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Abstract
Meyer (Environ Econ Policy Stud, 2022) questions a number of assumptions behind 
the social cost of carbon (SCC) calculations in Dayaratna et al. (Environ Econ Pol-
icy Stud 22:433–448, 2020), especially the CO2 fertilization benefit and the climate 
sensitivity estimate. He recommends against increasing the CO2 effect and suggests 
applying a recent climate sensitivity estimate in Lewis, Clim Dyn (2022), but did not 
calculate the resulting SCC distribution. Herein we critically assess his recommen-
dations and compute the SCC distribution they imply. It has a median SCC value in 
2050 of $3.39 and implies a 33.4 percent probability of the optimal carbon tax being 
negative. While a bit higher than the results in Dayaratna et al. (Environ Econ Policy 
Stud 22:433–448, 2020), they are not materially different for the purposes of setting 
optimal climate policy.

Keywords  Agriculture · Climate sensitivity · CO2 fertilization · Integrated 
Assessment Modeling · Social cost of carbon

Meyer (2022, herein M22) critically examines a number of assumptions behind the 
social cost of carbon (SCC) calculations in Dayaratna et  al. (2020, herein D20), 
which made use of the Framework for Uncertainty, Negotiation, and Distribution 
(FUND) model due to Anthoff and Tol (2013). He argues that our most impor-
tant assumptions “are either not as important or strong as the authors suggest, out-
dated, or not supported by published literature.” Meyer lists a number of alternative 
assumptions which he suggests would be more appropriate to apply but does not 
present any new calculations. Herein we assess his recommendations and discuss 
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the changes they imply for the SCC calculation. Altogether, we find that the results 
do not materially differ from the implications of D20.

The claims in D20 subject to criticism by M22 fall into four groups, two of which 
are particularly consequential. (1) Climate risks associated with very high Equilib-
rium Climate Sensitivity (ECS) outcomes are improperly handled in probabilistic 
Integrated Assessment Model (IAM) simulations because they fail to adjust the pro-
cesses governing time-to-equilibrium to be consistent with ECS as it varies, result-
ing in physically impossible parameter combinations; (2) agricultural damages in 
FUND (and by implication other IAMs) are overstated because they failed to take 
account of accumulated evidence regarding gains from CO2 fertilization; (3) con-
ventional ECS values in IAMs are too high compared to those estimated in recent 
climatological literature; (4) translating SCC estimates from IAMs into an opti-
mal carbon price requires dividing by the Marginal Cost of Public Funds (Sandmo 
1975). Of these topics, (2) and (3) are the most important.

Item (1) was pointed out by Roe and Bauman (2013). D20 noted that the ECS 
estimation method in Lewis and Curry (2018) jointly conditioned climate sensitivity 
with evidence on the rate of ocean heat uptake, thus yielding a probability distribu-
tion that did not violate physical limits on adjustment speeds. M22 did not critique 
the argument of Roe and Bauman (2013) or the estimation method of Lewis and 
Curry (2018), instead he argued that the ECS issue does not matter because other 
uncertainties in SCC calculations are at least as important, and a subsequent study 
by Calel et al. (2015) did not find variations in the tail thickness of the ECS distribu-
tion mattered much for estimating mean damages when using the Nordhaus damage 
function in the DICE-2009 model (Nordhaus 2008). Regarding the first point, we 
agree that there are many important assumptions involved in IAM simulations but 
our own simulations in D20 and the new ones we present herein, nonetheless, show 
that the choice of ECS is among the most influential. Regarding the second, Fig. 3 in 
Calel et al. (2015) shows that use of fat-tailed ECS distributions increases the spread 
of warming estimates but leaves the mean largely unchanged, which is the basis of 
their claim regarding robustness of estimated damages. However, while they discuss 
the role of the parameter governing adjustment speed, those simulations allow ECS 
to vary while leaving adjustment speed fixed, which is precisely the point of criti-
cism in Roe and Bauman (2013).1 When they allow it to vary (see their Table 2), 
the mean damages change dramatically. But they still do not constrain the speed of 
adjustment to be consistent with ECS, so not all the outcomes in their simulations 
are physically possible.

