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ABSTRACT

Productivity of northern latitude forests is an

important driver of the terrestrial carbon cycle and

is already responding to climate change. Studies of

the satellite-derived Normalized Difference Vege-

tation Index (NDVI) for northern latitudes indicate

recent changes in plant productivity. These de-

tected greening and browning trends are often at-

tributed to a lengthening of the growing season

from warming temperatures. Yet, disturbance-re-

covery dynamics are strong drivers of productivity

and can mask direct effects of climate change. Here,

we analyze 1-km resolution NDVI data from 1989

to 2014 for the northern latitude forests of the

Greater Yellowstone Ecosystem for changes in

plant productivity to address the following ques-

tions: (1) To what degree has greening taken place

in the GYE over the past three decades? and (2)

What is the relative importance of disturbance and

climate in explaining NDVI trends? We found that

the spatial extents of statistically significant pro-

ductivity trends were limited to local greening and

browning areas. Disturbance history, predomi-

nately fire disturbance, was a major driver of these

detected NDVI trends. After accounting for fire-,

insect-, and human-caused disturbances, increas-

ing productivity trends remained. Productivity of

northern latitude forests is generally considered

temperature-limited; yet, we found that precipita-

tion was a key driver of greening in the GYE.

Key words: plant productivity; NDVI; climate

change; disturbance; fire; Greater Yellowstone

Ecosystem; northern latitude forests; boreal cli-

mate.

INTRODUCTION

Increases in photosynthetic activity detected in

northern latitudes are often attributed to a

lengthening of the growing season from warming

temperatures (Myneni and others 1997; Tucker

and others 2001; Nemani and others 2003; Zhu and

others 2013). Evidence suggests anthropogenic

warming is also lengthening the fire season, espe-

cially in northern latitudes and resulting in in-

creased forest fire area (Flannigan and others 2013;

Abatzoglou and Williams 2016). Since wildland fire

plays a major role in temperate and boreal forest
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dynamics, research on the recent changes in pho-

tosynthetic activity must consider disturbance

recovery and potential changes in disturbance

dynamics (Bond-Lamberty and others 2007; Sulla-

Menashe and others 2018). Understanding vege-

tation dynamics in northern latitudes can aid in

anticipating vulnerability of forests to climate

change and impacts on terrestrial carbon cycling

(Pan and others 2011; Le Quéré and others 2017).

The increased availability of satellite-derived

observations of Normalized Difference Vegetation

Index (NDVI), Leaf Area Index (LAI), and other

vegetation indices has led to many recent global

and regional studies of plant productivity (Zhu and

others 2013, 2016; Potter 2015; Ju and Masek

2016; Rafique and others 2016; Sulla-Menashe and

others 2018). Yet, the spatial variability in changes

in plant productivity and its drivers are not well

understood (Wang and others 2011; Zhu and oth-

ers 2016).

Plant growth in northern latitudes is considered

primarily limited by temperature and the length of

the growing season (Whittaker 1975; Churkina and

Running 1998). Evidence of spring time warming

in the northern hemisphere is well documented

and associated with detected increases in photo-

synthetic activity, or vegetation ‘‘greening’’ trends

(Myneni and others 1997; Tucker and others 2001;

Zhou 2001; Nemani and others 2003; Wang and

others 2011; Xu and others 2013). For the northern

hemisphere, the growing season onset is estimated

to be 1.1–3.3 days per decade earlier (Wolkovich

and others 2012). However, changes in summer

precipitation and increases in water vapor pressure

deficit (VPD) were associated with decreases in

photosynthetic activity, or vegetation ‘‘browning’’

trends (Nemani and others 2003; Angert and others

2005; Piao and others 2011; Zhu and others 2013).

Vegetation responses are also dependent on the

bioclimatic context. Warming can cause greening

trends in ecosystems that are not water limited,

while also causing lowered productivity in drier

areas where plants experience increased water

stress (Sulla-Menashe and others 2018). These

findings and recent tree-ring research support the

idea that with warming temperatures, presumed

temperature-limited boreal vegetation dynamics

are becoming limited by other climatic factors

(Angert and others 2005; D’Arrigo and others 2008,

2009; Williams and others 2011).

In contrast to these direct climatic drivers,

growing evidence suggests that detected changes in

plant productivity can also be attributed to distur-

bance recovery, especially post-fire regeneration

(Wang and others 2011; Ju and Masek 2016; Sulla-

Menashe and others 2018). Ju and Masek (2016)

found that most of the greening and browning

trends in areas of the eastern boreal forests of

Alaska and Canada were related to the fire history.

In a follow-up study, Sulla-Menashe and others

(2018) determined that fire effects explained the

magnitude and direction of NDVI changes, with

results dependent on the stage of the disturbance-

succession cycle: greening trends were detected in

areas that were regenerating after older fires (prior

to 1990), whereas recently burned areas displayed

browning trends (Sulla-Menashe and others 2018).

Increases in the extent and severity of forest insect

outbreaks, including mountain pine beetle (Den-

droctonus ponderosae), are attributed to warming

temperatures that expand suitable habitat and in-

crease population growth for insects (Logan and

others 2010; Coops and others 2012; Weed and

others 2013). A severe mortality event following an

outbreak can affect productivity for decades (Weed

and others 2013). Extensive human-caused dis-

turbances, including logging, also affect productiv-

ity trends (Zhu and others 2016). As with fire, for

insect- and human-caused disturbances, detections

of browning or greening trends depend on the time

since the event and the productivity of secondary

vegetation (Hicke and others 2012; Zhu and others

2016). Herbaceous vegetation initially dominates

after high mortality disturbance events until the

newly established tree seedlings grow to dominate

the canopy. Because NDVI measures the overall

amount of light absorbed and reflected by vegeta-

tion, it will indicate recovery of any vegetation

cover after a disturbance, capturing the initial

recovery of herbaceous vegetation with less sensi-

tivity to later successional changes in forest struc-

ture (Franks and others 2013). Invasion by

opportunistic exotic herbaceous species post-dis-

turbance would also be detected as ‘‘early’’ recov-

ery in NDVI.

Many studies evidence the rapid regeneration of

forests post-disturbance in the U.S. Rocky Moun-

tain forests of the Greater Yellowstone Ecosystem

(GYE) (Turner and others 2004, 2016; Kashian and

others 2005, 2013; Zhao and others 2016). Within

the GYE, productivity and biomass increased ra-

pidly following the large fires of 1988 (Turner and

others 2004, 2016). In a 300-year chronosequence

Kashian and others (2013) found that carbon

accumulation recovered to 80% of pre-fire carbon

storage in only 50 years. Harvested areas in the

region recovered even more quickly (50–90% for-

est spectral recovery) than burned areas (< 40%

forest spectral recovery) since the 1980s (Zhao and

others 2016). However, forest regeneration rates
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can vary widely, with post-fire stem density vary-

ing from zero to 344,067 stems ha-1 24-years post-

fire (Turner and others 2004). After accounting for

differences in density, Turner and others (2004)

found above-ground net primary productivity de-

creased with increasing elevation, primarily due to

differences in climate. In a study of mountain pine

beetles effects on forest productivity in the GYE,

Romme and others (1986) found that productivity

recovered to pre-outbreak levels in only 11–

15 years, mostly due to increased growth in the

understory. In Douglas fir-dominated forests in the

GYE, understory cover was 24% greater in areas

affected by high mortality bark beetle events 4–

5 years prior than compared to undisturbed sites

due to greater forb and grass cover (Griffin and

Turner 2012).

The detection of local greening and browning

areas is dependent on the spatial resolution of

satellite data used for the study. Regional studies of

recent changes in plant productivity show that

trends are heterogeneous across landscapes, with

some local greening, browning, and areas without a

detectable change (Stow and others 2007; Forkel

and others 2013; Sulla-Menashe and others 2018).

