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ABSTRACT

The quantitative mapping of food web flows based

on empirical data is a crucial yet difficult task in

ecology. The difficulty arises from the under-sam-

pling of food webs, because most data sets are

incomplete and uncertain. In this article, we review

methods to quantify food web flows based on

empirical data using linear inverse models (LIM).

The food web in a LIM is described as a linear

function of its flows, which are estimated from

empirical data by inverse modeling. The under-sam-

pling of food webs implies that infinitely many

different solutions exist that are consistent with a

given data set. The existing approaches to food web

LIM select a single solution from this infinite set by

invoking additional assumptions: either a specific

selection criterion that has no solid ecological basis

is used or the data set is artificially upgraded by

assigning fixed values to, for example, physiological

parameters. Here, we advance a likelihood ap-

proach (LA) that follows a different solution phi-

losophy. Rather than singling out one particular

solution, the LA generates a large set of possible

solutions from which the marginal probability

density function (mPDF) of each flow and corre-

lations between flows can be derived. The LA is

exemplified with an example model of a soil food

web and is made available in the open-source R-

software. Moreover, we show how stoichiometric

data, stable isotope signatures, and fatty acid com-

positions can be included in the LIM to alleviate the

under-sampling problem. Overall, LIM prove to be

a powerful tool in food web research, which can

bridge the gap between empirical data and the

analysis of food web structures.

Key words: food web; linear inverse model; mass

balance; optimization; likelihood; stable isotopes;

stoichiometry.

INTRODUCTION

The food web concept forms a cornerstone of

modern ecology as it describes the exchange of

matter—the so-called food web flows—among

different compartments within an ecosystem. Early

food web theory focused primarily on the topology

of food webs, in which interactions among com-

partments are simply marked as either present

or absent (Pimm and others 1991). In recent dec-

ades, ecologists have realized that a topological
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perspective on food web flows is insufficient to

understand natural food webs and that one also

needs to account for the magnitude of the flows,

which is one measure of ‘‘interaction strength’’ in

the ecological literature (Berlow and others 2004).

Analysis of interaction strengths in natural food

webs has revealed important features of their

functioning. For example, the stability of soil food

webs critically depends on the patterning of inter-

action strengths in the food web (De Ruiter and

others 1995). A dominance of weak interactions in

long trophic loops dampens the potentially desta-

bilizing effect of such long loops (Neutel and others

2002). Moreover, the coupling of fast and slow

trophic pathways by top predators also increases

food web stability (Rooney and others 2006).

Ecological theory aims to explain various food

web properties, such as the level of omnivory, food

chain length, connectance, and the number of basal,

intermediate and top species (for example, Williams

and Martinez 2000). These food web descriptors are

typically calculated from topological food webs.

However, Banašek-Richter and others (2004) show

that descriptors based on quantified food webs are

superior to those based on topological food webs:

fewer observations were needed to reliably con-

strain the descriptors and therefore better repre-

sented the food web structure. Accordingly, a vital

step in food web research is to develop a systematic

and standardized method to produce quantified

food webs, so one can fully explore their structure

and properties (Woodward and others 2005).

The problem of food web reconstruction basically

comes down to finding the ‘‘best’’ (or most likely) set

of flow values, assuming a certain food web topology

and given an empirical data set. Historically, this

problem was solved using a procedure of sequential

mass-balancing: one postulates a certain food web

topology and uses the available empirical data to

close the mass balance of the top predator. The flow

values from the predator’s mass balance are then

used in the mass balances of their prey, and so on.

This way, one can ‘‘mass balance down the food

web’’ until the basal resources are resolved (for

example, Hunt and others 1987). A clear advantage

of this sequential mass-balancing is its simplicity, but

there are also downsides. One problem is that the

approach is single-currency: mass balances are ex-

pressed in a single element, typically either carbon

(C) or nitrogen (N), and thus stoichiometric coupling

is ignored. A more fundamental problem is the

subjective nature of the approach. Field measure-

ments on flows in food webs are difficult and labo-

rious to obtain, and as a result, data sets are usually

‘‘incomplete.’’ The direct consequence is that the

problem of food web reconstruction has no single

‘‘best’’ solution, but an infinite number of flow

patterns that comply with the given data set. In

mathematical terms, the problem is said to be under-

determined. Because there is more than one possi-

bility to close the mass balance of a food web com-

partment, subjective choices by the ecologist are

needed to close the mass balances. These choices will

determine the food web structure that is finally se-

lected. When fewer data are available for lower

trophic levels, it is there where errors eventually

accumulate. Despite these disadvantages, the

sequential mass-balancing procedure is still used in

modern food web research (for example, Woodward

and others 2005).

The ECOPATH software offers a more systematic

approach to the mass-balancing problem (Chris-

tensen and Pauly 1992). A clear benefit of ECOPATH

is that data input and mass-balancing are performed

in a standardized and user-friendly way. More

importantly, the problem of food web quantification

is formulated in a rigorous mathematical way as a

linear inverse model (LIM). This implies that the

available food web data are parsed into a matrix

equation, and the unknown flows are obtained by

solving this linear equation system. Accordingly,

mass balances are all solved simultaneously rather

than sequentially. Nonetheless, ECOPATH remains

restricted to single-currency data, as it does not allow

the simultaneous solution of mass balances for

multiple elements. Moreover, ECOPATH circum-

vents the problem of mathematical indeterminacy in

a rather ad-hoc fashion. The number of equations is

artificially upgraded until the matrix equation is

completely determined by imposing fixed values for,

for example, physiological parameters (see ‘‘Con-

version efficiencies’’). This again introduces a sub-

jective aspect, because the researcher has to make

choices on which additional data to include.

