-

ciency; R2 = 0.73). Upper trophic level taxa exhib-

ited lower net efficiencies, which may have been a

function of higher respiration rates and lower

production rates. We believe that EDM application

will be most effective for species that demonstrate

high gross food conversion efficiencies and there-

fore have higher turnover rates, allowing them to

covary with prey items and make repeated returns

to the same state-space.

When interpreting the results from the simulated

TD scenario and the higher trophic levels, it is

important to consider the underlying methodolo-

gies of EDM and how they could potentially impact

model results. A foundational principle that may

illuminate these results is the concept of recur-

rences (Kantz and Schreiber 2004; see Munch and

others 2022). Empirical dynamic modeling func-

tions by making recurring visits to a given neigh-

borhood within the state-space of a time series.

Because species with short generation times have

significantly more recurrences relative to longer-

lived animals, differences in model results should

be expected. The high variability exhibited in the

time series of the low trophic level species should

subsequently result in frequent visits to the same

location in state-space. Conversely, our high

trophic level taxa would have made limited recur-

rences because of the limited variability of their

Figure 11. Scatterplot describing the relationship

between the trophic level of predictor taxa and the

reflected time lag of the response species. Data were only

included from CCM analyses of anchovies, Gulf flounder,

and YOY seatrout. In these relationships, we observed

decreases in time lags as the trophic level of the predictor

increased. Although trophic levels are not generally

ascribed to abiotic factors such as discharge and

nutrient concentrations, for this assessment, relative

approximations were made. Discharge and nutrient

levels were given trophic level estimates of 0 and 0.5,

respectively, which would demonstrate how nutrients

move through food webs sequentially.
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populations, which also occurred on longer time-

scales. These characteristics are the most plausible

explanation for our results. While this may initially

appear as a limitation of EDM models, it may

actually represent a concern specifically for input

time series data. Biologists intending to utilize EDM

in future research should consider the generation

times and turn-over rates of study species before

formal model development.

This phenomenon has also been documented in

the current literature, most notably in a compre-

hensive meta-analysis conducted by Munch and

others (2018). Of the 185 study species, the authors

found that the predictive ability of EDM was posi-

tively related to the frequency of generations

exhibited in time series. As a result, the authors

recommended the application of EDM for shorter-

lived species with faster generation times. Subse-

quent publications utilizing EDMmodels document

the selection of short-lived species as ideal study

taxa (Methot 2000; Giron-Nava and others 2017;

Johnson and others 2021; Daugaard and others

2022; Tsai and others 2022).

In our analysis, another notable finding was that

observation error had a significant impact on EDM

model performance. In the scenarios of 0.3 and 0.6

observation error, variability clearly influenced the

ability of EDM to detect the true lagged effect.

Throughout fisheries research, significant levels of

observation error, sampling inefficiency, and gear

bias are common, which can cause bias and ob-

scure the true patterns (Hayward and others 1989;

Dunham and others 2001; Rosenberger and Dun-

ham 2005; Breen and Ruetz III 2006; Meyer and

others 2014). Monitoring programs aimed at

developing indices of abundance in stock assess-

ments frequently target a CV of no more than 0.3

(Hilborn and Liermann 1998). Within the broader

discipline of population biology, levels of observa-

tion error have been estimated at 32% (Meir and

Fagan 2000). For populations that are sampled with

high levels of observation error, EDM may not be

an effective way to identify food web dynamics.

Conversely, in monitoring programs with low

observation error, such as the FIM program, EDM

would likely be more effective. This supposition is

supported by the results of this study, as we ob-

served numerous distinct trophic linkages exhibit-

ing high q values using the real-world dataset. A

review of the relevant literature on this topic

demonstrates conflicting evidence of the effect of

error on EDM performance. Similar to our assess-

ment, Mønster and others (2017) investigated this

topic and found a negative, linear relationship be-

tween noise and CCM correlation coefficients. In

contrast, BozorgMagham and others (2015) de-

scribe CCM as robust to changes in error when

applying Guassian white noise to modeled systems.

Additionally, some of the topics pertaining to the

higher trophic levels may also have relevance

when interpreting the effects from observation er-

ror. Although equal amounts of observation error

were added to all taxa, the resulting signal to noise

ratios (SNR) of functional groups differed across

population sizes. When error is applied, this signal

decreases more substantially for taxa with less

biomass at higher trophic levels. Subsequently, this

would result in fewer visits to the same neighbor-

hood state-space. This discrepancy would be an

obstacle for making definitive conclusions on the

true effect of observation error across the food web.

One way to potentially address this concern would

be to use time series of longer lengths, as the pre-

dictive ability of EDM S-maps has been found to be

directly related to time series lengths (Giron-Nava

and others 2017).

While other studies have utilized EDM to analyze

direct trophic interactions, this study may provide

insight into how to apply EDM to real-world,

highly complex ecosystems that include indirect

effects, trophic feedbacks, and energetic pathways

with low efficiency. In general, EDM tends to be

employed in population biology to assess direct

predator—prey, grazing, and nutrient uptake

interactions (Ye and others 2015a; Anneville and

others 2019; Cai and others 2020; Luken 2020).

Exceptions would include studies analyzing the

relationship between environmental variables and

animal populations, but in these interactions, the

environment can directly impact populations

(Sugihara and others 2012; Ye and others 2015b;

Kuriyama and others 2020). Certain studies have

addressed bottom-up effects, but these analyses

have been focused on the interactions between

nutrients and planktonic groups (Frossard and

others 2018; Chang and others 2020).

Our study provides new insights as to how bot-

tom-up effects can indirectly impact higher trophic

level species at lagged intervals. This would be

represented by the relationship between forage fish

and phytoplankton biomass. In our models, forage

fish did not directly consume phytoplankton, but

phytoplankton indirectly affected forage fish pop-

ulation by transferring energy to zooplankton.

One significant similarity between our results

and other EDM analyses was that most strong

interactions were observed at low trophic levels.

Although our study did not detect many strong

relationships at high trophic levels, most EDM

studies only analyze species that are planktonic or
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secondary consumers (Ye and others 2015a; An-

neville and others 2019; Rogers and others 2020;

Cai and others 2020; Luken 2020). The sole study

that we found assessing the dynamics of a high

trophic level predator was conducted on sockeye

salmon (Oncorhynchus nerka) recruitment (Ye and

others 2015b). Our study indicated that EDM is not

highly effective at identifying interactions between

lower and upper trophic level species. Overall, the

general lack of studies applying EDM to assess

predatory fish populations likely indicates the

techniques limited performance in these scenarios.

Our analysis demonstrated that EDM has the

potential to identify trophic linkages, particularly at

the base of food webs, where there are fewer, and

shorter, energetic pathways, and when data are

collected with minimal observation error. This has

substantial implications in fisheries research and

ecology more broadly. Identifying potential causa-

tion in ecosystems where experimentation is

impractical can help to elucidate frequently de-

bated topics in ecology such as the effects of bot-

tom-up versus top-down processes, the importance

of forage fish in aquatic food webs, and whether

human harvests or environmental conditions have

stronger impacts on populations of commercially

valued species (Skud 1975; Hunter and Price 1992;

Hilborn and others 2018). By understanding eco-

logical time lags, scientists would be capable of

designing more informative research programs and

population models, as there would be a better

understanding of when responses would manifest.

Further developments in this line of research

would not only be transformative in ecology but

likely within the field of applied natural resource

management as well.
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