In any case, this issue does not affect our simulations in D20 nor those we present 
herein so we will leave it aside. Regarding (2), M22 says “Dayaratna et al. (2020) 
cite a few papers published in the past decade showing a new high-CO2-adapted 
rice variety and larger estimates of the CO2 fertilization. They suggest that the agri-
culture parameter �

t
 in FUND should be at least 30% larger.” This is an incomplete 

summary of our argument. While we discussed rice, we also discussed evidence 

1  More specifically Calel et al. leave ocean heat capacity fixed, which implies a fixed adjustment speed 
parameter.
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covering all major crop types as well as satellite-based measurements of leaf-area 
index which tracks rising yields of grasslands, which are essential for livestock 
productivity.

Part of our argument was based on a meta-analysis by Challinor et  al. (2014). 
M22 points to the Moore et al. (2017) meta-analysis, noting the size of their data set 
and suggesting it supersedes the Challinor et al. analysis. In fact, both studies used 
the same dataset. Moore et al. simply applied a different estimating equation than 
Challinor et al. and obtained results that implied worse climate impacts on agricul-
ture. Unfortunately, they did not report their econometric estimates nor present any 
hypothesis testing to defend their modeling decisions. They used a functional form 
that, compared to Challinor et al., strongly dampens the gains from CO2 fertilization 
but they did not report sensitivity analysis to this assumption. Challinor et al. esti-
mated and presented separate response functions for data subsets based on whether 
the underlying study considered adaptation or not. Moore et al. did not do this and 
indeed constrained the adaptation effect in their simulation model into a form that 
largely eliminates it. The response functions shown in the Moore et al. paper (see 
their Fig.  1) include warming but leave out CO2 fertilization and adaptation alto-
gether. Since this implausibly pairs large increases in temperature with no change in 
CO2, the functions are irrelevant to understanding the net effects of CO2-induced cli-
mate change on agriculture. Moreover, experimental studies published subsequently 
to both papers (e.g., Lenka et al. 2017, 2019; Qiao et al. 2019) have continued to 
report large net gains from combined warming and CO2 fertilization, in line with the 
Challinor et al. findings.

Nevertheless, we do not require a reader to assume that CO2 and temperature co-
movements will always yield net benefits in the future. Our position is that evidence 
shows the gains from CO2 fertilization are probably higher than those assumed by 

Fig. 1   SCC estimates 2020–2050 using 2.5% discount rate and ECS distributions from Roe and Baker 
(“Roe–Baker”, 2007), Lewis (2022, “L22”) and Lewis and Curry (2018, “LC18”). Also shown are L22 
with FUND agriculture productivity parameter boosted by 15 or 30%
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the original parameterization in FUND, so a sensitivity analysis to stronger CO2 
growth effects is warranted. This is even more the case for other IAMs that assume 
away the CO2 fertilization effect altogether. M22 sets this concern aside on the 
grounds that IAMs differ for a host of reasons besides failure to include CO2 fertili-
zation effect. Be that as it may, there is no reason to ignore the effect, and opens up 
IAMs to easily avoidable criticism.

Turning to item (3), M22 criticizes our use of the Christy and McNider (2017) 
ECS estimate, since it is based on sampling of the lower- and mid-troposphere. He 
argues in favor of estimates based on surface measurements on the grounds that 
“many of the historic surface temperature measurements were taken in populated 
cities” making them more relevant for estimating the effect of warming on the econ-
omy. But it is precisely the fact that the measurements are largely taken from popu-
lated cities that poses a problem for ECS estimation, since significant amounts of 
warming in that record is attributable to urbanization, not climate change (e.g., Fall 
et al. 2010; McKitrick and Nierenberg 2010; He et al. 2013; Li et al. 2013 etc.).2 
IAMs try to isolate the economic effect of CO2-induced warming, not warming due 
to urban heat island effects, because the intended output is the social cost of car-
bon. Since climate model simulations show that CO2-induced warming should be 
stronger in the troposphere than at the surface (Santer et al. 2005) especially in the 
tropics, and tropospheric data sets are not contaminated by urbanization bias at the 
surface, the Christy and McNider (2017) study is ideally suited for our purpose.