Food web studies have adopted two approaches to

tackle the problem of data scarcity and model inde-

terminacy. Firstly, an improved LIM procedure has

been proposed in the field of marine ecology. This

LIM procedure solves multiple mass balances

simultaneously and directly deals with the under-

determined matrix equation (Klepper and Van de

Kamer 1987; Vézina and Platt 1988). Rather than

artificially upgrading the data set, one uses the

incomplete and/or uncertain data set as such, and

selects a ‘‘best’’ solution from the infinite set of food

web structures. The selection of this ‘‘best’’ solution

is based on an optimization criterion (discussed in

detail below). This improved LIM procedure has

been used quite frequently in aquatic plankton

ecology, but has found limited application in the

Food Web Quantification 33



wider ecological literature. One obstacle is presum-

ably the absence of appropriate software to perform

the required numerical calculations. Another issue is

the question of whether the optimization criterion

selects the ‘‘best’’ food web structure (Kones and

others 2006). In other words, ecological theory does

not provide a generally accepted ‘‘goal function’’ for

food web functioning, which reliably selects a ‘‘best’’

food web structure from the infinite set of solutions.

A second way to deal with the problem of

incomplete data and mathematical indeterminacy

is to simply enlarge the empirical data set. Effec-

tively, two novel data types have found widespread

application in ecology that can significantly reduce

the under-sampling of food webs. Firstly, important

insights have been gained from ecological stoichi-

ometry, in which food web interactions are con-

strained by the stoichiometric (im)balance among

abiotic and biotic compartments (Sterner and Elser

2002). For example, Gaedke and others (2002)

showed that zooplankton in Lake Constance ac-

quired C through herbivory and phosphorous (P)

by bacterivory, an interplay that fostered omnivo-

rous pathways in the food web. Secondly, stable

isotope data (13C and 15N) have provided important

constraints on diet composition and trophic posi-

tion of organisms under field conditions (see Min-

agawa and Wada 1984; Post 2002). These new

categories of data provide additional mass balance

constraints, provided that one can solve multiple

mass balances (for example, C, N, P, 13C, and 15N)

simultaneously. Only a LIM allows for such

simultaneous solution of multiple mass balances.

In this article, we discuss two ways to improve

the quantitative reconstruction of food webs using

LIM. Firstly, we present a novel solution procedure

for the underdetermined matrix equation system.

Instead of selecting a single solution from the infi-

nite set of solutions, the approach here uses a

sampling method to retrieve the distribution of

flow values in the solution set. A ‘‘best’’ flow value

and its associated uncertainty can be inferred from

all sampled food web solutions. This solution pro-

cedure is illustrated with an example soil food web

model. The software used is made publically

available through the packages LIM (Soetaert and

Van Oevelen 2008) and limSolve (Soetaert and

others 2008) that run in the R-software (R Devel-

opment Core Team 2008). Secondly, we show how

novel data types, such as stoichiometric and stable

isotope data, can be implemented in a LIM. In this

way, one can reduce the under-sampling problem

and improve the quality of the food web recon-

struction.

LINEAR INVERSE MODELING: MODEL

FORMULATION AND ECOLOGICAL DATA

TYPES

A LIM is termed linear because the food web model

is described as a linear function of the flows. Inverse

modeling means that model parameters are derived

from observed data. Fitting a straight line through

data points is a classical example of inverse mod-

eling. In the context of this article, the magnitudes

of the flows are the unknown model parameters

that need to be quantified by fitting against an

incomplete data set. The model itself is the topology

of the food web, which is determined a priori by

fixing the number of compartments and connect-

ing these compartments with flows. The LIM

incorporates the mass balance(s) of each compart-

ment and a set of quantitative data constraints (as

discussed in detail below). The overall structure of a

LIM is formed by two matrix equations:

Equality equation: E � x ¼ f ð1Þ

Inequality equation: Gx � h ð2Þ

The vector x contains the unknown flows (that is,

x1, …, xn), whereas the vectors f and h contain

various types of empirical data. Each row in the

equality equation (1) imposes a ‘‘hard’’ constraint:

a linear combination of the flows must match the

corresponding value in vector f. Therefore, equality

constraints are used to incorporate high-quality

data in the LIM, such as empirical data that are

obtained from in situ sampling of the food web

under study. Less strict data constraints are in-

cluded via the inequality equation (2), where each

row imposes a lower bound value on a linear

combination of flows. This option is used for ‘‘soft’’

data constraints that are typically based on data

that originate from elsewhere, for example, litera-

ture sources on other but comparable food webs.

The inequality equation (2) appears to accept only

lower bounds, but upper bound constraints can be

implemented after converting them to lower bound

constraints through multiplication of the left- and

right-hand side with -1. A default set of inequali-

ties is that x ‡ 0, which insures that flows have

directions that are consistent with the food web

topology (for example, predators can eat prey, but

not the other way around).