In a comparison of a Local Area Coverage (1-km

resolution) to a Global Area Coverage (� 8-km

resolution) NDVI dataset, many greening locations

were lost in the coarser resolution dataset (Stow

and others 2007). A study using 30-m resolution

Landsat NDVI data also shows discrepancies in

trend detection compared to 8-km AVHRR (Ad-

vanced Very High Resolution Radiometer) NDVI

dataset (Ju and Masek 2016). In addition, gridded

climate datasets, used as covariates to explain

greening trends, are interpolated from weather

station data that are only available at moderate

spatial resolutions (800 m, 1 or 4 km).

Here we investigate potential greening trends

and their drivers in an analysis of recent NDVI

trends in the Greater Yellowstone Ecosystem (GYE)

of the U.S. northern Rocky Mountains, a large in-

tact, fire-prone temperate forested ecosystem. Our

analyses addressed the following questions: (1) To

what degree has greening taken place in the GYE

over the past three decades? and (2) What is the

relative importance of disturbance and climate in

explaining NDVI trends? To address these ques-

tions, we analyzed 25 years (1989–2014) of vege-

tation greening (increasing NDVI) and browning

(decreasing NDVI) within the GYE using 1-km

AVHRR NDVI Composites and compared detected

NDVI trends to meteorological data at the same

resolution, while using Landsat 30-m resolution

data to more precisely attribute disturbance histo-

ries (Eidenshink 1992, 2006; Goward and others

2015; Thornton and others 2017).

STUDY AREA

The Greater Yellowstone Ecosystem (GYE) is con-

sidered one of the most intact ecosystems in the

contiguous USA and encompasses parts of four

national forests and two national parks (Yellow-

stone and Grand Teton National Park) (Parmenter

and others 2003) (Figure 1). The climate of the

GYE is highly influenced by the U.S. northern

Rocky Mountain topography, with over 70% of the

region at or above 1800 m (calculated from eleva-

tion data: Lehner and others 2008). Although

ecologically considered a predominately temperate

biome (according to Olson and others (2001) world

map), three Köppen–Geiger climate classifications

describe the majority of the GYE: boreal warm

summer on the western side (36% of the GYE),

boreal cool summer in the central more moun-

tainous terrain (32%), and on the eastern side due

to the rain shadow effect, arid cold steppe (28%)

(calculated from Köppen–Geiger data: (Kottek and

others 2006).

In western North America, cold winters and dry

summers colimit vegetation productivity (Churkina

and Running 1998; Nemani and others 2003).

Within the GYE winters are long and harsh, with

the growing season as short as two months in

higher elevations and further limited by summer

drying (Despain 1990). Fire also impacts vegetation

patterns, especially in the GYE (Whitlock and

others 2003). The historical range of variation of

fire disturbance in the GYE is dependent on the

vegetation type, climate, and elevation (Schoen-

nagel and others 2004). Subalpine forests occupy-

ing boreal cool summer areas are characterized by

infrequent (fire-return intervals of 150–300 years)

high-severity fires (Romme and Despain 1989; Hi-

guera and others 2010). Lodgepole pine (Pinus

contorta) dominates much of the subalpine, with

subalpine fir (Abies lasiocarpa) and Engelmann

spruce (Picea engelmannii) as the late seral species,

and whitebark pine (Pinus albicaulis) dominating at

higher elevations. Mid-elevation mixed conifer

forests consisting of predominately Douglas-fir

(Pseudotsuga menziesii), with lodgepole pine, aspen

(Populus tremuloides), and limber pine (Pinus flexilis),

are characterized by a boreal warm summer climate

and mixed-severity fire regimes, with infrequent

high- and low-severity fires (Schoennagel and

others 2004). Lower-elevation sagebrush steppe

and shrublands are characterized by an arid cold

climate with fire-return intervals ranging from
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decades to centuries (Whisenant 1990; Bukowski

and Baker 2013).

Analysis of gridded climate datasets for the GYE

indicates annual temperatures have already in-

creased by 0.02�C y-1 from 1928 to 2010 for the

region (Chang and Hansen 2015). Despite annual

precipitation increasing 0.48 mm y-1 (0.8%) for

the same time period (Chang and Hansen 2015),

stream discharge decreased, especially during

summer months in the GYE (Leppi and others

2012). Leppi and others (2012) explain this para-

dox by suggesting air temperatures and evapo-

transpiration rates were stronger drivers of summer

stream discharge than precipitation implying in-

creased plant water stress via increases in VPD.

Future climate change is expected to shift vegeta-

tion growth in northern latitude forests from being

temperature to precipitation limited and drastically

increase fire severity, fire occurrence, and area

burned (Westerling and others 2011; Williams and

others 2011).

DATA AND METHODS

For this study we identified the boundaries of GYE

based on 10-digit hydrologic units as defined by the

USGS Watershed Boundary Dataset (Figure 1).

NDVI and covariate datasets were clipped to the

GYE boundary and analyses carried out in the

World Geodetic System (WGS 84) coordinate ref-

erence system. All analyses were carried out using

the R statistical program version 3.4.3 (R Core

Team 2017) or by using QGIS geoprocessing tools

(QGIS Development Team).

Satellite-Derived Vegetation Index

To track changes in vegetation productivity, we

used remotely sensed NDVI data. NDVI datasets

derived from AVHRR sensors are the most widely

used proxy for observing temporal and spatial

changes in terrestrial plant productivity and its re-

sponse to climate (Running 1990; Pettorelli and

others 2005; Beck and others 2011). Satellite sen-

sors measure solar radiation reflected by vegetation

and NDVI is calculated from the red (RED, 0.58–

0.68 lm) and near-infrared (NIR, 0.725–1.1 lm)

reflected light channels (Tucker 1979; Running

1990; Myneni and others 1995) using the formula

in equation 1:

NDVI ¼ NIR � REDð Þ= NIR þ REDð Þ ð1Þ

The chlorophyll in plants absorbs visible light

including the red light spectrum and the mesophyll

leaf tissue reflects near-infrared light in relation to

plant water status (Myneni and others 1995).

Thereby, generally the more dense the vegetation

the greater the difference between near-infrared

light reflected and visible light reflected, since the

proportions of both the visible light absorbed and

the near-infrared light reflected are greater. NDVI

values range from - 1 to + 1; values near zero

Figure 1. Map of the Greater Yellowstone Ecosystem (GYE) with the study area boundary, U.S. Geological Survey

watershed boundaries, and administrative boundaries.
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indicate sparse vegetation; and values near + 1

indicate dense vegetation (Tucker 1979; Running

1990). Whereas single NDVI measures serve as

‘‘snapshots’’ of forest cover, analysis of changes in

NDVI over time can indicate changes in produc-

tivity.

The U.S. Geological Survey’s (USGS) Earth Re-

sources Observation and Science (EROS) Center

used daily observations from Advanced Very High

Resolution Radiometer (AVHRR) on National

Oceanic and Atmospheric Administration (NOAA)

satellites 11 (1989–1994), 14 (1995–2000), 16

(2001–2003), 17 (2004–2009), 18 (2010–2011),

and 19 (2012–2014) to produce biweekly compos-

ites of maximum NDVI (Eidenshink 1992, 2006).

Time variant calibration coefficients for intra- and

inter-sensor prelaunch and/or postlaunch calibra-

tion were derived using a piecewise linear fit of

observations over desert, ocean or cloud observa-

tions areas (Vermote and Kaufman 1995; Kauf-

mann and others 2000). The USGS created the

maximum NDVI biweekly composites for the con-

terminous USA from 1989 to 2015 at 1-km reso-

lution (Eidenshink 1992, 2006).

