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Abstract
The classical DICE model is a widely accepted integrated assessment model for the 
joint modeling of economic and climate systems, where all model state variables 
evolve over time deterministically. We reformulate and solve the DICE model as 
an optimal control dynamic programming problem with six state variables (related 
to the carbon concentration, temperature, and economic capital) evolving over time 
deterministically and affected by two controls (carbon emission mitigation rate and 
consumption). We then extend the model by adding a discrete stochastic shock vari-
able to model the economy in the stressed and normal regimes as a jump process 
caused by events, such as the COVID-19 pandemic. These shocks reduce the world 
gross output leading to a reduction in both the world net output and carbon emis-
sion. The extended model is solved under several scenarios as an optimal stochastic 
control problem, assuming that the shock events occur randomly on average once 
every 100 years and last for 5 years. The results show that, if the world gross output 
recovers in full after each event, the impact of the COVID-19 events on the tem-
perature and carbon concentration will be immaterial even in the case of a conserva-
tive 10% drop in the annual gross output over a 5-year period. The impact becomes 
noticeable, although still extremely small (long-term temperature drops by 0.1◦C ), 
in a presence of persistent shocks of a 5% output drop propagating to the subsequent 
time periods through the recursively reduced productivity. If the deterministic DICE 
model policy is applied in a presence of stochastic shocks (i.e., when this policy is 
suboptimal), then the drop in temperature is larger (approximately 0.25◦C ), that is, 
the lower economic activities owing to shocks imply that more ambitious mitigation 
targets are now feasible at lower costs.
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1 Introduction

The impact of the COVID-19 pandemic on the global economy is more severe than 
the impact from the 2008 global financial crisis (see, e.g., International Monetary 
Fund (2020)), and the projection of the COVID-19 impact on the economy and cli-
mate is a major concern. In this paper, we study the impact of COVID-19 type events 
on the economy and climate using the dynamic integrated climate-economy (DICE) 
model, extended to include stochastic shocks to the economy. The DICE model 
introduced by Nordhaus1 is an extremely popular integrated assessment model 
(IAM) for the joint modeling of economic and climate systems. It has been regularly 
revised over the last three decades with the first version dating back to Nordhaus 
et al. (1992), and the most recent revision being DICE-2016 Nordhaus (2017)2. The 
DICE model is one of the three main IAMs (the other two are FUND and PAGE) 
used by the United States government to determine the social cost of carbon; see 
Interagency Working Group on Social Cost of Greenhouse Gases (2016). It balances 
parsimony with realism and is well documented with all published model equations; 
in addition, its code is publicly available, which is an exception rather than the rule 
for IAMs. At the same time, it is important to note that IAMs and the DICE model 
in particular have significant limitations (in the model structure and model param-
eters), which have been criticized and debated in the literature (see the discussions 
in Ackerman et al. (2009); Pindyck (2017); Grubb et al. (2021); Weitzman (2011)). 
Despite the criticism, the DICE model has become the iconic typical reference point 
for climate-economy modeling, and is, therefore, used in our study.

The DICE model is a deterministic approach that combines a Ramsey–Cass–Koo-
pmans neoclassical model of economic growth (also known as the Ramsey growth 
model) with a simple climate model. It involves six state variables (atmospheric and 
upper and lower ocean carbon concentrations; atmospheric and lower ocean tem-
peratures; and economic capital) evolving in time deterministically, two control 
variables (savings and carbon emission reduction rates) to be determined for each 
time period of the model, and several exogenous processes (e.g., population size and 
technology level). Uncertainty about the future of the climate and economy is then 
typically assessed by treating some model parameters as random variables (because 
we do not know the exact true value of the key parameters) using a Monte Carlo 
analysis (see Nordhaus (2018); Ackerman et al. (2010)).

Modeling uncertainty owing to the stochastic nature of the state variables 
(i.e., owing to the process uncertainty that is present even if we know the model 
parameters exactly) requires the development and solution of the DICE model as a 
dynamic model of decision-making under uncertainty, where we calculate the opti-
mal policy response, under the assumption of continuing uncertainty throughout the 
time frame of the model. This is a much more difficult problem that requires more 

1 Nordhaus was the winner of the Nobel Prize in Economic Sciences in 2018 “for integrating climate 
change into a long-run macroeconomic analysis”.
2 The most recent version of the DICE model is available at https:// willi amnor dhaus. com/.

https://williamnordhaus.com/
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computational and mathematical sophistication, whereas the deterministic DICE 
model can be solved using an Excel spreadsheet or GAMS (a high-level program-
ming language for mathematical modeling https:// www. gams. com/).