There exists an overwhelming variety of empir-

ical ecological data, which can be harnessed into

the data vectors f and h. We distinguish these data

based on ‘‘source’’ and ‘‘type.’’ The source of data

relates to their origin; data are either directly
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obtained from the food web under study or from

literature sources on other food webs. In general,

we rank site-specific data as ‘‘high quality,’’ be-

cause they are obtained from the food web under

study. Literature data are considered to be of lower

quality, because they are usually derived from

other food webs, and hence, it is not certain whe-

ther such data apply to the food web at hand.

The data type refers to the kind of data that is

available and we will now briefly discuss six com-

mon data types.

Mass balances An essential physical constraint is

that mass conservation should hold for each ele-

ment. Each mass balance has the form:

dx=dt ¼
P

xin �
P

xout; stating that the temporal

change in mass of compartment x should equal the

difference between the incoming and outgoing

flows. Data on temporal stock changes (dx/dt, for

example, obtained by sampling stock sizes at con-

secutive times) are entered in the appropriate po-

sition in vector f (see the ‘‘MB’’ coded equations of

the example model in Table 1). In case such data

are not available, and one can assume steady-state

and set the corresponding fi to zero.

Food web flows Specific measurements on the

magnitude of an individual flow (for example,

primary production) or a combination of several

flows (for example, community respiration) pro-

vide direct constraints that can be directly imple-

mented in the food web LIM equations (see ‘‘F’’

equation in Table 1). Such measurements are often

difficult to conduct in situ, and usually only a

limited amount of such data is available.

Biomass data are relatively easy to collect and

form a cornerstone of quantitative food web re-

search. Biomass data cannot be implemented di-

rectly, because the LIM is written in terms of flows

rather than biomass. However, in combination

with biomass-specific rate constants, biomass data

provide important constraints on the flow magni-

tudes (see ‘‘BIO’’ equations in Table 1). Typical

examples are biomass-specific growth, consump-

tion, respiration, and mortality rates. Such rate

constants are typically derived from laboratory

experiments, and hence, their applicability to field

conditions is uncertain. Accordingly, such data

should generally be regarded as low quality.

Conversion efficiencies provide constraints dictated

by the physiology of the organism or functional

group in the food web. Classical examples are the

assimilation efficiency, that is, the ratio of assimi-

lated food over ingested food, and the growth

efficiency, that is, the ratio of secondary production

over assimilated food. Conversion efficiencies

constrain the magnitude of flows relative to others

(see ‘‘CE’’ equations in Table 1). Some conversion

efficiencies can be estimated in situ, for example,

assimilation efficiency from the Conover-ratio, that

is, the change of the organic fraction of food during

digestion (Conover 1966), and can then be con-

sidered as high-quality data. Other efficiencies, for

example, growth efficiencies, are classically derived

from laboratory experiments and should therefore

be considered as low quality data.

Stoichiometry The stoichiometric composition of

organisms in terms of C, N, and P is relatively easy

to determine for organisms collected in the field.

Like conversion efficiencies, such stoichiometry

data (typically C:N, C:P, and N:P ratios) couple

different element flows (see ‘‘STOI’’ equations in

Table 1). In addition, stoichiometry constrains

processes at the physiological, population, and

ecosystem level (Sterner and Elser 2002). Such

correlations can be used to constrain amongst

others conversion efficiencies, growth rates, and/or

decomposition rates directly (see ‘‘Discussion’’).

Stable isotope signatures are used in ecology to

decipher the relative importance of resources. The

isotope signature of a consumer dXj

� �
is modeled as a

weighed function of the isotope signature of its food

sources dXið Þ; fractionation during trophic transfer

Dij

� �
; and the relative contributions (ai) of the

food sources in the diet. This leads to a simple linear

mixing model (for example, Phillips and Gregg 2003):

dXj ¼
P

i

ai dXi þ Dj

� �
; with

P
ai ¼ 1:Because ai ¼

flowi!j

�
P

i

flowi!j

� �

this model can be directly

rewritten as a linear function of the flows

flowi!j

� �
: dXj ¼

P
i
flowi!j dXiþDjð ÞP

i
flowi!j

: The latter equation

can be implemented in the equality equation (1) in a

straightforward way (for example, Van Oevelen and

others 2006).

LINEAR INVERSE MODELING: THREE

SOLUTION APPROACHES

When all data types are incorporated, the LIM

equation system becomes

EðmþdÞ�n � xn�1 ¼ f mþdð Þ�1 ð3Þ

Gc�n � xn�1 � hc�1 ð4Þ

where n denotes the number of flows, m the

number of mass balances, d the number of equali-

ties, and c the number of inequalities. Equations (3)

and (4) form the heart of the LIM, and a suitable

solution procedure is required to recover the flow

values in x. A key mathematical property of a LIM
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is the rank parameter r, which denotes the number

of linearly independent equations in the matrix

equation (3). When all equalities are linearly

independent, the rank parameter r simply equals

m + d.

When the number of independent equations

matches the number of unknown flows (r = n =

m + d), the matrix E is square and said to be of full

rank. When there are no inequality constraints, the

full-rank LIM has a unique solution, which can be

directly found by matrix inversion: x = E-1 Æ f. This

is analogous to fitting a straight line through two

points. However, a full-rank LIM is never met in

practice, because food webs are typically under-

sampled (r < n). Moreover, inequality constraints

are always present, because it is necessary to impose

that x ‡ 0 to give flows a specific direction.