We used the USGS EROS NDVI biweekly com-

posites (data available from the U.S. Geological

Survey), because we were interested in investigat-

ing moderate spatial resolution (1 km) landscape

heterogeneity. The benefit of using a higher-reso-

lution dataset is that localized areas of greening can

be easily detected that may be missed in coarser

datasets (Stow and others 2007). Data of each year

were checked for missing, incomplete, or contam-

inated biweekly composites (from http://lpdaac.usg

s.gov) (Figure 2). Gaps were infilled by values from

a fitted harmonic sinusoidal model (Verbesselt and

others 2010). We created monthly maximums by

weighting the biweekly NDVI composites by the

number of days they covered within a particular

calendar month. Monthly NDVI maximums were

used to detect seasonal and annual trends to reduce

the influence of incomplete or missing biweekly

data. Maximum NDVI value compositing is a

common preprocessing technique to ‘‘unmask the

vegetation signal’’ by reducing cloud contamina-

tion, shadow effects, and water-vapor effects

(Holben 1986; Myneni and others 1995). Annual

maximum and integrated NDVI were calculated

from the monthly maximum NDVI values. Break-

point analysis on the NDVI time series was com-

pleted for each pixel in the GYE to test for artifacts

of satellite sensor changes using the ‘‘breakpoints’’

function in the ‘‘strucchange’’ R package (Zeileis

and others 2002, 2003; Bai and Perron 2003); no

systematic breaks were detected in the time series.

NDVI saturates in high biomass areas, but this was

not an issue in the region since values over the

saturation point of 0.9 NDVI (Huete and others

2002) accounted for 0.015% of the dataset.

Disturbance, Meteorological, and Land
Cover Data

Disturbance, meteorological, and land cover data-

sets were considered as potential covariates in both

filtering the NDVI dataset for spatial analysis and

statistical modeling of NDVI trends (Appendix D:

Table D1 lists all variables considered). Only three

different disturbance agents were considered: fire,

insect, and human, because of a lack of compre-

hensive datasets for other disturbance types. Fire

occurrence and severity came from the USGS

Monitoring Trends in Burn Severity (MTBS) data-

set, a Landsat-based compilation of annual fire

information from 1984 through 2015 for the USA

(Eidenshink and others 2007). MTBS data has

complete coverage of all public and private lands

using consistent methodology (Dennison and

Brewer 2014). We used the 30-m resolution burn

severity mosaic gridded spatial dataset or rasters to

identify burn areas in the GYE (MTBS Project

(USDA Forest Service/U.S. Geological Survey)).

Data on insect disturbance came from the U.S.

Forest Service’s Insect and Disease Aerial Detection

Surveys (ADS), which provides a semiquantitative

assessment of annual bark beetle outbreak area

boundaries from 1970 to 2014 for areas flown in

the GYE. The USDA Forest Service Forest Health

Protection Program and its partners created and

provided the ADS data maps from visual assess-

ment from aircrafts. About 80% of the GYE was

flown as a part of the ADS. ADS polygons were

combined from USFS Regions 1, 2, and 4 and

transformed into a 30-m resolution raster, re-pro-

jected, and masked to forested areas.

History of human-caused forest disturbance was

derived from the North American Forest Dynamics

(NAFD) products. We used the NAFD-NEX time-

integrated map from Landsat images for the con-

terminous USA from 1986 to 2010 (Goward and

others 2015). At 30-m resolution, the map classifies

pixels as water, non-forest, ‘‘undisturbed’’ forest,

outside of study area, or ‘‘disturbance’’ with asso-

ciated year. The Vegetation Change Tracker forest

change analysis algorithm analyzes each Landsat

image to create spectral indices and track the

spectral trajectory for each pixel to produce a forest

disturbance map (Huang and others 2010). Hu-

man-caused forest disturbance was considered as
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the residual of NAFD data filtered by the MTBS fire

data and the ADS bark beetle disturbance data.

To reconcile the spatial resolution differences

between our disturbance data (30 m) and other

datasets (1 km), we performed a percent distur-

bance threshold sensitivity analysis (details in Ap-

pendix C), and 30% threshold was selected to

resample the 30-m resolution disturbance data to

1 km using the ‘‘raster’’ package in R (Hijmans

2015). Fire, bark beetle, and human disturbance 1-

km resolution raster layers were then used to mask

NDVI trends. For the empirical modeling, the three

disturbance datasets were combined to create three

explanatory variables: if disturbed, years since dis-

turbance (since 2014), and percent of 1-km pixel

disturbed. The created combined disturbance da-

taset is shown in Appendix C: Figures C1 and C2.

For meteorological covariates, we used 1-km

gridded monthly Daymet V3.0 temperature, pre-

cipitation, shortwave radiation, vapor pressure, and

snow water equivalent datasets produced by Oak

Ridge National Laboratory (Thornton and others

2017). The more recent TopoWx v 1.2.0 (‘‘Topog-

raphy Weather’’) 800-m gridded temperature da-

taset was also used to compare results with Daymet

(Oyler and others 2014). Monthly data were used

to calculate mean annual, mean seasonal, delta

annual, and delta seasonal variables using CDO

functions (CDO 2015). Daily minimum (Tmin) and

maximum temperature (Tmax) data were used to

calculate annual aggregated growing degree days

(AGDD) as:

AGDD ¼
XD

n¼1

max
Tmax þ Tmin

2
� Tbase

� �
; 0

� �
ð2Þ

where base temperature (Tbase) equals 5�C and D is

the number of days in the year. VPD was calculated

using monthly mean/min temperature and vapor

pressure data following the American Society of

Civil Engineers standardized equations (Walter and

others 2005). The re-analyzed Köppen–Geiger cli-

mate classifications which are based on vegetative

types, precipitation, and air temperature to produce

a world map with 31 climate classes at 5-arc-min

resolution, were also considered as covariates

(Kottek and others 2006). We did not account for

increased carbon dioxide in this study and suggest

this is an important driver of plant productivity to

test using process-based modeling.

Land cover-type data layers were used to filter

NDVI trends to limit spatial analysis to only natural

vegetation. The National Land Cover Database

2001 (NLCD 2001, 2011 Edition) categorizes land

cover for the USA into 16 categories based on a

decision tree classification of 2001 Landsat satellite

data (Homer and others 2007). The NLCD 2001

data were resampled from 30-m to 1-km resolution

using the Resample process with the Majority

technique in ArcGIS 10.3.1 (ESRI 2016). For fil-

tering NDVI trends, the data were then reclassified

into two classes including ‘‘Natural Vegetation’’

and an ‘‘Other’’ using the ArcGIS Spatial Analysis

tool (Appendix B: Table B1).

Figure 2. Flowchart of NDVI data processing.
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NDVI Trend Analysis

NDVI trend slope estimates were calculated using a

linear least squares regression for each pixel within

the GYE using Climate Data Operators (CDO 2015).

Using annual aggregated time series has been

shown to perform better than removing seasonal

cycles in a time series to overcome the adverse ef-

fects of inter-annual variability in NDVI time series

data on trend estimation performance and pro-

duces Tau values that range - 1 to 1 (Forkel and

others 2013). Thereby, NDVI trend slope estimates

were calculated from the annual maximum time

series and also calculated using integrated NDVI

(Appendix A). The two-sided Mann–Kendall test

was used to evaluate the significance of monotonic

trends in NDVI (Mann 1945). The Mann–Kendall

trend test corrected for autocorrelation is com-

monly used for analyzing meteorological time ser-

ies as an alternative to linear regression tests

because Mann–Kendall does not require a normal

distribution of the data and accounts for temporal

autocorrelation (Hamed and Ramachandra Rao

1998; de Beurs and Henebry 2004, 2010). We

conducted Mann–Kendall tests using the ‘‘gimms’’

R package (Pinzon and Tucker 2014, 2016) and

used a p < 0.05 significance level threshold.

To isolate the influence of human land use and

disturbance, individual pixel NDVI trends were

summarized for the GYE before and after filtering

out pixels that had land cover layers that were not

natural vegetation (using NLCD data), burned since

1984 (using MTBS data), areas affected by bark

beetles (using ADS data), and logged stands (using

NAFD data) using functions from the ‘‘raster’’ R

package (Hijmans 2015). NDVI trends were com-

pared across different vegetation types with pixels

classified based on NLCD categories using an AN-

OVA with a post-hoc Tukey’s Honest Significant

Difference method using the ‘‘stats’’ R package (R

Core Team 2017).