M22 also notes that multiple different surface temperature data sets strongly 
agree with each other and he implies this argues in favor of preferring them. But 
the data sets in question are not independent, instead they all use the same underly-
ing surface data archive known as the Global Historical Climatology Network or 
GHCN (McKitrick 2010). By contrast, the various tropospheric data products come 
from two largely independent measurement platforms, namely weather satellites and 
weather balloons, so the agreement between them is further grounds for taking note 
of the troposphere-based ECS estimate.

M22 discusses the ECS estimate of Sherwood et  al. (2020) and notes that the 
IPCC (2021) Sixth Assessment Report provided a very similar best estimate. It 
should be noted, however, that the IPCC based its best estimate on Sherwood et al. 
(2020) so they are not independent. M22 also takes note of Lewis (2022) which 
updates the Sherwood et  al. data and incorporates some small methodological 
improvements, yielding an ECS best estimate of 2.2  K, which is higher than the 
1.5  K best estimate of Lewis and Curry (2018) which we used.3 The difference 
arises mostly due to assimilation of paleoclimatological data: Lewis (2022) reports 
that using only post-1869 instrumental data to match Lewis and Curry (2018) 
yields a best estimate of 1.8 K. These points aside, we agree that Lewis (2022) is an 

2  Various arguments have been put forward to try and show that homogenization methods eliminate bias 
due to urbanization. These are reviewed and critiqued in McKitrick (2013). IPCC (2013) Chapter 2 p. 
34 assessed that despite attempts to eliminate urbanization effects from global surface temperature data 
there remains “significant evidence for such contamination of the record.”.
3  Lewis and Curry (2018) note that if they use an alternative surface temperature series that infills poorly 
sampled high latitude regions, their best estimate rises to 1.7 K.
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important contribution to the ECS estimation literature and should be incorporated 
into IAMs. To that end, we obtained the complete density function from Lewis and 
re-ran our analysis.

As we did with Christy and McNider (2017) and Lewis and Curry (2018) in D20, 
we sampled Lewis (2022) using the technique of inverse transform sampling. We 
ran the FUND model for 10,000 Monte Carlo simulations under the five separate 
economic growth scenarios assumed by the U.S. Interagency Working Group (US 
Interagency Working Group 2013). Table 1 lists the results from these simulations 
over the 2020–2050 interval for discount rates from 2.5 to 7.0%, leaving the FUND 
agricultural CO2 fertilization parameter unchanged or increasing it by, respectively, 
15 and 30%. Columns 1–4 show the central SCC estimate and columns 5–8 show 
the associated probability of SCC being negative. Figure 1 summarizes the best esti-
mate results for a 2.5% discount rate. The results using the Lewis (2022) sensitivity 
distribution lie mid-way between the results using Roe-Baker (2007) and those using 
Lewis and Curry (2018). Since the ECS best estimate likewise is mid-way between 
them (2.2, 3.0, and 1.5 K, respectively), this shows that ECS is an extremely influen-
tial parameter for estimating the SCC in IAMs. Figure 1 shows that increases to the 
CO2 fertilization parameter, as expected, also reduce the SCC, such that a 30 percent 
increase in the parameter cuts the SCC by 30 to 40 percent over the 2020–2050 
interval.