A LIM is said to be over-determined when the

number of independent equations is larger than the

number of flows (r > n). The analogous situation is

fitting a straight line through more than two data

points. In this case, the equality matrix equation (3)

has no obvious solution, because not all equality

constraints can be satisfied simultaneously. Instead

of reproducing the equality constraints exactly, one

seeks the solution that reproduces the equalities as

well as possible (see below).

As noted above, food webs are typically under-

sampled and the number of equalities is then

insufficient to balance the number of unknown

flows (r < n). In this case, the problem is said to be

under-determined and the equality matrix equation

(3) has an infinite number of solutions. The anal-

ogy is trying to fit a line through a single point; an

infinite number of lines can be drawn. The main

challenge in food web reconstruction is to solve this

under-determinacy problem. In the next para-

graphs, we discuss three ways to achieve this. The

first two are well known from the literature,

whereas the last one is a novel contribution.

Single-Solution Approach
to an Over-Determined LIM

As discussed above, one usually makes a distinction

between two kinds of data: (1) high-quality data

that are incorporated as ‘‘hard’’ equality constraints

(for example, site-specific data), and (2) lower

quality data that are incorporated as ‘‘soft’’ inequality

constraints (for example, literature data). One way

to deal with under-determinacy is to make no dis-

tinction between data qualities and to treat site-

specific and literature data equally. In other words,

lower quality data from the literature are upgraded

from soft inequalities to be incorporated as fixed

‘‘hard’’ equalities. After upgrading sufficient litera-

ture data to hard equalities, the number of equalities

will equal and then exceed the number of flows

(m + d > n), at which point the LIM has become

over-determined. The single ‘‘best’’ solution to such

an over-determined LIM solved is considered the

flow vector x that minimizes the difference between

the model prediction (E Æ x) and the data (f), raised

to some power L:

minimize E � x� fj jL ð5Þ

The power L influences the weighting in the min-

imization and can have values of 1, 2, or ¥ (for

example, Menke 1984): when L = 1, all differences

are weighted equally, whereas larger values of L

give comparatively more weight to large differ-

ences. This approach will henceforth be referred to

as the single-solution approach to an over-deter-

mined LIM (SSAover) (see for example, Klepper

and Van de Kamer 1987; Diffendorfer and others

2001; Gaedke and others 2002 for examples).

Single-Solution Approach to an Under-
Determined LIM

In an alternative approach, one explicitly differ-

entiates between equalities and inequalities as

dictated by the data quality. In this case, one in-

cludes only site-specific data as ‘‘hard’’ equalities

and literature data as ‘‘soft’’ inequalities. As stated

above, the resulting under-determined LIM has

infinitely many solutions that are all equally likely

from a data perspective. It is therefore necessary to

make an additional assumption to single out one

‘‘best’’ solution. One popular method is to select

the ‘‘best’’ food web structure on the assumption of

parsimony or simplicity. The most parsimonious

solution is defined as the flow vector x that has the

smallest sum of squared flow values (sensu Vézina

and Platt 1988):

minimize
X

i

xij jL ð6Þ

where L can again have values of 1, 2, or 1: In

most food web applications, L = 2 (sensu Vézina

and Platt 1988), which requires that the sum of

squared flows should be as small as possible and

that flows should be partitioned as uniformly as

possible (Niquil and others 1998). We will hence-

forth refer to this approach as the single-solution

approach to the under-determined LIM (SSAun-

der) (see Vézina and Platt 1988; Jackson and

Eldridge 1992; Richardson and others 2003 for

examples). Although only: one single solution is

selected in SSAunder, it is interesting to find the
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minimum and maximum values of each flow that

exists in solution space, because it informs one on

the upper and lower bounds in-between where the

‘‘best’’ flow value lies. These extremes can be found

via a range estimation procedure: each flow is

successively minimized and maximized under the

condition that E Æ x = f and G Æ x ‡ h (Klepper and

Van de Kamer 1987).

We see two potential downsides of SSAunder.

Firstly, there is no theoretical or empirical evidence

that robustly underpins the assumption of parsi-

mony (Steele 2009). Therefore, we cannot be sure

that the selected food web structure is correct.

Secondly, the SSAunder can have unlikely prop-

erties: (1) some flows may be set to zero (Vézina

and others 2004; Kones and others 2006) and (2)

many flows are close to the lower bound of their

ranges, which should be considered extreme values

rather than likely ones (Diffendorfer and others

2001; Kones and others 2006; Steele 2009). Some

of these disadvantages can be partially alleviated by

adding additional smoothing among the flow val-

ues (Vézina and others 2004).

Likelihood Approach

We have shown above that both the SSAover and

SSAunder require additional assumptions to deal

with the under-determinacy of the LIM. Here, we

discuss an alternative likelihood approach (LA) that

does not need such additional assumptions. In the

LA, we focus on ‘‘all’’ potential LIM solutions (that

is, food web structures), rather than invoking

additional assumptions to select a single food web.

The distribution of all LIM solutions is formally

captured in a probability density function (PDF).

The distribution of values for each individual flow in

all solutions is the marginal probability density

function (mPDF), that is, the smoothed version of a

histogram, and is obtained through integration of

the PDF over the solution domain. The LA has four

important advantages: (1) it is ‘‘objective’’ in the

sense that no selection criterion is used, (2) low-

quality data do not need to be implemented as

high-quality data, (3) it solves both under- and

over-determined LIM with the same methodology,

and (4) information about the ‘‘quality’’ of the

model inference can be obtained.