Empirical Modeling

Linear regression models were fit using a suite of

environmental variables to explain maximum an-

nual NDVI trend slopes. We created a training da-

taset from a random sample of pixels within the

GYE comprising 50% of the total, resulting in a

sample size of 61,162 pixels. The remaining 50% of

the data were reserved to evaluate how effectively

the selected model explains NDVI. We used linear

regression to model maximum annual NDVI trend

(hereafter NDVI trend) as a function of the mete-

orological, topographic, and disturbance history

explanatory variables listed in Appendix D:

Table D1. Each explanatory variable was stan-

dardized by subtracting their mean from each value

and then dividing by their standard deviation. Due

to the short growing season within the GYE and the

susceptibility of volcanic soils to summer drying,

summer abiotic factors heavily influence plant

growth and were thereby the focus of presented

analysis, with summer considered as the months of

June, July, and August (JJA). To better represent

disturbance, it was included as two continuous

variables: percent of pixel disturbed (Perc Dist) and

years since disturbance since 2014 (YSD), and one

binary variable: if observed disturbance (> 0%, If

Dist) during the time period 1984–2014. Both

continuous variables were included in the models

paired with the if disturbed binary, so for example

the years since disturbance component was only used

to estimate the response for pixels that were dis-

turbed during the time period analyzed.

To check for linear and nonlinear multi-

collinearity issues among potential covariate vari-

ables, a matrix of calculated correlation estimates

and scatter plots were plotted using the ‘‘pairs.

panels’’ function from the ‘‘psych’’ R package

(Revelle 2016). Covariates were then reduced to

those that were less strongly correlated (< 0.75 of

the correlation coefficient) and after exploratory

analyses of the different explanatory variables. All

seasonal and annual meteorological variables were

considered, and the variable with the highest

explanatory power was selected for use in the

analysis (for example, mean summer precipitation

for precipitation). Individual linear regression

models were fit, coefficient estimates plotted, and

sums of squares F-tests calculated to test the

importance of the different explanatory variables

using the ‘‘stats’’ R package (R Core Team 2017). In

addition, models of combinations of explanatory

variables were fit and compared to determine the

model that explained the highest percentage of the

variance in NDVI slope based on adjusted R-

squared values. A semivariogram was created from

the residuals of the fitted selected model to check

for remaining spatial autocorrelation. AIC values

were compared for all of the possible model com-

binations using the variables in the selected model

and to the mean-only model (using dredge() from

‘‘MuMIn’’ R package; Bartoń 2016).

Disentangling Climate and Disturbance Effects 879



RESULTS

Greening and Browning in the GYE

A mean greening trend of + 0.0033 NDVI/yr

(p < 0.05) was detected in annual maximum NDVI

using the USGS EROS NDVI dataset from 1989 to

2014, for 26.5% of pixels within the GYE (Table 1).

A mean browning trend of - 0.0035 NDVI/yr

(p < 0.05) was detected in annual maximum NDVI

for 6.2% of GYE pixels (Table 1). The variance in

annual maximum NDVI was 0.015. Analysis of

growing season integrated NDVI showed similar

trends (Appendix A: Table A1). Annual maximum

NDVI was used for further analysis since all values

were observations, not fitted values. Removing

pixels with land cover other than natural vegeta-

tion reduced the detected greening trend spatial

extent by 32%, to 17.9% of the GYE, and the de-

tected browning spatial extent by 13%, to 5.4% of

the GYE (Table 1). The highest concentration of

pixels with statistically significant increasing trends

in NDVI (greening trends) was in central GYE

within Yellowstone National Park (Figure 3A) and

to the west in the Caribou-Targhee National Forest.

Decreasing trends in NDVI (browning trends) were

detected sporadically on the eastern half of the GYE

predominately within Shoshone National Forest,

with a few localized areas in the southeast within

Bridger-Teton National Forest and Shoshone Na-

tional Forest (Figure 3A).

The response in NDVI within different vegetation

types varied widely, with areas of greening and

browning within each vegetation type (Figure 4).

Comparison of the mean NDVI trends between

vegetation types indicated unique responses for all

categories except for mixed forest, which catego-

rized only a few pixels in the GYE based on NLCD.

The shrub/scrub, evergreen forest, and grassland/

herbaceous land cover classes describe over 90% of

the GYE. Evergreen forest had a mean greening

response (+ 0.001 SD 0.002), whereas shrub/scrub

areas showed a weak mean greening response

(+ 0.0002 SD 0.002) and grassland/herbaceous

areas showed a weak mean browning response (-

0.0004 SD 0.002).

Spatial Patterns of NDVI Trends
and Disturbance

Filtering the NDVI trends in the natural vegetation

raster for areas that were disturbed removed 38%

of the greening pixels and 33% of the browning

pixels (Table 1). Of the disturbance variables con-

sidered, removing pixels within burned areas

caused the largest reduction in both the detected

greening annual trend in maximum NDVI

Table 1. Trends in Maximum Annual NDVI for All Pixels in the GYE, Pixels with NDVI Trends that are
Statistically Significant Mann–Kendall Tau (p < 0.05), and Pixels with Natural Vegetation

Data Mean trend NDVI change/decade Trend SD Portion of GYE (%)

Entire GYE (114,106 1 km2 pixels)

All 0.0004 0.0037 0.0024 100

Greening 0.0019 0.0193 0.0016 57.5

Browning - 0.0017 - 0.0173 0.0014 42.5

Pixels with statistically significant trend (p < 0.05)

All + 0.0017 + 0.0170 0.0033 26.5

Greening 0.0033 0.0329 0.0017 20.4

Browning - 0.0035 - 0.0354 0.0016 6.2

Natural vegetation

Greening 0.0033 0.0332 0.0017 17.9

Browning - 0.0035 - 0.0348 0.0016 5.4

After fire disturbed areas removed

Greening 0.0029 0.0293 0.0012 14.0

Browning - 0.0033 - 0.0331 0.0015 4.4

After human disturbed areas removed

Greening 0.0029 0.0285 0.0011 12.5

Browning - 0.0033 - 0.0332 0.0015 4.2

After insect disturbed areas removed

Greening 0.0029 0.0288 0.0012 11.1

Browning - 0.0034 - 0.0338 0.0015 3.6

Impact of removing pixels affected by fire, insect, and human disturbances on detected mean trends in maximum annual NDVI. Values given for annual mean trend, decadal
trend, standard deviation (SD), and portion of the GYE (%). Annual maximum NDVI variance was 0.015.
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(+ 0.0029/yr) and the fraction of pixels considered

(reduced by 3.9 to 14.0% of the GYE) (Table 1).

Removing human and insect disturbed areas re-

duced the fraction of greening pixels by another 1.5

and 1.4%, respectively, without affecting the

magnitude of the trend.

Removing burned pixels reduced greening area

extent by 65% within the National Park boundaries

Figure 3. A Trends in maximum annual NDVI for natural vegetation within the GYE from 1989 to 2014. B Trends in

maximum annual NDVI after removing burned, bark beetle affected, and logged areas. Figure shows only pixels with NDVI

trends that are statistically significant (Mann–Kendall Tau p < 0.05).

Figure 4. Trends in maximum annual NDVI by vegetation type defined by NLCD categories. Letters represent results of

Tukey’s honest significance difference comparison of mean NDVI trends between vegetation types.
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and removed the strong browning areas to the east

within the National Forest (Figure 3B). Removing

human disturbed areas reduced greening areas

west of the parks and removing insect disturbed

areas reduced browning areas to the east. After

filtering out all disturbances, most of the remaining

of the greening area (75%) was within National

Forest designations, with 30% within Caribou-

Targhee National Forest (Figure 3B).

