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ABSTRACT

Peatlands represent an important component of the

global carbon cycle, storing 180–621 Gt of carbon

(C). Small-scale spatial variations in elevation,

frequently referred to as microtopography, influ-

ence ecological processes associated with the peat-

land C cycle, including Sphagnum photosynthesis

and methane flux. Microtopography can be char-

acterized with measures of topographic variability

and by using conceptual classes (microforms)

linked to function: most commonly hummocks and

hollows. However, the criteria used to define these

conceptual classes are often poorly described, if at

all, and vary between studies. Such inconsistencies

compel development of explicit quantitative

methods to classify microforms. Furthermore, gra-

dient-based characterizations that describe spatial

variability without the use of microforms are

lacking in the literature. Therefore, the objectives

of this study were to (1) calculate peatland micro-

topographical elevation gradients and measures of

spatial variability, (2) develop three microform

classification methods intended for specific pur-

poses, and (3) evaluate and contrast classification

methods. Our results suggest that at spatial scales

much larger than microforms, elevation distribu-

tions are unimodal and are well approximated with

parametric probability density functions. Results

from classifications were variable between methods

and years and exhibited significant differences in

mean hollow areal coverages of a raised ombro-

trophic bog. Our results suggest that the concep-

tualization and classification of microforms can

significantly influence microtopographic structural

metrics. The three explicit methods for microform

classification described here may be used and built

upon for future applications.
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HIGHLIGHTS

� Digital elevation models of peatland microtopog-

raphy were highly accurate

� Measures of surface roughness and elevation

distributions were calculated

� Three microform classification schemes were

developed and evaluated
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INTRODUCTION

Northern peatlands are an important component of

the global carbon (C) cycle (Yu and others 2010,

2011), typically storing C at rates in the range of

20–30 g C m-2 y-1 (Yu and others 2011). North-

ern peatlands have been storing C for about 7000–

14,000 years (Yu 2011; Morris and others 2018),

resulting in total storage estimates ranging from

180 to 621 Gt C (Gorham 1990; Yu and others

2010; Yu 2012). The most recent estimate of 547

(473–621) Gt C from Yu and others (2010) repre-

sents over one-third of global terrestrial C, when

using soil organic carbon estimates of about 1400

Gt C (Cao and Woodward 1998; Scharlemann and

others 2014). Northern peatlands are also major

contributors of atmospheric methane (CH4) (Fung

and others 1991). Methane emissions from North-

ern peatlands to the atmosphere (30–35 Tg CH4 y-

1; Post and others 1982; Fung and others 1991;

Gorham 1991) represent a significant source of

atmospheric CH4, with these emissions estimated to

account for up to about 7% of global CH4 emissions

(Fung and others 1991).

The hummock–hollow complex dominates the

microtopography of many peatlands and plays a

major role in several ecological, hydrologic, and

biogeochemical processes including C dynamics.

Specifically, these include: an influence on green-

house gas emissions (Bubier and others 2003; Hir-

ano and others 2009; Moore and others 2011),

rates of decomposition (Johnson and Damman

1991), peat accumulation (Chaudhary and others

2018), plant community (Andrus and others 1983;

Chaudhary and others 2018; Harris and Baird 2018;

Arsenault and others 2019; Malhotra and others

2016), plant productivity (Moore 1989), water

chemistry (Arsenault and others 2019), and nutri-

ent availability (Chapin and others 1979; Damman

1978). The primary biophysical driver of these dif-

ferences is changes in peat water and oxygen

content, which are associated with water

table depth.

Water table depth is closely linked to multiple

ecological processes associated with microtopogra-

phy and biogeochemical cycling. The position of

the water table controls where aerobic or anaerobic

decomposition occurs in the peat column, which in

turn influences carbon dioxide (CO2) and CH4

emissions (Moore and Dalva 1993). Anaerobic

conditions beneath the water table drive CH4 flux

(Moore and Knowles 1989; Bubier and others

1993; Freeman and others 1993; Moore and Dalva

1993; Hirano and others 2009; Moore and others

2011; Munir and Strack 2014), and the water

table has been described as an ‘on–off switch’ for

CH4 emissions by Christensen and others (2003).

Furthermore, water content in non-vascular

Sphagnum is linked to water table proximity (Rydin

1985), which modulates photosynthetic rates

(Schipperges and Rydin 1998). Walker and others

(2017) found water table depth to be a strong

predictor of Sphagnum gross primary production

(GPP) variability at the SPRUCE site (see below),

due to the influence of water table depth on the

vertical soil moisture gradient.

The predominantly saturated conditions in hol-

lows promote anaerobic decomposition of organic

material, which drives higher CH4 emissions com-

pared to hummocks (Moore and Knowles 1989;

Bubier and others 1993). In contrast, hummocks

exhibit higher CO2 fluxes than hollows, because

they occupy a larger fraction of the peat column in

aerobic conditions and can experience warmer

temperatures seasonally, influencing rates of CO2

emission (Moore and Knowles 1989; Bubier and

others 1993). Although the ratio of emitted

CO2:CH4 differs between microforms, CO2 flux is

higher than CH4 flux in both microforms (Kim and

Verma 1992; Bubier and others 1993; Waddington

and Roulet 1996).

Methods that provide robust datasets for char-

acterizing peatland microtopography and classify-

ing microforms were lacking until recently,

resulting in descriptions ranging from qualitative

(for example, Bubier and others 1993; Nungesser

2003; Benscoter and others 2005) to quasi-quan-

titative (for example, Johnson and others 1990;

Weltzin and others 2001; Pouliot and others 2011).