The LA is basically the same for under- and over-

determined LIM, but it is easier to first detail the LA

for under-determined models (LAunder). Figure 1A

shows an under-determined LIM that for illustrative

purposes involves only two flows. All combinations

of values for flow1 and flow2 that are valid solutions

to the LIM are enclosed in the grey region, whereas

the invalid solutions are in the white area. The grey

shading is uniform to emphasize that all solutions

are equally likely from a ‘‘data-perspective’’: the

PDF of all solutions is constant over this area. The

mPDF for flow1 is simply the integration of the sur-

face area of the grey region over flow2 (Figure 1B).

This gives an interesting result: although the PDF of

all solutions is uniform, the mPDF of a flow is not

uniform. Rather than trying to calculate the mPDF
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Figure 1. Schematic representation of the LA for an

under-determined LIM. The grey region enclosed in

equality constraints contains all combinations of flow

values for flow1 and flow2 that are consistent with the

data. The grey shading is uniform to signify that the PDF

of all enclosed solutions is uniform. Solutions in the

white region are inconsistent with the data constraints,

and hence, their likelihood is zero. The sampling algo-

rithm locates solutions (numbered dots) by taking random

jumps (for example, from solutions 1 to 2). When the

algorithm jumps out of the grey region, a reflection

method mirrors the jump back into the grey region. The

mPDF’s for the flow1 and flow2 are derived from the total

set of sampled solutions. See ‘‘Linear inverse modeling:

three solution approaches’’–‘‘Likelihood approach’’ for

more details.
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analytically, which is an arduous task for more

complex LIM, it is possible to approximate the mPDF

numerically by a Markov Chain Monte Carlo algo-

rithm. In particular, we use the sampling algorithm

xsample (Van den Meersche and others 2009) that is

included in the R-package limSolve (Soetaert and

others 2008). This sampling algorithm generates a

set of consistent solutions (approximately thou-

sands of solutions), from which the mPDF for each

of the flows can be derived.

After the construction of the mPDF, the next step

is to extract a single solution from the ensemble, for

which different options are possible. The median

flow values in the solution set give central esti-

mates and the 25 and 75% quantiles indicate

uncertainty of this central estimate. Alternatively,

the maximum likelihood of each flow (that is, the

value for which the mPDF is maximal) can be in-

ferred using kernel density estimation on the set of

sampled solutions (for example, by the R-function

‘‘density’’). Both these approaches give a single

‘‘best’’ value for each flow, but neither the medians

nor maximum likelihoods necessarily represent

valid solutions to the LIM equations (3) and (4).

The median and maximum likelihoods are valid

solutions in the schematic example of Figure 1, but

in more complex LIM this is not guaranteed.

However, one can show that the mean flow vector

always represents a valid solution to the LIM. This

is because the calculation of the mean involves a

linear operation on the solution set, which in turn

gives a valid solution. This can be simply shown as

follows. Consider a set of N vectors xN, that are all

valid solutions to the LIM such that E � xi ¼ f with

i = 1, …, N. The mean flow vector of the solution

set is again a valid solution because E � 1
N
�

�

P
xNÞ ¼ 1

N
�
P

E � xNð Þ ¼ 1
N
� N � fð Þ ¼ f (a similar

reasoning holds true for Gx � hÞ: The example

model discussed below shows that the mean flow

values always closely approximate the medians,

and therefore, the mean flow vector seems to

provide a good central estimate that is consistent

with the LIM. When calculating the median or

maximum likelihood, one essentially performs a

non-linear operation on the solution set, and as a

result, the median and maximum likelihoods are

potentially invalid solutions to the LIM.

We now generalize the LA to over-determined

LIM. To this end, we define an additional matrix

equation that contains ‘‘approximate’’ equalities,

which must be reproduced as closely as possible:

S�1=2 �A � x ffi S�1=2 � b ð7Þ

The form of A (‘‘A’’ stands for approximate) and b is

identical with E and f in equation (1), respectively,

with coefficients as elements in matrix A that form

linear equations with the flows in x and that have

the corresponding numerical value in b. These

‘‘approximate’’ equalities are weighed with matrix S

to assign the approximate equality with a respective

uncertainty relative to one another. The scaling

matrix S should be the variance–covariance matrix

of the approximate equations, though in practice S is

often a diagonal matrix with the observed variances

(see for example, Menke 1984; Wunsch 1996). The

approximate equation (7) causes the PDF to be no

longer uniform: solutions that more closely fulfill the

approximate equations have a higher probability

than other solutions.

This is illustrated in a pedagogical model involv-

ing two flows and three approximate equality con-

straints (Figure 2A). Each approximate equality

equation has an associated uncertainty, which is

imposed through matrix S in equation (7), resulting

for example from natural variability. This uncer-

tainty is visualized by the grey shading bands

around the equalities (Figure 2A). Hence, each

equality (equation 3) defines a fixed line in the

solution domain, whereas an approximate equality

defines a region in the solution domain where the

approximate equality is reproduced with certain

likelihood. The superposition of likelihoods of the

approximate equalities ultimately gives a complex

likelihood field over the whole solution domain.

Unlike for under-determined LIM, there is no black-

and-white distinction between consistent and

inconsistent solutions, but a more subtle distinction

of more likely and less likely solutions. A repre-

sentative set of solutions from such a solution

domain is drawn with a Markov chain using, for

example, the Metropolis algorithm (Van den

Meersche and others 2009, schematically visualized

in Figure 2A). The resulting solution set approxi-

mates the mPDF of each flow (Figure 2B).