The Role of Disturbance and Climate
in Explaining NDVI Trends

Coefficient estimates for the separate models fits of

climate, growing season length, and disturbance

variables with NDVI trends aided in identifying key

drivers of change in NDVI (Figure 5). The main

effects of change in temperature and mean tem-

perature for both mean annual (MA) and summer

(JJA, for the months of summer: June, July, and

August) variables showed negative relationships

with NDVI trends, while their interaction effect was

positive (Figure 5). Aggregated growing degree

days showed a negative relationship with NDVI

trends. For the precipitation models, the main ef-

fects of change in precipitation and mean precipi-

tation for both annual and summer variables

showed positive relationships with NDVI trends,

whereas their interaction effect was negative. VPD

for both MA and JJA showed positive relationships

with NDVI trends, while change in VPD and the

interaction coefficients were negative. The distur-

bance model showed a positive relationship be-

tween disturbance terms and NDVI trends. The

largest coefficient estimates were for change in

summer precipitation (Delta JJA Precip) and dis-

turbance (YSD : Perc Dist). Plotted density curves of

covariate distributions for all GYE pixels and

greening cells show associations with NDVI trends

(Figure 6). The average greening pixel had a higher

mean summer precipitation compared to all the

GYE (Figure 6A). Although most of the GYE had

decreasing mean summer precipitation, greening

pixels experience less drying (Figure 6B). Greening

pixels were limited in their temperature range,

with fewer pixels in the hotter temperature range

compared to all of the GYE (Figure 6C). Greening

pixels distribution also had a higher kurtosis in

change in mean annual temperature (Figure 6D).

The most parsimonious explanatory model ex-

plained 29% of the variation in NDVI slope

(r2 = 0.29, F = 2505, p < 0.0001). Exploratory

statistical analysis was performed on all the con-

sidered variables, but issues with independence

required selecting between collinear variables such

as summer precipitation and VPD or mean annual

temperature and AGDD. The explanatory model

included mean summer precipitation (JJA Precip),

change in mean summer precipitation (Delta JJA

Precip), mean annual temperature (MA Temp),

change in mean annual temperature (Delta MA

Temp), years since disturbance (YSD), percent of

Figure 5. Coefficient estimates of standardized explanatory variables on NDVI trends from separate model fits. Where JJA

is the months of summer: June, July, August, VPD vapor pressure deficit, MA mean annual, AGDD annual growing degree

days, Temp temperature, Precip precipitation, Dist disturbance, YSD years since disturbance, Perc Dist percent disturbance.
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pixel disturbed (Perc Dist), and if disturbance ob-

served (If Dist) with several interactions. Table 2

provides units and data sources for these explana-

tory variables. The estimated coefficients and 95%

CI for each explanatory variable in the model are

shown in Figure 7. The second most parsimonious

model dropped the interaction term between

change in mean summer precipitation and delta

mean summer precipitation and had a delta AIC of

652, providing support for including this interac-

tion term (Table 3).

Increases in summer precipitation had relatively

the strongest positive relationship with NDVI slopes

(Figure 7, + 0.0006 (SE 9 9 10-6)). Mean summer

precipitation also had a positive relationship

(+ 0.00035 (SE 1 9 10-5)), meaning that wetter

sites had a larger greening effect. The interaction

between summer precipitation and change in pre-

cipitation had a negative relationship (JJA Pre-

cip * Delta JJA Precip, - 0.00022 (SE 8 9 10-6)).

Areas in the GYE that were relatively dry had in-

creased NDVI trends with increased summer pre-

Figure 6. Density curves for meteorological covariates used to fit statistical model to explain NDVI trends: A mean annual

summer (JJA) precipitation, B delta JJA precipitation, C mean annual (MA) temperature, and D delta MA temperature.

Solid lines show densities for all GYE pixels and dashed lines show densities for greening pixels (p < 0.05) with vertical lines

marking the respective mean values.
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cipitation compared to wetter areas (Figure 8B).

Areas in the GYE that were relatively wet had in-

creased NDVI trends with decreased summer pre-

cipitation while NDVI trends decreased for dry

areas experiencing the same reduction in summer

precipitation (Figure 8B).

The second strongest positive relationship was

between NDVI slopes and the disturbance three-

way interaction (YSD * Perc Dist * If Dist,

+ 0.00047 (SE 9 9 10-6)), with disturbed pixels

associated with higher NDVI slopes or greening

trends. Disturbed cells that had longer to recover

(higher YSD) and were more disturbed (higher Perc

Dist) were associated with higher NDVI slopes

(Figure 8A).

Higher mean annual temperature and higher

change in mean annual temperature had a negative

association with NDVI slopes. The interaction be-

Table 2. Explanatory Variables for the Top Explanatory Model of NDVI Trends

Predictor Abbreviations Units

Meteorological (annual mean)

Summer precipitation JJA Precip millimeters

Delta summer precipitation Delta JJA Precip millimeters

Annual temperature MA Temp degrees Celsius

Delta annual temperature Delta MA Temp degrees Celsius

Disturbance history

Percent disturbed Perc Dist percent of 1 km pixel disturbed

Years since disturbance YSD years since disturbance

If disturbance observed If Dist 0 (False) or 1 (True)

Meteorological data are Daymet V3.0 (Thornton and others 2017). Disturbance history data are a combination of three disturbance datasets: North American Forest Dynamics
(Goward and others 2015), Monitoring Trends in Burn Severity (Eidenshink and others 2007), and Arial Detection Surveys (Goward and others 2015). JJA June, July, and
August for the months of summer. MA mean annual.

Table 3. AIC Values for the Top Model Compared
to the ‘‘Next Best’’ and Mean-only Model

Model df Delta AIC

Top model 11 0

Next best 10 652

Mean only 2 19,767

Figure 7. Coefficient estimates of standardized explanatory variables on NDVI trends from the top explanatory model.

Where JJA is the months of summer: June, July, August, VPD vapor pressure deficit, MA mean annual, AGDD annual

growing degree days, Temp temperature, Precip precipitation, Dist disturbance, YSD years since disturbance, and Perc Dist

percent disturbance.
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tween mean annual temperature and change in

mean annual temperature had a positive relation-

ship with NDVI slopes (Figure 8C, + 0.00037 (SE

8 9 10-6)). Moderate warming (0–2�C) for all

areas was associated with greening trends. Areas

experiencing a greater increase in annual temper-

ature (> 2�C) had a browning response in NDVI.

Cooler areas were more sensitive to changes in

annual temperature than warmer areas of the GYE,

with the coolest areas experiencing the most ex-

treme increases in temperature and were associated

with lower NDVI slopes than areas with less

warming (Figure 8C).

DISCUSSION

Greening and Browning in the GYE

Significant greening and browning trends were

limited in their spatial extent to only 17.9 and 5.4%

of naturally vegetation areas in the GYE, respec-

tively, with the majority of pixels within the region

not showing strong trends during the studied time

period of 1989–2014. The order of magnitude dif-

ference between the regional average NDVI trend

(+ 0.0004 NDVI/yr) and the greening/browning

localized trends (+ 0.0033 NDVI/yr, - 0.0035

NDVI/yr, respectively) highlights the importance of

analyzing plant productivity at finer spatial reso-

lutions that otherwise are aggregated in coarse

scale analyses (for example, Zhu and others 2016).

Spatial analysis of NDVI slopes at 1-km resolution

also revealed the heterogeneity of plant produc-

tivity trends across the GYE. Strong greening trends

tended to be in the more moist central and western

regions of the GYE within Caribou-Targhee Na-

tional Forest and Yellowstone National Park,

whereas strong browning trends tended to be in the

more arid eastern regions of the GYE within

Shoshone National Forest and Bridger-Teton Na-

tional Forest. The fine-grained spatial pattern of

productivity is consistent with previous research in

Yellowstone National Park (Turner and others

2004, 2016).

Figure 8. Interaction effect plots on NDVI slopes between A years since disturbance (YSD) and percent disturbed (Perc

Dist) (right), NDVI slope estimates for undisturbed pixels also shown (left), B mean annual summer precipitation (JJA

Precip) and delta mean annual summer precipitation (Delta JJA Precip), C mean annual temperature (MA Temp) and

delta mean annual temperature (Delta MA Temp).
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The average NDVI trend across the entire GYE

(+ 0.0004 NDVI/yr) is of the same sign, and general

magnitude of NDVI trends detected in boreal cli-

mate regions from global studies (+ 0.00038 NDVI/

yr) (Rafique and others 2016). The magnitude of

the detected greening trends, or greening areas in

the GYE (+ 0.0033 NDVI/yr, p < 0.05) was com-

parable to trends detected in forests of Canada and

Alaska (+ 0.003 NDVI/yr) (Ju and Masek 2016).