Examples of qualitative descriptors for hollows in-

clude elevation (low areas), slope (flat areas), and

concavity (depressions). Ambiguous descriptions

can confound classifications of microforms between

studies. Moreover, explicit quantitative definitions

provide clarity and allow for improved scaling and

syntheses between studies.

One reason for the lack of detailed quantitative

characterizations of peatland microtopography was

the previous inability to provide dense and highly

accurate elevation data to measure microtopogra-

phy over large areas (for example, Almendinger

and others 1986; Huang and others 1988; Huang

and Bradford 1990; Ehrenfeld 1995; Flanagan and

others 1995; Darboux and Huang 2003; Pouliot and

others 2011). Recently, however, remote sensing

technologies including unmanned aerial systems

(UAS) based structure from motion (SfM) (Lucieer

and others 2014; Mercer and Westbrook 2016;

Smith and others 2016; Nouwakpo and others

2014; Smith and Warburton 2018; Moore and
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others 2019) and terrestrial laser scanning (TLS)

(Barneveld and others 2013; Brubaker and others

2013; Nouwakpo and others 2016) have been used

to measure microtopography. Terrestrial laser

scanning is a remote sensing technology that pro-

vides accurate and dense point clouds, providing a

promising technique for characterizing peatland

microtopography at fine scales over relatively large

areas (for example, 0.01–0.10 m resolution over

10–100 s of meters). Stovall and others (2019) used

TLS to generate high-resolution digital elevation

models (DEM) of wetland microtopography with

high accuracy (root-mean-squared error; RMSE =

0.04 cm) and used a topographic segmentation

algorithm to define hummock microforms. Addi-

tionally, Moore and others (2019) used SfM to

derive digital models of peatland microtopography

and used Gaussian mixed models to characterize

elevation distributions of microtopography.

Considering the influence of microtopography

on hydrologic and biogeochemical processes,

proper representation of microtopography in land

surface models is needed for accurate simulations

of biogeochemical cycles (see Moore and others

2019). Most land surface models do not accurately

characterize C emissions from peatlands, partially

because they do not represent peatland microto-

pography or hydrology. However, several models

have been made, or modified, to incorporate

peatland microtopography (Frolking and others

2002; Baird and others 2011; Morris and others

2011a, b; Shi and others 2015). Some models uti-

lize simplistic approaches that represent discrete

hummock and hollow microforms (Frolking and

others 2002; Shi and others 2015), whereas Digi-

Bog (Baird and others 2011) provides a more

sophisticated approach that is able to incorporate

elevation gradients representative of peatland

microtopography.

The incorporation of microtopography in both

field and modeling studies that investigate the

hydrology, ecology, and biogeochemistry of peat-

lands compels the need for accurate characteriza-

tion of microtopography. Characterization of

microtopography should include methods that re-

tain high structural fidelity and resolution, in

addition to quantitative microform classifications

intended for implementation into applications

using the hummock–hollow dichotomy. Therefore,

the objectives of this study were to (1) calculate

and analyze measures of microtopography with

high structural fidelity (that is, elevation distribu-

tions, surface roughness, and spatial variation), (2)

develop and assess three application-specific

microform classification methodologies, and (3)

compare classification results using the three

methods and discuss their utility for both modeling

and field studies. To accomplish these objectives,

we utilized TLS measured point clouds to derive

high-resolution DEMs of the bog. We then calcu-

lated measures of surface roughness and model

semivariograms and finally performed quantitative

microform classifications on the generated DEM to

produce spatially explicit maps of microforms for

comparison.

METHODS

Study Site

The Spruce and Peatland Response Under Chang-

ing Environments project (SPRUCE; Hanson and

others 2017b) experiment is located at the S1 bog

in the Marcell Experimental Forest, Northern

Minnesota, USA. The S1 bog is an 8.1 ha ombro-

trophic peat bog with a perched water table and

little regional groundwater influence (Sebestyen

and others 2011). Mean annual air temperature at

S1 was 3.4�C, and mean annual precipitation was

780 mm between 1969 and 2009 (Sebestyen and

others 2011). S1 is acidic (near surface pore water

pH � 3–4) with an average peat depth of 2.27 m

and basal age of the deepest centimeter of peat

profiles ranging from 5100 to 11,100 cal BP (Slater

and others 2012; Griffiths and Sebestyen 2016;

McFarlane and others 2018). Additional details

about the study site can be found in Sebestyen and

others (2011).

The undulating hummock–hollow surface of the

S1 bog was the basis for the analyses in this paper.

Access to experimental plots (nominally 12 m

diameter) throughout the S1 bog was provided by a

network of boardwalks installed for the SPRUCE

experiment (Hanson and others 2017b). Twelve

plots were selected for scanning using TLS. Ten of

the SPRUCE plots were enclosed for warming

treatments, and two were open ambient plots. Each

plot was surrounded by an octagonal boardwalk

that formed the stable base from which TLS scans

were obtained.

TLS Scans

All scans were collected using a Riegl VZ-1000

terrestrial laser scanner, which utilizes a 1550 nm

laser to produce a three-dimensional representa-

tion of the surrounding area (point cloud; Fig-

ure 1A). Four TLS scans were taken per SPRUCE

plot and subsequently registered together in RiS-

CAN PRO to produce a single point cloud for each

SPRUCE plot (Graham and others 2019a). The
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SPRUCE plots were scanned in April–May of 2016,

2017, and 2018, with an angular resolution of 0.04

degrees. Scanning was performed early in the year

following snowmelt so that the bog surface was not

obscured by later development of shrub-layer ca-

nopies of plant foliage.