AN EXAMPLE APPLICATION: C AND N
CYCLING IN SOILS

To illustrate the solution methods SSAunder, SSA-

over, and LA, we applied them to a simple soil food

web. The food web topology and the associated

parameters are taken from a recent study on the ef-

fects of fauna on C and N cycling in soils by Osler and

Sonimerkorn (2007). The food web includes 5

compartments that are linked with 14 C and N flows

(Figure 3). The complete data set consists of (high-
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quality) empirical data obtained from a study on a

short-grass prairie food web (Hunt and others 1987),

supplemented by (low-quality) literature data on

soil food webs. As no ranges were given for the lit-

erature data, we introduced uncertainty by assum-

ing that the reported value had a range of ±25% (this

error value does not influence the conclusions

drawn from the example food web). All scenarios

were solved in the R-software (R Development Core

Team 2008) using the newly developed packages

‘limSolve’ and ‘LIM’ (see Supplementary materials).

As a quality distinction is made between data

sources, the site-specific data are implemented as

‘‘hard’’ equalities and literature data as ‘‘soft’’

inequalities, and so an under-determined LIM is

obtained (Table 1). The LAunder solution of this

LIM is presented in two ways (Figure 4): as histo-

grams to reflect the mPDF of each flow and as

paired plots to portray correlations between flow

pairs. Note that the histograms are simply projec-

tions of the paired plots onto the axis of one of the

flows as in Figure 1. An important advantage of the

LAunder solution is that the probability distribu-

tions of all flows are revealed. The shapes of the

mPDF differ between the flows: some flows have a

bell-shaped distribution (for example, POMC !
FAUCÞ; other flows have a rather uniform distri-

bution (for example, MICC ! POMCÞ and again

others are strongly skewed toward their extremes

(for example, MICC ! FAUCÞ: The pair plots show

correlations between flows, which can be given a

direct ecological interpretation: for example, POM

hydrolysis POMC ! DOMCð Þ correlates positively

with microbial DOM uptake DOMC !MICCð Þ and

respiration MICC ! DICCð Þ: The SSAunder solu-

tion is indicated by the dashed line in the histo-

grams. Note that this always lies at the extremes,

with high flow magnitudes lying at the lower

extreme and low flow magnitudes at the upper

extreme (Figure 4). This ‘‘stickiness’’ of flow values

to the extremes is known from the Kuhn-Tucker
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Figure 2. Schematic representation of the LA for an

over-determined LIM. Each of the three equality con-

straints is given a degree of uncertainty in (A) in which a

darker shade of grey indicates a higher likelihood for the

respective solution. The broader the uncertainty zone,

the greater the uncertainty of the associated constraint. A

sampling algorithm samples the solution domain (an

arbitrary selection of sampled solutions is here indicated

with the numbers 1–4), which leads to the PDF for each

flow as shown in (B) for flow 1. See ‘‘Linear inverse

modeling: three solution approaches’’–‘‘Likelihood ap-

proach’’ for more details.
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Figure 3. Topology of the example food web model. Five

compartments are incorporated: particulate organic

matter (POM), dissolved organic matter (DOM), mi-

crobes (MIC), fauna (FAU), and ammonium (NH4). The

following C and N flows are incorporated: Plant litter

deposits on the POM pool of the soil (f1), POM dissolves

to DOM (f2), and DOM is taken up by microbes (f3).

Fauna consumes microbes (f5) and POM (f7) and the

unassimilated food fraction flows to DOM (f6). Fauna

(f10, f9) and microbes (f11, f13) mineralize C to CO2 and N

to NH4, but only microbes can take up NH4 (immobili-

zation, f12). Mortality of microbes (f4) and fauna (f8) is

described as a flux to POM. Finally, plants take up N from

the NH4 pool (f14). Stocks are given in brackets as (C;N)

in mmol m-2.
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theorem that states that the solution is minimum

only if one can make the solution more ‘‘simpler’’

or more ‘‘parsimonious,’’ that is, lower sum of

squared flow values (equation 6), if one would

cross some constraints (Menke 1984). This can also

be understood intuitively, because the parsimony

principle dictates that C goes as directly as possible

where it is required according to the LIM and non-

necessary C as determined by the LIM exits the

system by the shortest possible route (Niquil and

others 1998).

The advantages of the LA are clear, it represents a

complete solution of the LIM, because the distri-

bution of all possible solutions is visualized and one

can infer how well flows are constrained by the

data. We extract a single ‘‘best’’ solution from the

ensemble by averaging, which is, as argued above,

a single solution that can be extracted from the

solution set that is always consistent with the LIM

equations. Moreover, the average flow values are

very close to the medians (R2 > 0.99, with a

maximum relative deviation of 18% and absolute

deviation of 1.3 mmol C m-2 d-1) and are central

estimates of the flow values. The average flow

values are represented in the histograms as solid

lines (Figure 4).