For detected browning areas in the GYE, the mean

trend of - 0.0035 NDVI/yr, p < 0.05 was also

comparable to detected browning trend values in

forests of Canada and Alaska (- 0.002 to - 0.004

NDVI/yr) (Ju and Masek 2016).

Comparison of NDVI trends between different

vegetation types based on NLCD categories indi-

cated different responses by vegetation type, al-

though the range in responses within each category

varied widely. Evergreen forests showed a mean

greening response and comprised the areas of

strongest detected greening trends in the GYE. In

contrast, more of the browning areas were cate-

gorized as shrub/scrub or grassland/herbaceous.

The broad NLCD categories limit inference can be

made from this analysis. For example, ‘‘evergreen

forests’’ includes the low, mid, and high elevation

forests of the GYE that have unique vegetation

compositions and potentially unique responses in

NDVI. Although comparison of NDVI responses at

the species level is beyond the scope of this paper, it

remains an important area of research for illumi-

nating the underlying mechanism of changes in

plant productivity.

The Role of Disturbance in Explaining
NDVI Trends

Filtering the NDVI trends in the natural vegetation

for areas that were disturbed removed 38% of the

greening pixels and 33% of the browning pixels,

providing evidence for the importance of distur-

bance in explaining detected changes in plant

productivity. Filtering for fire disturbance alone

removed 22% of the areas with greening trends,

with human disturbance removing 8% and bark

beetle infestations removing 8% of the greening

trends. Statistical modeling of disturbance effects

on NDVI trends showed that disturbed pixels that

had longer to recover (higher YSD) and were more

disturbed (higher Perc Dist) were associated with

higher NDVI slopes or greening trends. Recently

disturbed pixels were associated with negative

NDVI slopes or browning trends. These results are

consistent with studies of rapid post-disturbance

recovery in the GYE (Turner and others 2004,

2016; Kashian and others 2005, 2013; Zhao and

others 2016) and changes in productivity in

northern latitude forests in Alaska and Canada (Ju

and Masek 2016; Sulla-Menashe and others 2018)

and reinforce the need for considering landscape

history in analysis of plant productivity trends. As

previously mentioned, recovery of NDVI values

post-disturbance is sensitive to herbaceous plant

recovery, including potential opportunistic exotic

species (for example, Canada thistle (Cirsium ar-

vense) and prickly lettuce (Lactuca serriola) (Turner

and others 2008)). Thereby, positive NDVI trends

do not indicate whether or not the forest canopy

has regenerated specifically nor indicate the com-

position of native vs. exotic species without further

analysis.

The Role of Climate in Explaining NDVI
Trends

While statistical modeling supported the impor-

tance of disturbance in explaining greening and

browning trends in the GYE, it also provided some

evidence for the influence of meteorological vari-

ables on NDVI trends. Summer precipitation and

annual temperature emerged as the meteorological

factors with the strongest influence on NDVI

trends. The importance of the interaction between

mean summer (JJA) precipitation and change in

JJA precipitation demonstrates the importance of

the bioclimatic context of climate change. Increases

in summer precipitation benefitted areas that were

relatively dry. It follows that vegetation in the

wetter areas were not water limited and thereby

did not benefit from increased summer precipita-

tion. The linear model fit instead suggests reduc-

tions in summer precipitation benefitted wetter

areas, yet precipitation type (snow vs. rain) or

nonlinear effects not represented might explain this

result. Previous studies suggest extension of the

growing season length and water stress, repre-

sented here by AGDD and VPD, respectively, drive

plant productivity in the boreal climate region

(Angert and others 2005; Boisvenue and Running

2006; D’Arrigo and others 2008; Williams and

others 2011). Although both AGDD and VPD

showed statistically significant relationships with

NDVI trends, temperature and precipitation ex-

plained more of the observed trends than these

variables.

Increased temperatures in boreal climate regions

can facilitate plant growth through an elongated

growing season without precipitation limitation

(Boisvenue and Running 2006), and this is sup-

ported by the location of detected greening trends
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primarily in forests in the boreal climate of western

and central GYE. Indeed, process-based model

simulations also indicate that warming tempera-

tures will favor positive growth responses for

lodgepole pine dominated forests in Yellowstone

National Park (Smithwick and others 2009). Yet,

the coolest areas in the GYE, the Absaroka Moun-

tain Range and the Wind River Range are also areas

that experienced the greatest increase in mean

annual temperatures and high-severity mortality

due to mountain pine beetle (MacFarlane and

others 2013) and were associated with browning

trends. Climate warming benefits mountain pine

beetles by increasing overwinter survival leading to

increased outbreak populations (Bentz and others

1991). MacFarlane and others (2013) used an

alternative aerial survey method and found

whitebark pine mortality caused by mountain pine

beetle to be more widespread than as reported in

the Aerial Detection Survey data. Thereby, these

detections of browning trends may be interpreted

as signals of mountain pine beetle mortality that

were not captured in the Aerial Detection Survey

data.

Recent studies suggest the decoupling of north-

ern latitude forest growth and warming tempera-

tures, with other factors such as fire disturbance,

insect and disease outbreaks, and water stress

driving detected trends in forest productivity

(Goetz and others 2005). Our results provide fur-

ther evidence of the important effects of distur-

bance on productivity trends and the importance of

precipitation during the growing season for tree

growth. This may suggest that the greening trends

previously detected and attributed to warming

temperatures and lengthening of the growing sea-

son are not spatially consistent across boreal cli-

mate zones, nor are these relationships expected to

continue under future climate projections. Grow-

ing evidence already suggests that tree growth in

northern latitudes is being limited by drought stress

(Angert and others 2005; D’Arrigo and others 2008,

2009; Williams and others 2011). For undisturbed

forests during their study period, Sulla-Menashe

and others (2018) found that the direct effects of

climate change showed minimal influence on NDVI

trends overall, but with varying effects based on

local bioclimatic differences. Similarly, we show

that the effects of precipitation and temperature

changes on forest productivity are highly depen-

dent on the local bioclimatic context, driving the

sign and magnitude of detected NDVI trends.

Further Considerations

Global studies suggest that multiple factors drive

productivity trends in northern latitudes (Nemani

and others 2003; Zhu and others 2016). Beyond

the climatic and disturbance factors explored in this

paper, other possible mechanisms for detected in-

creases in NDVI include a fertilization effect from

increases in atmospheric carbon dioxide or nitro-

gen deposition. Increases in atmospheric carbon

dioxide are expected to increase plant growth.

Global ecosystem modeling simulations suggest

carbon dioxide fertilization effects may explain

more of the observed greening trends in satellite

data than climate (Piao and others 2006; Zhu and

others 2016). Although accounting for carbon

dioxide fertilization effects was outside the scope of

this paper, it remains a potentially important driver

of detected NDVI trends. Process-based ecosystem

modeling offers an opportunity for testing and

quantifying the relative effects of carbon dioxide

increases and climate change on plant productivity

in the GYE. Increases in nitrogen deposition can

also stimulate plant growth. Soils vary within the

GYE from nutrient-poor rhyolitic soils of the Yel-

lowstone Caldera to andesitic soils of higher-ele-

vation forests that are higher in nutrients and

water holding capacity (Despain 1990). The pro-

ductivity of lodgepole pine forests on rhyolitic soils

is generally considered nitrogen limited (Fahey and

others 1985); thereby, increased nitrogen avail-

ability could act as a fertilizer. Furthermore, in-

creased annual temperatures and precipitation

could stimulate plant growth indirectly through

increased soil temperature and moisture facilitating

nutrient and water uptake (Reddell and others

1985).

Finally, it is worth noting that the inferences in

this study are limited by the temporal extent and

quality of the disturbance data. While the NDVI

time series was from 1989 to 2014, the disturbance

data did not represent even this discrete time

frame. For example, extensive logging occurred in

the Caribou-Targhee National Forest between 1950

and 1990 (Parmenter and others 2003), with only

logging starting in 1986 and beyond captured in the

NAFD disturbance data. The inclusion of U.S. For-

est Service forest stand maps could aid in control-

ling for disturbance more fully in analyses of

changes in productivity (Tinker and others 2003).