Surface Reconstruction

Point clouds were processed to retain points within

the boardwalk (� 9 m edge-to-edge) of each

SPRUCE plot. Small areas within the scanned plot

were occupied by large flux collars (Hanson and

others 2017a) that inhibited laser pulses from

assessing the bog surface and were excluded from

the analysis. To reconstruct the bog surface, the

data were filtered to extract the lowest return in a

2D grid, with grid cells measuring 0.1 9 0.1 m. A

surface mesh was created using the Poisson surface

reconstruction (Figure 1B) (Kazhdan and others

2006) plugin for CloudCompare v2.8 (CloudCom-

pare 2017), which is capable of reconstructing

surfaces from noisy data. This mesh was sampled to

discretize the surface and generate a DEM with

0.01 m grid cells (Graham and others 2019b).

DEMs in this study primarily represent the top of

Sphagnum capitula. In locations where there was no

Sphagnum coverage, DEMs represent the top of

other low stature vegetation (for example, feather

mosses) or bare earth.

Surface Roughness and Elevation
Variability

Quantitative characterizations of peatland micro-

topography in the literature are sparse, although

model representations that can utilize detailed

topographic data including elevation distributions,

such as DigiBog, are currently in use (Baird and

others 2011). Further, elevation distributions can

be used in conjunction with measures of biogeo-

chemical processes made along an elevation, or the

associated water table depth, gradient (for example,

Moore and Knowles 1989; Bubier and others 1993,

2003; Moore and others 2011) to make spatial

extrapolations of quantities of interest. Therefore,

providing characterizations of microtopography

that are related to elevation gradients and spatial

variability will help improve model simulations of

peatland dynamics and facilitate more accurate

estimates of biogeochemical fluxes. In this study,

we provide four measures of microtopography in

SPRUCE plots (for the 2017 dataset) that are based

on elevation distributions, spatial variability, and

surface roughness of peatland microtopography.

Elevation Distributions

Elevation distributions were unimodal and fairly

well approximated by normal distributions; how-

ever, elevation distributions were typically skewed

left and had positive kurtosis (Figure 2). Therefore,

we utilized Pearson’s distributions (Pearson 1895,

1901, 1916; Johnson 1949) to represent elevation

distributions to deal with skewness and kurtosis.

The Pearson distributions are a family of probability

distributions which use 2–4 parameters to generate

continuous probability density functions. The type

of Pearson’s distributions and the parameters were

calculated using the ‘‘pearsonFitML’’ function in

the Program R (R Core Team 2017) package

‘‘PearsonDS’’. Distributions were fit to the twelve

SPRUCE plots individually and combined.

Random Roughness

Random roughness (RR) and its variants are among

the simplest and most commonly used surface

Figure 1. Workflow used to generate microform

classification maps, starting with the terrestrial laser

scanning point cloud (A; colored by intensity) used to

generate the digital surface model (B; colored by

elevation), and finally the microform classification map

(C; colored by microform). SPRUCE plot 10 is used as an

example. Additionally, an image of the mapped domain

(D) showing one of the large flux collars that occluded

laser scanner pulses and caused the ‘‘holes’’ in maps.

Spatial scales between panes (A, B, C) are not exact;

however, horizontal and vertical scales are 1:1 in

individual panes.
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roughness metric which refer to measures of vari-

ation in elevation without consideration for the

spatial arrangement of roughness elements. Previ-

ous studies have used both standard error (All-

maras and others 1966; Currence and Lovely 1970)

and standard deviation (r) (Kamphorst and others

2000; Moreno and others 2008; Vermang and

others 2013) as measures of variability. Here, we

calculate RR as r of elevation from the DEM cells

for the twelve individual SPRUCE plots and plots

combined.

DEM Roughness Length

Roughness length (z0) is a measure of surface

roughness, which is used to characterize microto-

pography (Campbell and others 2002; Brubaker

and others 2013) that is a representation of

roughness elements and corresponds to the point at

which the wind speed is zero in the log wind pro-

file. Therefore, z0 can be used to represent the

influence of microtopography on turbulence and

the resulting effect on surface mass and energy

fluxes (Choudhury and others 1979; Campbell and

others 2002). Studies using z0 have calculated the

parameter in many ways, from calculating using

RR and simple transect-based approaches (Kuipers

1957; Lettau 1969), to more sophisticated DEM and

point cloud approaches (Smith and others 2016;

Miles and others 2017). Here, we calculate z0 using

the DEM method described in Smith and others

(2016) for each of the twelve SPRUCE plots.

Model Semivariograms

Semivariograms describe the spatial correlation of

random data fields, and when applied to elevation

can be used to describe topographic morphology

and surface roughness (Darboux and others 2002;

Smith and Warburton 2018). Empirical semivari-

ograms plot the semivariance against the lag dis-

tance separating points (Figure 3), and the model

semivariogram can be fit to the empirical semi-

variogram using three parameters: range (r), sill (s),

and nugget (n). In this study, we fit exponential

model variograms to empirical semivariograms

consisting of 10,000 random samples from each

SPRUCE plot. Our sampling intervals were suffi-

ciently small, and n appeared to be absent or ex-

tremely small in empirical semivariograms;

therefore, we set n in all model variograms to zero.

Parameters s and r were calculated for each

SPRUCE plot and combined.

Microform Classification Methods

Hollows can qualitatively be defined as low areas,

or depressions within the peatland that are often in

close proximity to the water table relative to the

surrounding area. Hummocks are defined as higher

mounds rising above the hollows, which results in

perched peat/root complexes that are further from

the water table. For applications that utilize strati-

fied sampling of each microform (for example, Kim

and Verma 1992; Waddington and Roulet 1996;

Sullivan and others 2008), such definitions may be

Figure 2. Elevation distributions for individual SPRUCE

plots; also displaying the distribution for all SPRUCE plots

combined with fit normal and Pearson’s distributions.