When all available data are implemented as

‘‘hard’’ equalities (either in equation 3 or 7), one

obtains an over-determined LIM (Table 1 and

Supplementary materials). This LIM was solved

with LAover and SSAover and the solutions are

presented in Figure 5. The paired plots show a less

uniform distribution over the solution domain as

compared to LAunder, which is due to the fact that

‘‘fringe solutions’’ are less likely because their

model–data fit is poorer. Hence, the center of the

solution set truly gives a better fit to the imposed

data as compared to the fringes. However, the

correlations between flows as found in the under-

determined LIM also surface here, for example,

between microbial DOM uptake DOMC !MICCð Þ
and respiration MICC ! DICCð Þ: The histograms of

all flows have a distinct maximum, which is very

well approached by the SSAover, the latter being

indicated by a dashed line in the histograms. The

SSAover finds the solution that has an optimal

Figure 4. Histograms and

pair plots of the C flows

(mmol C m-2 d-1) of the

example food web model

calculated with LAunder.

The x- and y-axes are

scaled to the maximum

flow values allowed

within the LIM (that is,

flow ranges). The dashed

line in the histograms

denotes the SSAunder

solution and the solid line

is the mean of the

complete set of solutions.

The flow

DEP_C fi POM_C is the

deposition of plant litter.

Note that the N flows are

omitted to improve the

readability of the figure.

See ‘‘Linear inverse

modeling: three solution

approaches’’ for

methodological details on

the solution approaches

SSAunder and LAunder.
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model–data fit, which explains why it is very close

to the maximum likelihoods of the flows in LAover.

The SSAover thus represents a good and quick

solution method when one is solely interested in

the ‘‘best’’ estimate, the LAover however addi-

tionally gives information on the uncertainty

associated with the estimation of a flow and cor-

relations among the food web flows.

Although this analysis cannot be regarded as a

rigorous comparison of solution approaches, some

important points surface: (1) The LA method pro-

vides much more information than the single-

solution methods, because it reveals flow ranges,

correlations between flows and probability distri-

butions of the flows. (2) The optimization criterion

that is used to select the SSAunder solution pushes

the flow values to lower/upper extremes of their

ranges. (3) The SSAover corresponds closely to the

maximum likelihood of the LAover and represents

a good and quick ‘‘best’’ estimate. (4) The only

single valid solution that can be extracted from the

solution set of LAunder is the average flow value,

which represents a central estimate.

DISCUSSION

Application of LIM in Food Web
Research

Food web ecologists have realized in the recent

years that the values of food web flows can differ

over order of magnitudes, and that these differ-

ences are crucial for the functioning of food webs

(Neutel and others 2002; Banašek-Richter and

others 2004; Woodward and others 2005). We

show here that linear inverse modeling (1) forms a

promising tool for the quantification of real food

webs in a systematic and standardized way, and

that (2) the methodology is able to incorporate a

variety of empirical data. We have also shown that

the two existing approaches for solving such linear

inverse food web models focus on a single solution

of the model, whereas in reality an infinite number

of solutions are equally likely from a ‘‘data-per-

spective.’’ Moreover, these single-solution ap-

proaches require additional assumptions to select a

single solution. One approach involves placing

lower-quality literature data from other food webs

Figure 5. Histograms and

pair plots of the C flows

(mmol C m-2 d-1) of the

example food web model

calculated with LAover.

The dashed line in the

histograms denotes the

SSAover solution. The

flow DEP_C fi POM_C

is the deposition of plant

litter. Note that the N

flows are omitted from

this figure to improve the

readability of the figure.

See ‘‘Linear inverse

modeling: three solution

approaches’’ for

methodological details on

the solution approaches

SSAover and LAover.
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on equal footing to the data set from the food web

under study (SSAover). The other approach dis-

tinguishes between high- and low-quality data, but

requires a selection criterion to single out a solution

(SSAunder). It remains to be investigated whether

this selection criterion indeed selects the most

likely food web structure.

Here we advance a LA, which has three impor-

tant advantages: (1) data can be distinguished

based on their quality, allowing data to be imple-

mented as either ‘‘hard’’ equalities or ‘‘soft’’

inequalities, (2) both under- and over-determined

LIM are solved using the same approach, and (3)

rather than focusing on a single solution, the LA

generates a marginal mPDF for each flow from

which the distribution of flow values can be de-

rived. The newly developed R-packages LIM and

limSolve make the LA freely available (Supple-

mentary materials show the setup and solution of

the example model).

The complete set of food web structures gener-

ated with the LA can also be conveniently used in

subsequent analysis of the food web. For example,

Bersier and others (2002) developed food web

descriptors, such as omnivory index and food chain

length, which can be calculated from a quantitative

food web. These calculations are typically inferred

from a single food web structure. With the solution

set generated by the LA, however, the food web

descriptors can be calculated for every food web in

the solution set. In this way, the distribution of

flow values propagates to the distribution of the

descriptors and one can assess how robust the food

web descriptors are inferred (for example, Kones

and others 2009). A similar strategy can be fol-

lowed in the stability analysis of food webs (Neutel

and others 2002; Rooney and others 2006), anal-

ysis of food quality on food web dynamics (Gaedke

and others 2002) and modeling bioaccumulation of

toxicants in food webs (De Laender and others

2009).

When implementing LIM, one important pre-

requisite is that all data are associated with appro-

priate temporal and spatial scales. For example,

combining primary production rates measured over

a period of hours with nutrient depletion rates

derived from weekly monitoring is bound to give

unreliable results. However, when the scaling issue

is addressed, LIM can be used for the reconstruc-

tion of metabolic pathways in bacteria (Segre and

others 2002), ocean circulation patterns (Wunsch

1996), and as we show here, food web flows. In

terms of spatial scaling, food web applications typ-

ically consider the ecosystem as one homogeneous

environment (as in the example model). However,

this spatial homogeneity is no intrinsic limitation of

LIM. Food webs can also be spatially resolved, for

example, Breed and others (2004) modeled the

planktonic food web of the Mississippi River plume

in four coupled regions (�10–100 km scale). Jack-

son and Eldridge (1992) modeled C and N flows in

two layers of the water column (�10–100 m scale).