In fact, century-long time scales are required to

understand the regrowth legacies of disturbances
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(Williams and others 2016), with carbon stocks and

fluxes stabilizing after 100 years in subalpine

Rocky Mountain forests (Bradford and others

2008).

Larger and more synchronous fires have oc-

curred during hot and dry periods, suggesting cli-

mate is the dominant driver of fire behavior in the

region (Balling and others 1992; Morgan and oth-

ers 2008; Marlon and others 2012). Predicted cli-

mate induced changes in the fire return interval in

the GYE could drastically alter forest regeneration,

from forest extent, species composition, to age-class

distribution (Romme and Turner 1991; Westerling

and others 2011). Climate warming is also pre-

dicted to increase mountain pine beetle outbreaks

causing forest die-off (Logan and Powell 2001;

Logan and others 2010). With disturbance playing

such a significant role in forest dynamics in the

GYE and other northern latitude temperate and

boreal forests, further research is needed on the

interactive effects of temperature, precipitation,

and disturbance on forest productivity and how

these relationships may change under future cli-

mate conditions.
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Rödenbeck C, Schwinger J, Séférian R, Skjelvan I, Stocker BD,

Tian H, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR,

van Heuven S, Viovy N, Vuichard N, Walker AP, Watson AJ,

Wiltshire AJ, Zaehle S, Zhu D. 2017. Global Carbon Budget

2017. Earth Syst Sci Data 10:405–48.

Lehner B, Verdin K, Jarvis A. 2008. New global hydrography

derived from spaceborne elevation data. Eos 89:93–4.

Leppi JC, DeLuca TH, Harrar SW, Running SW. 2012. Impacts of

climate change on August stream discharge in the Central-

Rocky Mountains. Clim Change 112:997–1014.

Logan JA, Powell JA. 2001. Ghost forests, global warming, and

the mountain pine beetle (Coleoptera : Scolytidae). American

Entomol 47:160–73.

Logan JA, MacFarlane WW, Willcox L. 2010. Whitebark pine

vulnerability to climate-driven mountain pine beetle distur-

bance in the Greater Yellowstone Region. Ecol Appl 20:895–

902.

MacFarlane WW, Logan JA, Kern WR. 2013. An innovative

aerial assessment of Greater Yellowstone Ecosystem mountain

pine beetle-caused whitebark pine mortality. Ecol Appl

23:421–37.

Disentangling Climate and Disturbance Effects 889

https://doi.org/10.3334/ornldaac/1290
https://doi.org/10.3334/ornldaac/1290
https://cran.r-project.org/package%3draster
https://cran.r-project.org/package%3draster


Mann HB. 1945. Nonparametric tests against trend. Economet-

rica 13:245–59.

Marlon JR, Bartlein PJ, Gavin DG, Long CJ, Anderson RS, Briles

CE, Brown KJ, Colombaroli D, Hallett DJ, Power MJ, Scharf

EA, Walsh MK. 2012. Long-term perspective on wildfires in

the western USA. Proc Natl Acad Sci 109:E535–43.

Morgan P, Heyerdahl EK, Gibson CE. 2008. Multi-season climate

synchronized forest fires throughout the 20th century,

Northern Rockies, USA. Ecology 89:717–28.

MTBS Project (USDA Forest Service/U.S. Geological Survey).

MTBS Direct Download: Burn Severity Mosaics. (2017,

May1). http://mtbs.gov/data/direct-download [2017, Sept20].

Myneni RB, Hall FG, Sellers PJ, Marshak AL. 1995. Interpreta-

tion of spectral vegetation indexes. IEEE Trans Geosci Remote

Sens 33:481–6.

Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR. 1997.

Increased plant growth in the northern high latitudes from

1981 to 1991. Nature 386:698–702.

Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC,

Tucker CJ, Myneni RB, Running SW. 2003. Climate-driven

increases in global terrestrial net primary production from

1982 to 1999. Science 300:1560–3.

Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND,

Powell GVN, Underwood EC, D’amico JA, Itoua I, Strand HE,

Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, La-

moreux JF, Wettengel WW, Hedao P, Kassem KR. 2001.

Terrestrial ecoregions of the world: a new map of life on Earth.

Bioscience 51:933–8.

Oyler JW, Ballantyne A, Jencso K, Sweet M, Running SW. 2014.

Creating a topoclimatic daily air temperature dataset for the

conterminous United States using homogenized station data

and remotely sensed land skin temperature. Int J Climatol

35:2258–79.

Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA,

Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P,

Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A,

Sitch S, Hayes D. 2011. A large and persistent carbon sink in

the world’s forests. Science 333:988–93.

Parmenter AW, Hansen A, Kennedy RE, Cohen W, Langner U,

Lawrence R, Maxwell B, Gallant A, Aspinall R. 2003. Land use

and land cover change in the Greater Yellowstone Ecosystem:

1975–1995. Ecol Appl 13:687–703.

Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ,

Stenseth NC. 2005. Using the satellite-derived NDVI to assess

ecological responses to environmental change. Trends Ecol

Evol 20:503–10.

Piao S, Friedlingstein P, Ciais P, Zhou L, Chen A. 2006. Effect of

climate and CO2 changes on the greening of the Northern

Hemisphere over the past two decades. Geophys Res Lett

33:2–7.

Piao S, Wang X, Ciais P, Zhu B, Wang T, Liu J. 2011. Changes in

satellite-derived vegetation growth trend in temperate and

boreal Eurasia from 1982 to 2006. Glob Change Biol 17:3228–

39.

Pinzon JE, Tucker CJ. 2014. A non-stationary 1981–2012

AVHRR NDVI3 g time series. Remote Sens 6:6929–60.

Pinzon JE, Tucker CJ. 2016. A Non-Stationary 1981-2015

AVHRR NDVI3 g.v1 Time Series: an update. In preparation for

submission to Remote Sensing.

Potter C. 2015. Vegetation cover change in Yellowstone National

Park detected using Landsat satellite image analysis. J Biodi-

vers Manag For 4:1–10.

QGIS Development Team. QGIS Geographic Information Sys-

tem. Open Source Geospatial Foundation Project. http://ww

w.qgis.org/.

R Core Team. 2017. R: a language and environment for statistical

computing. R Foundation for Statistical Computing, Vienna. h

ttps://www.r-project.org/.

Rafique R, Zhao F, de Jong R, Zeng N, Asrar G. 2016. Global and

regional variability and change in terrestrial ecosystems net

primary production and NDVI: a model-data comparison.

Remote Sens 8:177.

Reddell P, Bowen GD, Robson AD. 1985. The effects of soil

temperature on plant growth, nodulation and nitrogen fixa-

tion. New Phytol 101:441–50.

Revelle W. 2016. Psych: procedures for psychological, psycho-

metric, and personality research, Psych version 1.7.8. https://c

ran.r-project.org/package=psych.

Romme WH, Despain DG. 1989. Historical perspective on the

yellowstone fires of 1988. Bioscience 39:695–9.

Romme WH, Turner MG. 1991. Implications of global climate

change for biogeographic patterns in the Greater Yellowstone

Ecosystem. Conserv Biol 5:373–86.

Romme WH, Knight DH, Yavitt JB. 1986. Mountain pine beetle

outbreaks in the Rocky-Mountains—regulators of primary

productivity. Am Nat 127:484–94.

Running SW. 1990. Estimating terrestrial primary productivity

by combining remote sensing and ecosystem simulation. In:

Hobbs RJ, Mooney HA, Eds. Remote sensing of biosphere

functioning. New York: Springer. pp 65–86.

Schoennagel T, Veblen TT, RommeWH. 2004. The interaction of

fire, fuels, and climate across Rocky Mountain forests. Bio-

science 54:661–76.

Smithwick EAH, Ryan MG, Kashian DM, Romme WH, Tinker

DB, Turner MG. 2009. Modeling the effects of fire and climate

change on carbon and nitrogen storage in lodgepole pine

(Pinus contorta) stands. Glob Change Biol 15:535–48.

Stow D, Petersen A, Hope A, Engstrom R, Coulter L. 2007.