Figure 3. Empirical semivariograms for individual

SPRUCE plots, also displaying the empirical and

associated model semivariogram for all plots combined.
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sufficient, because investigators can select areas to

sample that most embody these qualitative defini-

tions. However, subjective selection of sampling

points in the most representative areas (that is,

extremes of both microforms, top of hummocks,

and bottom of hollows) is inadequate to quantita-

tively scale small-footprint measured data across

the complete landform (see Moore and others

2019). Further, these qualitative descriptions lack

sufficient detail to classify microforms from a DEM.

Modeling studies utilizing simplified two-column

approaches to microtopography, for example Shi

and others (2015) and Frolking and others (2002),

represent microforms as soil columns which are

differentiated by elevation. In contrast, field

investigators placing instrumentation may consider

qualitative metrics in addition to elevation (for

example, mounds, depression-like, transitional

slopes, and flat or planar areas). This demonstrates

that the conceptualization of microforms is appli-

cation specific, and therefore, so should classifica-

tion schemes.

Microform classification schemes should target

specific objectives and be explicitly defined, as to

not confound analyses spanning multiple studies.

Stovall and others (2019) marks a major advance

toward more useful methods to quantify wetland

microforms; however, the study used subjective

manual delineations of hummocks as validation

data. To address the need for explicit microform

classification schemes, we developed quantitative

methods to classify microforms for three purposes

that differ in their conceptualize of microforms (a)

the Functional_Classification classifies microforms

based on how the structure of microtopography

interacts with ecological drivers to determine eco-

logical function; (b) the ELM_Classification is de-

signed to generate microtopographic parameters

that are most consistent with the conceptualization

of microtopography in a land surface model,

ELM_SPRUCE (see below); and (c) the Scal-

ing_Classification is constructed to classify micro-

forms in a manner consistent with the subjective

placement of instrumentation in the field, and

meant to be used to make spatial extrapolations. To

accommodate each of these applications, classifi-

cation methodologies were customized to be best

suited for each individual application. For Func-

tional_Classification, we incorporated water

table depth data so that classifications using this

method would be representative of ecological

function, rather than simply reflect structure. To

provide the best estimates of microtopographic

model parameters, ELM_Classification only con-

siders relative elevation, which is consistent with

the representation of microtopography in the

model. Scaling_Classification is intended to be used

for scaling point, or small footprint, measurements

to larger spatial extents. Therefore, it attempts to

classify peatland microtopography in a manner

most consistent with the placement of instrumen-

tation by researchers in the field.

Method 1: Functional_Classification

We used depth to water table as a link to ecological

function and as a classification metric, because it is

related to multiple ecological processes including

Sphagnum photosynthesis and CH4 flux. Water

table is measured at each SPRUCE plot. Thus, we

used the plot-specific daily mean warm-season

median water table (WSMWT hereafter) and a

tolerance for a classification threshold for micro-

forms (Figure 4). The warm, or ice-free, season was

defined as the period when air temperatures re-

mained above 0�C. This classification method dif-

fers from the two others, because microform

coverage can change annually even if there is no

change to the structure of the microtopography.

This enables us to classify microforms to represent

changes in ecosystem function incurred by changes

in water table depth. For instance, increased

evapotranspiration in the warmest SPRUCE plots

(+9�C) may cause areas that would typically func-

tion in a hollow-like manner to function more like

hummocks because of lower water tables due to

drying.

Microform class was determined by whether the

elevation was above or below the WSMWT plus the

tolerance, as shown in Eq. 1:

CF x; yð Þ ¼ Hu; if zxy � ðzwtp50 þ TolÞ
Ho; if zxy< zwtp50 þ Tol

� �
�

ð1Þ

where x and y are geospatial coordinates (that is,

northing and easting), CF(x,y) is the Func-

tional_Classification at location xy, Hu and Ho are

hummock and hollow classifications, respectively,

zxy is the elevation at location xy, zwtp50 is the plot-

specific WSMWT, and Tol is a tolerance in meters.

The tolerance for elevations above WSMWT

(0.10 m) was chosen based on desiccation levels of

hollow-associated Sphagnum species relative to

water table, and productivity relative to water

content reported in Rydin (1985) and Schipperges

and Rydin (1998), respectively. Rydin (1985) re-

ports species of Sphagnum associated with hollows

reach a water content of � 750% (percent of dry

weight) at a distance of � 0.10 m from the water

table, and this level of water content is associated

with a sharp drop in Sphagnum photosynthesis

Characterizing Peatland Microtopography 1469



(Schipperges and Rydin 1998). This (0.1 m) is also

the depth at which Christensen and others (2003)

suggested CH4 emission is ‘‘turned on’’ or off, based

on data from Greenland, Iceland, Scandinavia, and

Siberia. While this ‘‘on–off switch’’ for CH4 emis-

sions may not be representative of all peatlands, the

0.10 m from Christensen and others (2003) is de-

rived from five sites on multiple continents, and

thus is likely representative of northern peatlands

over a broad geographic region. Therefore, a

0.10 m tolerance above the WSMWT represents an

elevation threshold at which areas below should

function ecologically like a hollow for at least half

of the warm-season and is used to classify micro-

forms.