Incorporating Novel Data Sources

The amount of data included in the LIM equalities

determines whether the model is under- or over-

determined (see above) and until now, we have

discussed the implementation and solution of a

food web LIM given some predefined data set. Al-

though LAunder has clear advantages over single-

solution approaches (as shown above), it also

clearly illuminates some nagging problems of

working with under-determined LIM: each valid

solution of the under-determined LIM is equally

likely (Figure 1A) and as a result the mPDF of

many flows have a comparatively uniform distri-

bution and are thus not very well constrained

(Figure 4). This is different for the over-determined

LIM, where a true maximum-likelihood solution

exists (Figure 2A) and where many of the mPDF of

the flows are bell-shaped with distinct maxima

(Figure 5). A proactive response of the food web

researcher would be to try to include as much high-

quality data as equalities as possible, such that the

food web LIM will finally become over-determined.

This will be difficult to achieve with the data types

that are currently exploited, because these typically

constrain only how much food is required, but

provide limited information from where this food is

obtained. We therefore end this article with sug-

gestions of a variety of data types that can be

straightforwardly implemented in food web LIM,

but that are currently not or only limitedly used.

Their implementation will decrease the degree of

under-sampling of food webs, reduce the uncer-

tainty of the estimated flow values and will bring

over-determined food web models within reach.

Elemental stoichiometry couples empirical data on

flows in one currency to flows in another currency

(for example, Vézina and Platt 1988; Jackson and

Eldridge 1992; Gaedke and others 2002). In the

example model, grazing on microbial C and N is

coupled through the bacterial C:N ratio (see

Table 1). Stoichiometric relations have not been

used to make food web processes dependent on the

observed elemental compositions of the compart-

ments. Experiments show that the gross growth

efficiency decreases when the elemental imbalance

between predator and prey increases (chapter 5 in
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Sterner and Elser 2002). Similar stoichiometric

relations have been reported between the C:P ratio

of autotrophs and their specific growth rate

(chapter 3 in Sterner and Elser 2002) and between

the elemental composition of detritus and its

decomposition rate (Cebrian 2004). This informa-

tion can be used by making the value of the asso-

ciated parameters (for example, gross growth

efficiency, specific growth rate, decomposition rate)

directly dependent on the observed stoichiometric

compositions. When such relations are imple-

mented, they will lead to narrower and more

realistic lower and/or upper values in the matrix

inequalities equation and thus better constrained

flow values.

Stable isotope signatures provide time-integrated

information on the trophic level of an organism

(Minagawa and Wada 1984; Post 2002) and its diet

composition (Phillips and Gregg 2003) under nat-

ural conditions. This knowledge cannot be derived

from traditional data on C or N processing and

therefore stable isotope signatures are now a stan-

dard method in food web research. The standard

method to interpret stable isotope data is by means

of a linear mixing model and these can be seam-

lessly integrated in a LIM. It is therefore surprising

that stable isotope data have not been frequently

used in food web LIM. The great advantage is that

they exclude diet combinations that are in conflict

with the isotope data. This exclusion strongly nar-

rows the flow ranges in the food web. A clear

illustration is provided by a recent study of an

estuarine intertidal food web, where d13C data

were combined with conventional data on C cy-

cling (Van Oevelen and others 2006). The d13C data

distinguished diet contributions from benthic mic-

roalgae (heavy d13C) from those of phytoplankton

and detritus (lighter d13C). The uncertainty range

of many flows decreased significantly after the

addition of stable isotope data to the LIM. A similar

observation was made in a LIM study on the

structure of the pelagic food web in an estuary,

where the incorporation of d13C data greatly

influenced the heterotrophic flows in the food web

LIM (Eldridge and others 2005).

Another method to infer the diet of an organism

is based on its fatty acid composition. In general, the

fatty acid composition of an organism reflects that

of its resource, barring some alterations during

digestion and deposition. Fatty acid signatures have

been used to establish the presence or absence of

feeding links between compartments (for example,

Meziane and Tsuchiya 2000). Recently, Iverson

and others (2004) provided a quantitative approach

to reconstruct diet compositions from fatty acid

signatures. The model assumes linear mixing of

fatty acid compositions and is thus analogous to the

mixing model of stable isotopes. The model can

account for biosynthetic alterations by means of

fatty acid-specific calibration coefficients and spec-

ification of the total lipid content of the prey (Iv-

erson and others 2004). In theory, fatty acid

compositions could significantly extend the

empirical data set of a LIM and thus aid in resolving

large and complex food webs.

In conclusion, we have shown that LIM are

powerful tools to quantitatively reconstruct food

webs by merging a variety of traditional data types

(for example, biomass) and currently under-

exploited data sources (for example, stable iso-

topes). The LA proposed here solves a LIM without

additional assumptions, and robustly calculates the

‘‘best’’ flow value, its uncertainty and correlations

with other flows. In this way, LIM provide an

effective tool to bridge the gap between incomplete

and uncertain empirical data on natural food webs

and the analysis of food web structures.
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