Greenness trends of Arctic tundra vegetation in the 1990s:

comparison of two NDVI data sets from NOAA AVHRR sys-

tems. Int J Remote Sens 28:4807–22.

Sulla-Menashe D, Woodcock CE, Friedl MA. 2018. Canadian

boreal forest greening and browning trends: an analysis of

biogeographic patterns and the relative roles of disturbance

versus climate drivers. Environ Res Lett 13:014007.

Thornton PE, Thornton MM, Mayer BW, Wei Y, Devarakonda R,

Vose RS, Cook RB. 2017. Daymet: Daily Surface Weather Data

on a 1-km Grid for North America, Version 3. https://doi.org/

10.3334/ornldaac/1328.

Tinker DB, Romme WH, Despain DG. 2003. Historic range of

variability in landscape structure in subalpine forests of the

Greater Yellowstone Area, USA. Landsc Ecol 18:427–39.

Tucker CJ. 1979. Red and photographic infrared linear combi-

nations for monitoring vegetation. Remote Sens Environ

8:127–50.

Tucker CJ, Slayback DA, Pinzon JE, Los SO, Myneni RB, Taylor

MG. 2001. Higher northern latitude normalized difference

vegetation index and growing season trends from 1982 to

1999. Int J Biometeorol 45:184–90.

Turner MG, Tinker DB, Romme WH, Kashian DM, Litton CM.

2004. Landscape patterns of sapling density, leaf area, and

aboveground net primary production in postfire lodgepole

pine forests, Yellowstone National Park (USA). Ecosystems

7:751–75.

890 K. D. Emmett and others

http://mtbs.gov/data/direct-download
http://www.qgis.org/
http://www.qgis.org/
https://www.r-project.org/
https://www.r-project.org/
https://cran.r-project.org/package%3dpsych
https://cran.r-project.org/package%3dpsych
https://doi.org/10.3334/ornldaac/1328
https://doi.org/10.3334/ornldaac/1328


Turner MG, Romme WH, Gardner RH. 2008. Effects of fire size

and pattern on early succession in Yellowstone National Park.

Ecol Monogr 67:411–33.

Turner MG, Whitby TG, Tinker DB, Romme WH. 2016. Twenty-

four years after the Yellowstone fires: are postfire lodgepole

pine stands converging in structure and function? Ecology

97:1260–73.

Verbesselt J, Hyndman R, Zeileis A, Culvenor D. 2010. Pheno-

logical change detection while accounting for abrupt and

gradual trends in satellite image time series. Remote Sens

Environ 114:2970–80.

Vermote E, Kaufman YJ. 1995. Absolute calibration of AVHRR

visible and near-infrared channels using ocean and cloud

views. Int J Remote Sens 16:2317–40.

Walter IA, Allen RG, Elliot R, Itenfisu D, Brown P, Jensen ME,

Mecham B, Howell Terry A, Synder R, Eching S, Spofford T,

Hattendorf M, Martin D, Cuence Richard H, Wright L. 2005.

The ASCE standardized reference evapotranspiration equa-

tion. Reston, ID: American Society of Civil Engineers.

Wang X, Piao S, Ciais P, Li J, Friedlingstein P, Koven C, Chen A.

2011. Spring temperature change and its implication in the

change of vegetation growth in North America from 1982 to

2006. Proc Natl Acad Sci USA 108:1240–5.

Weed AS, Ayres MP, Hicke JA. 2013. Consequences of climate

change for biotic disturbances. Ecol Monogr 83:441–70.

Westerling AL, Turner MG, Smithwick EAH, Romme WH, Ryan

MG. 2011. Continued warming could transform Greater Yel-

lowstone fire regimes by mid-21st century. Proc Natl Acad Sci

USA 108:13165–70.

Whisenant SG. 1990. Changing fire frequencies on Idaho’s

Snake River plains: ecological and management implications.

In: McArthur ED, Romney EM, Smith SD, Tueller PT, Eds.

Proceedings—Symposium on cheatgrass invasion, shrub die-

off, and other aspects of shrub biology and management

General Technical Report INT-GTR-276. USDA Forest Service,

Ogden, pp 4–10.

Whitlock C, Shafer SL, Marlon J. 2003. The role of climate and

vegetation change in shaping past and future fire regimes in

the northwestern US and the implications for ecosystem

management. For Ecol Manag 178:5–21.

Whittaker RH. 1975. Communities and ecosystems. 2nd edn.

New York: Macmillan Publishing Co., Inc.

Williams AP, Xu C, McDowell NG. 2011. Who is the new sheriff

in town regulating boreal forest growth? Environ Res Lett

6:041004.

Williams CA, Gu H, MacLean R, Masek JG, Collatz GJ. 2016.

Disturbance and the carbon balance of US forests: a quanti-

tative review of impacts from harvests, fires, insects, and

droughts. Glob Planet Change 143:66–80.

Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt

JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJB, Ault TR,

Bolmgren K, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C,

Salamin N, Schwartz MD, Cleland EE. 2012. Warming

experiments underpredict plant phenological responses to

climate change. Nature 485:494–7.

Xu L, Myneni RB, Chapin FS, Callaghan TV, Pinzon JE, Tucker

CJ, Zhu Z, Bi J, Ciais P, Tømmervik H, Euskirchen ES, Forbes

BC, Piao SL, Anderson BT, Ganguly S, Nemani RR, Goetz SJ,

Beck PSA, Bunn AG, Cao C, Stroeve JC. 2013. Temperature

and vegetation seasonality diminishment over northern lands.

Nat Clim Change 3:581–6.

Zeileis A, Leisch F, Hornik K, Kleiber C. 2002. strucchange: an R

package for testing for structural change in linear regression

models. J Stat Softw 7:1–38.

Zeileis A, Kleiber C, Walter K, Hornik K. 2003. Testing and

dating of structural changes in practice. Comput Stat Data

Anal 44:109–23.

Zhao FR, Meng R, Huang C, Zhao M, Zhao FA, Gong P, Yu L,

Zhu Z. 2016. Long-term post-disturbance forest recovery in

the Greater Yellowstone Ecosystem analyzed using Landsat

time series stack. Remote Sens 8:898.

Zhou L. 2001. Variations in northern vegetation activity inferred

from satellite data of vegetation index during 1981 to 1999. J

Geophys Res 106:20069–83.

Zhu Z, Bi J, Pan Y, Ganguly S, Anav A, Xu L, Samanta A, Piao S,

Nemani RR, Myneni RB. 2013. Global data sets of vegetation

leaf area index (LAI)3g and fraction of photosynthetically

active radiation (FPAR)3g derived from global inventory

modeling and mapping studies (GIMMS) normalized differ-

ence vegetation index (NDVI3G) for the period 1981 to 2011.

Remote Sens 5:927–48.

Zhu Z, Piao S, Myneni RB, Huang M, Zeng Z, Canadell JG, Ciais

P, Sitch S, Friedlingstein P, Arneth A, Cao C, Cheng L, Kato E,

Koven C, Li Y, Lian X, Liu Y, Liu R, Mao J, Pan Y, Peng S,

Peuelas J, Poulter B, Pugh TAM, Stocker BD, Viovy N, Wang

X, Wang Y, Xiao Z, Yang H, Zaehle S, Zeng N. 2016. Greening

of the Earth and its drivers. Nat Clim Change 6:791–5.

Disentangling Climate and Disturbance Effects 891


	Disentangling Climate and Disturbance Effects on Regional Vegetation Greening Trends
	Abstract
	Introduction
	Study Area
	Data and Methods
	Satellite-Derived Vegetation Index
	Disturbance, Meteorological, and Land Cover Data
	NDVI Trend Analysis
	Empirical Modeling

	Results
	Greening and Browning in the GYE
	Spatial Patterns of NDVI Trends and Disturbance
	The Role of Disturbance and Climate in Explaining NDVI Trends

	Discussion
	Greening and Browning in the GYE
	The Role of Disturbance in Explaining NDVI Trends
	The Role of Climate in Explaining NDVI Trends
	Further Considerations

	Acknowledgements
	References