Method 2: ELM_Classification

Shi and others (2015) have recently created a

modified version of the Energy Exascale Earth

System Model (E3SM) land model (ELM) that

represent the hydrology and microtopography of

peatlands. This modified version of ELM (referred

to as ELM_SPRUCE) was created based on experi-

ments at the SPRUCE site. ELM_SPRUCE uses a

two-column approach to peatland microtopogra-

phy, where one column is representative of hum-

Figure 4. Warm-season water table (A), plot of digital surface model elevation distribution (B), and maps of classified

microforms resulting from the thresholds displayed in B for the Functional_Classification and ELM_Classification (C, D,

respectively) for SPRUCE plot 8 in 2016. The same is displayed for 2017 (E–H) and 2018 (I–L). To facilitate comparisons,

plot elevation distributions (B, F, J) are displayed with elevation on the y-axes consistent with axes on warm-season water

tables plots (A, E, I).
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mocks and the other of hollows (similar to the

representation in Frolking and others 2002). These

columns have identical soil and PFT properties and

only vary in elevation and water table depth.

Modifications made by Shi and others (2015) in-

cluded the representation of near surface flow from

hummock to hollow, lateral drainage to the lagg,

and the glacial till acting as a barrier to vertical and

lateral drainage. Shi and others (2015) reported

improved simulations of water table position but

did not simulate biogeochemistry in ELM_SPRUCE.

However, they state that peatland hydrology

influences peatland C dynamics, and therefore

these modifications to the hydrologic cycle will

affect C cycling.

The ELM_SPRUCE approach to microtopography

uses three uncertain parameters in the represen-

tation of microtopography: hummock–hollow

height differential (0.3 m), hummock–hollow

horizontal separation (1.0 m), and proportional

cover of each microform (25% hollow; Shi and

others 2015). The current default values for these

parameters were obtained heuristically, and

therefore the accuracy and uncertainty of the val-

ues are largely unknown. In this paper, we devel-

oped methods that facilitate quantitative

evaluation of such representations of microtopog-

raphy, and their parameters.

A method using only information from the plot

elevation distribution was used for a classification

scheme to represent microtopography in a manner

most consistent with how microtopography is rep-

resented in ELM_SPRUCE. Hummocks and hollows

are represented in the model as soil columns that,

other than elevation, have identical properties.

Therefore, it is most consistent to classify microforms

based on structure alone (elevation), and not include

the water table position, because it is simulated

explicitly in ELM_SPRUCE. While similar techniques

could be used for other models, we chose to focus on

ELM_SPRUCE, because it is configured based on the

SPRUCE site and because it is able to couple to the

Earth system model E3SM.

An elevation threshold was used for classification

as a vertical tolerance from the plot elevation fifth

percentile, where any points below the elevation

threshold were classified as hollow and points

above were classified as hummock (Figure 4).

Explicitly:

CELM x; yð Þ ¼ Hu; if zxy � ðzp5 þ TolÞ
Ho; if zxy<ðzp5 þ TolÞ

�
ð2Þ

where CELM(x,y) is the ELM_Classification at loca-

tion xy, zp5 is the plot-specific elevation fifth per-

centile, and Tol is a tolerance in meters. The fifth

percentile is intended to represent the elevation at

the bottom of a ‘typical’ hollow and was used in-

stead of the plot minimum to mitigate any effect of

extremely or erroneously low points. The tolerance

used for the final classification was 0.10 m.

Method 3: Scaling_Classification

We created an index to classify microforms (Hollow

Index) based on elevation, concavity, and slope.

Considering researchers in the field often do not

have access to metrics like the MWSWT or the ele-

vation fifth percentile, these metrics are meant to be

the quantitative counterparts to qualitative descrip-

tors used by field researchers to identify microforms.

This method, therefore, is aimed to provide classifi-

cations consistent with researchers identifying

microforms in the field and best suited for scaling

stratified measurements. For example, if we took

stratified measurements of CH4 flux in both hum-

mocks and hollows, and wanted to make a bog-scale

estimate of CH4 flux, we would need to know the

areal coverage of each microform. The Scal-

ing_Classification method is aimed to provide

microform areal coverages best suited for spatial

extrapolations of similar stratified field measure-

ments.

The Hollow Index is a product of the three metrics,

after being passed through sigmoidal weighting

functions (Figure 5). Sigmoid weighting functions

are parameterized to accentuate ‘‘hollow-like’’

characteristics (that is, low elevation, positive con-

cavity, and relatively flat). The output of the Hollow

Index is a continuous variable (Figure 6A, B), in

which higher positive values correspond to the most

hollow-like areas. Therefore, a threshold was applied

to the Hollow Index to produce microform classifi-

cation maps (Graham and others 2019b). Thresh-

olding for classifications can be application/user

specific. Based on iterative thresholding, we used 2.2

as our threshold (Figure 6C, D). Additional infor-

mation and methods related to the parameterization

of sigmoid weighting functions in the Hollow Index

and Scaling_Classification can be found in the Sup-

plemental Material.

Statistics

To evaluate the variability in hollow percent cover

for a given plot across the 3 years (for example,

inter-annual (intra-plot) variability), we calculated

the r of percent cover for hollows for the 3 years of
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Figure 5. Upper panels (A–D) show maps of SPRUCE plot 7 (2017) displaying elevation, concavity, slope, and Hollow

Index, respectively. The lower panel shows distributions of each variable (E–H) with the same X-axes as graphs of sigmoid

weighting functions of each variable below (I, J, K), which are displayed on a background corresponding with map color

bars. An example grid cell is displayed on maps and on sigmoid weighting function plots, showing how variable values

(elevation, concavity, slope) are used in weighting functions, and how the resulting weights are multiplied to calculate the

Hollow Index.