Table 1   Median social cost of carbon estimates (Cols 1–4) and portion of the distribution below $0.00 
(Cols 5–8) 2010–2050 in FUND

Discount rate as indicated. L22: based on Lewis (2022) ECS estimation. L22 + 15: same but with FUND 
agricultural productivity parameter increased by 15%. L22 + 30: same but increase is 30%

Median social cost of carbon Prob SCC < 0

 L22 2.5% 3% 5% 7% 2.5% 3% 5% 7%
 2010 $16.80 $9.64 $0.68 −$0.79 0.192 0.241 0.481 0.676
 2020 $18.95 $11.25 $1.14 −$0.69 0.185 0.229 0.448 0.637
 2030 $21.20 $12.98 $1.71 −$0.52 0.175 0.216 0.414 0.595
 2040 $23.57 $14.84 $2.42 −$0.24 0.165 0.201 0.377 0.548
 2050 $26.84 $17.34 $3.39 $0.24 0.154 0.183 0.334 0.490
 L22+15 2.5% 3% 5% 7% 2.5% 3% 5% 7%
 2010 $12.89 $6.89 −$0.48 −$1.51 0.250 0.313 0.586 0.771
 2020 $15.01 $8.35 −$0.17 −$1.52 0.239 0.296 0.550 0.736
 2030 $17.00 $9.83 $0.26 −$1.45 0.227 0.279 0.514 0.695
 2040 $19.16 $11.49 $0.83 −$1.26 0.213 0.260 0.472 0.648
 2050 $22.16 $13.77 $1.74 −$0.80 0.197 0.237 0.420 0.589
 L22+30 2.5% 3% 5% 7% 2.5% 3% 5% 7%
 2010 $9.91 $4.74 −$1.52 −$2.20 0.306 0.380 0.673 0.838
 2020 $11.36 $5.79 −$1.34 −$2.30 0.292 0.361 0.638 0.807
 2030 $12.94 $6.98 −$1.02 −$2.30 0.277 0.340 0.597 0.768
 2040 $14.65 $8.32 −$0.54 −$2.16 0.260 0.316 0.550 0.721
 2050 $18.67 $11.06 $0.37 −$1.72 0.239 0.285 0.494 0.663
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M22 finds the Lewis (2022) ECS distribution to be an appropriate choice, recom-
mends not adjusting the CO2 fertilization parameter, and recommends use of a 5% 
discount rate as being in the middle of the range in guidance of the US Office of 
Management and Budget, and also close to that used in DICE based on empirical 
considerations. Figure 2 shows the 2050 SCC best estimates using a 5% discount 
rate, no CO2 fertilization adjustment, and ECS distributions from, respectively, Roe 
and Baker (2007), Lewis (2022), Lewis and Curry (2018), and Christy and McNider 
(2017). The Lewis and Curry (2018) estimate is included both for comparison and 
also because it is close to the ECS distribution obtained by Lewis (2022) using only 
post-1869 temperature data. As of 2050 under M22’s preferred configuration, the 
SCC is $3.39 and has a 33.4 percent chance of being negative. Using the Christy and 
McNider (2017) ECS estimate, the ECS mean value is slightly negative. Either way, 
these values imply that the SCC is close enough to zero through 2050 as to make it 
difficult to justify even moderate climate mitigation policies, much less those needed 
for Paris compliance or achievement of Net Zero by 2050.

Finally, with regard to application of the Sandmo (1975) formula, in which 
the optimal carbon tax is the SCC divided by the Marginal Cost of Public Funds 
(MCPF), estimation of the MCPF is an empirical matter and results can vary widely 
among and within countries. Dahlby and Ferede (2018), for example, estimate the 
MCPF’s for factor income taxes among Canadian provinces and find they vary from 
1.4 to 6.8. A value of 2.0 is on the low end yet implies that the optimal carbon 
tax should only be half the SCC, which is a consequential change. Thus, it is not 
possible to claim the issue never matters. However, as a practical matter, using the 
parameter choices recommended by M22, the SCC is so small through 2050 that the 
precise value of the MCPF is, in this case, moot.

Acknowledgements  No funding was received for this work. The views expressed herein are the authors’ 
own and do not necessarily represent those of any organizations with which the authors are affiliated.

Fig. 2   SCC estimates for 2050 using 5.0% discount rates and 4 different ECS estimates assuming no 
increase in the FUND CO2 fertilization effect
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