Figure 6. A profile of a transect (A) and a map (B) from SPRUCE plot 7 (2017) colored by the Hollow Index. The same

transect classified into microforms using various Hollow Index thresholds (C), with a red box around the 2.2 threshold

used for Scaling_Classification in this study, and the resulting microform classification map (D). Arrows show the location

and orientation of the transect (A, C) on maps (B, D). Note that horizontal and vertical scales are not 1:1 in both A and C

(that is, the lengths that represent 1 m along the x and y-axes are not equal in both panes).
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the study in each plot. A Kruskal–Wallis test was

used to determine if there were differences in inter-

annual variability between methods. Non-para-

metric tests were used, because distributions were

non-normal or heteroscedastic. Intra-annual (in-

ter-plot) variability was defined as the variation in

hollow percent cover of all plots within a given

year, for each classification method, and was

evaluated for each year of the study. Differences in

intra-annual variability between methods were

tested using Bartlett’s tests. All statistical tests were

conducted using Program R (R Core Team 2017) at

a = 0.05.

RESULTS

Surface Reconstruction

The use of four scanning locations per plot reduced

the effect of laser occlusion by vegetation and

yielded point densities sufficient (mean > 10

points cm-1) for high quality surface reconstruc-

tions. The Poisson surface reconstruction (Kazhdan

and others 2006) performed well on the bog surface

and enabled accurate reconstructions and subse-

quent microform classifications, even when signif-

icant noise was present. The mean absolute error of

reconstructed surfaces from 357 validation points

was 0.057 m (for further details on DEM accuracy

see the Supplemental Material).

Elevation Variation and Surface
Roughness

Microtopography in all SPRUCE plots occurred on

the scale of about 0.5–0.6 m, with the lowest ele-

vation from all plots being - 0.48 m and the highest

being +0.31 m, relative to the plot means (Figure 2).

Standard deviations in DEMs elevations (that is, RR)

in SPRUCE plots ranged from 0.06 to 0.08 m, with a

mean = 0.07 m. Elevation distributions were typi-

cally skewed left and had positive kurtosis, with the

majority of SPRUCE plots having the best fit Pear-

son’s distribution be of type IV, although type V and

VI were also best fits for individual plots. Elevation

distribution from all plots combined was best fit by a

Pearson’s distribution IV. Pearson’s distribution type

and associated parameters can be found in Table 1.

The range parameter for plot semivariograms ranged

from 0.92 to 1.89 m (mean = 1.30 m; r = 0.30 m)

and sills ranged from 0.003 to 0.006 m (mean =

0.004 m; r = 0.001 m). DEM roughness length (z0)

ranged from 0.004 to 0.005 m (mean = 0.004 m;

r = 0.0005 m). Semivariogram parameters and z0
estimates can be found in Table 2.

Microform Classifications

The three classification methods in this study had

significantly different hollow coverages for all years

combined (v2 = 47.55, df = 2, p < 0.001). The

3 year mean areal coverage of hollows from

Functional_Classification was intermediate

(15.8%), but hollow coverages were markedly

more variable than the two other methods (Fig-

ure 7). ELM_Classification produced the highest

3 year mean hollow coverage (33.8%). Hollow

coverages from Scaling_Classification were the

lowest and least variable (Figure 7) of the three

methods, with a 3 year mean of 14.4%. Hollow

coverages between methods were significantly dif-

ferent in all years and cases (p < 0.05), other than

between Scaling_Classification and Func-

tional_Classification in 2017 (W = 68, df = 1,

p = 0.84), Functional_Classification and

ELM_Classification in 2018 (W = 41, df = 1,

p = 0.08), and Functional_Classification and Scal-

ing_Classification in 2018 (W = 96, df = 1,

p = 0.18).

In general, the variability (inter and intra-annu-

ally) in hollow coverage between methods followed

the pattern Functional_Classification � ELM_Clas-

sification > Scaling_Classification (Table 3). Intra-

annual variability was significantly different

(p < 0.05) in all cases and years except ELM_Clas-

sification and Functional_Classification in 2016

(v2 = 0.57, df = 1, p = 0.45). There was a significant

difference in plot-specific inter-annual variability of

hollow percent cover (Figure 8) between classifica-

tion methods (v2 = 17.21, df = 2, p < 0.001). Non-

plot-specific hollow coverage between years was only

significantly different for the Functional_Classifica-

tion (v2 = 10.35, df = 2, p = 0.006), further demon-

strating its higher inter-annual variability.

The higher variability in the Functional_Classi-

fication was driven primarily by differences in

MWSWT between plots and years (Figure 4A, E, I),

rather than structural changes in the bog surface

(Figure 4B, F, J), as was the case for ELM_Classi-

fication and Scaling_Classification. This is demon-

strated by the lower variability in the plot elevation

distributions fifth percentiles (used in the

ELM_Classification) between years (Figure 4B, F,

J) compared to the relatively higher variability in

MWSWT (Figure 4A, E, I). The Scaling_Classifica-

tion and ELM_Classification both used only topo-

graphic data; however, Scaling_Classification was

less variable than the ELM_Classification, because

it incorporated multiple topographic metrics that

are weighted based on plot distributions and is

therefore less affected by noise from surface

Characterizing Peatland Microtopography 1473



reconstructions and plot minimum elevations. This

may make Scaling_Classification a preferable

choice for multi-year studies which desire inter-

annual consistency in microform classifications. In

this study, the small changes in areal coverage of

hollows between years using Scaling_Classification

indicates small structural changes to the surface of

the bog.

DISCUSSION

To our knowledge, the only published studies that

quantitatively classified peatland microforms with a

DEM are Lovitt and others (2018) and Stovall and

others (2019). Lovitt and others (2018) used a

moving window average as an elevation threshold to

classify microforms (hummocks and hollows).

However, our data demonstrate that elevation dis-

tributions are unimodal and not highly skewed

(Figure 2). This indicates that the mean and median

are similar, and therefore it is implicit that the pro-

portion of hummocks and hollows will approximate

1:1 when using the local mean as a classification

threshold. This is supported by the results in Lovitt

and others (2018) who report 51.8% percent cover

for hollows (48.2% hummock) in undisturbed

locations. Two of our classification methods (Func-

tional_Classification and ELM_Classification) used

elevation thresholds, similar to Lovitt and others

(2018). However, the elevation thresholds in this

study were independent of plot elevation distribu-

tions and/or used a tolerance, which made classifi-

cations less prone to a bias toward a predetermined

ratio of hummock:hollow.

Table 1. Parameters for Pearson’s Distributions Fit to SPRUCE Plot Elevation Frequency Distributions.

Plot Type Location Scale Par3 Par4

4 4 0.24 0.21 9.64 19.80

6 6 0.40 - 2.44 32.20 198.28

7 5 - 0.94 148.56 159.44 NA

8 4 0.11 0.25 9.02 6.93

10 4 0.11 0.23 7.66 6.64

11 4 0.09 0.21 7.29 5.26

13 4 0.12 0.31 12.12 9.01

16 4 0.22 0.33 18.47 23.86

17 4 0.12 0.31 10.72 7.44

19 4 0.06 0.30 14.39 5.12

20 4 0.03 0.36 16.81 2.76

21 4 1.38 4.07 2602.59 1758.63

Combined 4 0.07 0.24 7.90 3.95

When type = 4, Par3 = m and Par4 = nu; when type = 5, Par3 = Shape (no fourth parameter), when type = 6, Par3 = a and Par4 = b.

Table 2. Summaries of Roughness Metrics From SPRUCE Plots

Plot RR (m) SV_Sill (m) SV_Range (m) z0 (m) Min_Elev (m) Max_Elev (m)

4 0.078 1.34 0.0057 0.0042 - 0.48 0.23

6 0.076 1.22 0.0056 0.0045 - 0.42 0.22

7 0.075 0.97 0.0059 0.0049 - 0.24 0.30

8 0.069 1.44 0.0038 0.0035 - 0.37 0.23

10 0.072 1.36 0.0046 0.0038 - 0.40 0.23

11 0.066 1.25 0.0040 0.0036 - 0.40 0.24

13 0.072 1.78 0.0039 0.0043 - 0.35 0.24

16 0.068 1.52 0.0039 0.0033 - 0.39 0.20

17 0.076 1.59 0.0047 0.0038 - 0.41 0.23

19 0.061 0.95 0.0037 0.0033 - 0.29 0.20

20 0.066 1.04 0.0042 0.0037 - 0.32 0.31

21 0.060 1.13 0.0028 0.0034 - 0.34 0.21

Combined 0.070 1.30 0.0044 0.0039 - 0.48 0.31

RR random roughness, SV_Sill semivariogram sill, SV_Range semivariogram range, z0 aerodynamic roughness length, Min_Elev minimum plot elevation relative to the mean,
Max_Elev maximum plot elevation relative to the mean
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The unimodal nature of elevation distributions in

this study does not support the notion of micro-

forms based on topography alone (at scales larger

than a few meters). These results differ from those

in Moore and others (2019), which reports plots

exhibiting both multi-modal and unimodal eleva-

Figure 7. Histograms displaying the areal coverage of hollows from each classification, in all plots, in all years. Vertical red

lines display means.

Table 3. Summary Statistics for Areal Coverage of Hollows in SPRUCE Plots by Year, and the Duration of
the Study, for the All Three Classification Methods.

Year Statistic Classification method (%)

Functional ELM Scaling

2016 Mean 4.1 33.2 14.6

Range 0.1–18.4 23.72–42.3 13.1–16.1

Standard deviation 5.2 6.7 1.1

2017 Mean 18.0 34.1 14.5

Range 0.7–43.0 25.42–45 12.5–16.5

Standard deviation 15.9 5.9 1.3

2018 Mean 23.4 34.0 14.1

Range 0.0–43.6 23.3–43.7 11.3–15.5

Standard deviation 14.7 5.7 1.3

Years combined Mean 15.8 33.7 14.4

Range 0.0–43.6 23.3–45.0 11.3–16.5

Standard deviation 15.1 6.0 1.2
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tion distributions. However, the plot size in Moore

and others (2019) was much smaller (3.8–10.6 m2)

than plots in this study (65.25–66.58 m2), and

some plots were specifically selected to have a

distinct hummock and a distinct hollow. The dis-

crepancy in modalities between our study and

Moore and others (2019) suggest that elevation

distributions may be multi-modal at small scales

that approximate the size of a combination of

hummock and hollow, but that the elevation dis-

tribution at scales much larger than microforms is

unimodal and resembles a normal distribution. This

is likely a result of microtopography having vari-

able morphology (for example, hummock–hollow

height difference and microform length/width) at

the peatland level; in which elevation distributions

are multi-modal at smaller scales, but when

aggregated at larger scales approximate a normal

distribution. This scale dependency of distribution

modality is an important distinction to make for

modeling applications and highlights the need to

characterize microtopography at multiple scales.

Future studies that sample microtopography at

multiple scales in different peatland types would

help elucidate inter-peatland variation and the

scale dependencies of elevation distributions.

Although our data do not support the concep-

tualization of microforms based on form alone (that

is, topography), nonlinear responses of biogeo-

chemical processes to water table depth (for

example, Rydin 1985; Moore and Knowles 1989;

Schipperges and Rydin 1998; Christensen and

others 2003) paired with variability in water

table depth incurred by microtopography, may re-

sult in microforms that are differentiable by eco-

logical function. Our Functional_Classification

differentiated microforms by ecological function

through the incorporation of water table in a

manner that is representative of two nonlinear

responses to water table depth. However, it should

be noted that this classification likely is not repre-

sentative of all relationships between biogeo-

chemical processes and water table depth (see

difference between CH4 and CO2 flux response to

water table in Moore and Knowles 1989), but could

be modified to address specific processes.

On annual timescales, classification results based

purely on microform structure diverged from the

Functional_Classification. This is demonstrated in

Figure 4, where a relatively low warm-season wa-

ter table (2016; Figure 4A) resulted in low areal

coverage of hollows from the Functional_Classifi-

cation (Figure 4C), and a relatively high warm-

season water table (2017; Figure 4E) resulted in

much higher areal coverage of hollows (Fig-

ure 4G). During this year, elevation distributions

and results from the ELM_Classification were lar-

gely unchanged. This constitutes a 3 9 increase in

the areal coverage of hollows from the Func-

tional_Classification in the same year that coverage

from the ELM_Classification, based purely on

structure, increased by only 1/10th. Large changes

to areal coverage from Functional_Classification in

the 3 years of this study and in the absence of

major structural changes can be used to explain

inter-annual variability in peatland C fluxes driven

by differences in water table depth. For instance,

differences in Functional_Classification areal cov-

erage between years could be used to contextualize

higher temperature response Q10 values for large-

collar CH4 flux measurements in 2017 and 2018

compared to 2016 from Hanson and others

(2017a).

Although we focused on demonstrating how

areal coverage of hollows varied between classifi-

cations, other parameters (for example, hummock

height, hummock–hollow spacing, locations of

hollows, and so on) also varied. This highlights the

importance of parameterizing microtopography in

models from data generated by classification

schemes that are in accordance with the concep-

tualization of microforms in the model. The

ELM_Classification method in this study provides a

classification scheme that facilitates data-driven

Figure 8. Histograms of plot-specific inter-annual

variability for classification methods in all plots,

calculated as the standard deviation (r) of areal

coverage of hollows for a given plot during the 3 years

of the study.
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parameterization of the three microtopographic

parameters used in ELM_SPRUCE and models

using similar representations, like the peatland

carbon simulator (PCARS; Frolking and others

2002). For models which do not use a microform-

based approach (for example, DigiBog in Baird and

others 2011), the elevation distributions and DEMs

provided in this study can be utilized to optimize

elevation frequencies used to represent microto-

pography. Further, DEMs and measures of surface

roughness reported here can be used to improve

model representation of the microtopographic

influence on the hydrologic cycle (for example, Jan

and others 2018) and wind profiles.

This study provides data that facilitates spatial

extrapolations for both measurements taken using

the hummock–hollow dichotomy and along an

elevation (or water table) gradient. Elevation dis-

tributions reported here combined with relation-

ships relating biogeochemical processes to elevation

or water table depth can be combined to make

estimates of fluxes that will be more accurate than

those made using the much more generalized

microform dichotomy. However, such relationships

are not always available or feasible to build.

Therefore, studies using the hummock–hollow di-

chotomy can use our Scaling_Classification to cal-

culate, and threshold, the continuous Hollow Index

to classify microforms consistent with their place-

ment of instrumentation in the field. Modifying the

parameters and classification threshold of the Hol-

low Index would enable investigators to account

for application-specific sampling locations, or the

inherent subjectivity of investigators placing field

instrumentation prior to classification. Such actions

would facilitate proper scaling of measurements, by

using areal coverages representative of their sam-

pling locations.

Ideally, TLS sampling and microform mapping

which would occur before field measurements are

taken to ensure that appropriate locations/micro-

forms are sampled sufficiently. SfM using handheld

cameras or UAS has been proven effective for

producing point clouds and DEMs of peatland

microtopography (Mercer and Westbrook 2016;

Lovitt and other 2018; Moore and others 2019) and

could be used as a lower-cost alternative to TLS.

Although SfM is not without its own challenges,

UAS SfM would likely be best suited for peatlands

that are treeless or have relatively low tree cover.

The differences in hollow areal coverage and the

variability between classification methods clearly

demonstrates how an intended purpose or appli-

cation drives the conceptualization of microforms,

the resulting classification, and ultimately the areal

coverage (and other metrics) of microforms. Con-

sidering the marked differences in hollow areal

coverage and variability between microform clas-

sifications in this study, it is evident how conclu-

sions drawn from research utilizing microform

classifications could vary widely. Using an appro-

priate classification is essential for producing

accurate results and conclusions.

We recognize that a single method for classifying

microforms is likely not sufficient to accommodate

all applications. Therefore, this study provides three

quantitative and explicit microform classification

schemes intended to be used for different applica-

tions. The applications discussed in this study pri-

marily focus on the microtopography–water

table depth relationship and associated processes

affected by the resulting soil moisture gradient.

These processes occur across environmental gradi-

ents (for example, moisture, temperature, and so

on) rather than in conceptual bins (hummocks and

hollows), and when possible, should be repre-

sented as such. This study provides several mea-

sures of microtopography corresponding to

elevation frequency distributions and spatial vari-

ability to be utilized by studies that treat microto-

pography as a gradient. However, quantifying these

processes across gradients is not always possible,

and thus requires investigators to bin or stratify

their sampling. In such cases, clearly defined

microforms are a necessity for inter-study com-

parisons and proper scaling of stratified measure-

ments. Therefore, it is imperative to clearly define

what, exactly, defines each bin.
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