Few attempts have been made to extend the DICE model to incorporate stochas-
ticity in the underlying state variables and solve it as a recursive dynamic program-
ming problem. For example, Kelly and Kolstad (1999) and Leach (2007) formulated 
the DICE model with stochasticity in the temperature–time evolution and solved this 
as a recursive dynamic programming problem. These studies are seminal contribu-
tions to the incorporation of uncertainty in the DICE model (although their numeri-
cal solution approach is difficult to extend to higher dimensional space and time-
frequency). Cai et al. (2012) formulates DICE as a dynamic programming problem 
with a stochastic shock on the economy and climate. In addition, Traeger (2014) 
developed a reduced DICE model with a smaller number of state variables, whereas 
Lontzek et al. (2015) studied the impact of climate tipping points. There are other 
studies that approached optimal strategies addressing climate change through a sim-
ple minimization of the damage function to find the optimal timing for an invest-
ment, such as in Conrad (1997); Luo and Shevchenko (2013), which is extremely 
different from the DICE modeling approach and is not pursued in our paper.

In our study, we extend the DICE model by adding a discrete stochastic shock var-
iable, shifting the economy into a stressed regime owing to events, such as COVID-
19. This is similar to the model formulation in Cai et al. (2012) but with different 
types of jump processes for the shocks. The economy after our shocks is allowed 
to recover, whereas the jump shock considered in Lontzek et al. (2015); Cai et al. 
(2012) is an irreversible climate tipping point event. One of the scenarios we con-
sider allows for stochastic shocks affecting productivity, which leads to a persistent 
impact on the economy. This is somewhat similar to the tipping point modeling in 
Lontzek et al. (2015); Cai et al. (2012). However, it is important to note that shocks 
considered in our paper reduce both the world net output and emission through the 
shock reduction of the gross output, while tipping point models assume shock on the 
net output and no shock on the emission. Thus our shocks lead to a reduction in a 
policy stringency, while tipping point shocks lead to the opposite effect. In addition, 
our base model is the more recent version of DICE-2016, whereas Lontzek et  al. 
(2015); Cai et al. (2012) use older DICE versions.

COVID-19 has spread across the globe, with over 75 million confirmed cases 
and 1.6 million deaths from December 30, 2019, to December 20, 2020, accord-
ing to the Weekly Epidemiological Update from the World Health Organization on 
December 22, 20203 (with over 4.6 million new cases and 79,000 deaths since the 
previous weekly updates). Large amounts of emergency loans are needed around the 
world to develop therapeutic agents and vaccines, as well as to implement various 
interventions to prevent the spread of infections, such as “stay-at-home” policies, 
and provide financial support for them. However, in recent years, the effects of cli-
mate change on global warming have become more serious on a global scale and the 

3 www. who. int/ emerg encies/ disea ses/ novel- coron avirus- 2019/ situa tion- repor ts

https://www.gams.com/
http://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
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“Paris Agreement” to limit the global temperature increase4 was adopted in 2015. 
This has resulted in more public and private funds being provided for green projects 
involving renewable energy and energy conservation, as the world works to prevent 
the effects of global climate change. In a pandemic of infectious diseases, such as 
COVID-19, it is important to consider the economic impacts of both such pandem-
ics and global warming at the same time.

One of the unique features of the COVID-19 pandemic is extreme and wide-
spread disruption to the global economy when compared to other global pandem-
ics, such as the 1918 Influenza Pandemic (“Spanish Flu”) or the Hong Kong Flu of 
19685. On the official government website of the Bureau of Economic Analysis of 
the United States (see BEA (2020)), it was reported on September 30, 2020 that the 
real gross domestic product (GDP) decreased at an annual rate of 31.4% in the sec-
ond quarter of 2020. According to a news report on September 2, 2020 in The Japan 
Times (2020), Japan’s April–June GDP is expected to be revised after making an 
annualized 27.8% drop on a preliminary basis, which is the largest contraction in the 
post-World War II period. Though, at the time of revision of this paper, the reported 
drop of the real GDP in the United States in 2020 (compared to 2019) is only 3.4% 
(https:// www. measu ringw orth. com accessed on 9 October 2021). The amounts of 
the stimulus packages released by governments in many countries to limit the human 
and economic impacts of the COVID-19 pandemic have been unprecedented. The 
International Monetary Fund policy tracker6 presented a summary of the key eco-
nomic responses around the world (e.g., the Coronavirus Aid, Relief and Economy 
Security Act introduced in United States in March 2020 has been estimated at 2.3 
trillion USD (around 11% of the nation’s GDP)).

Although the impact of COVID-19 on the economy, human capital, and well-
being in the long run is unknown, the historical experience of global pandemics 
and global recessions can provide valuable insight. Arthi and Parman (2021) pro-
vides an excellent review of the long-run effects on health, labor, and human capital 
from both historical pandemics and historical recessions. It has been argued that, 
from a historical perspective, the impact of COVID-19 has been similar to that of 
the “Spanish Flu” (1918) in terms of direct effects on the health and well-being of 
individuals, and similar to the Great Depression (1929–1939) in terms of economic 
disruption.

In this study, we consider the impact of COVID-19 type events on the DICE 
model outputs. We reformulate the DICE model as an optimal control problem and 
solve it using dynamic programming involving six state variables evolving over time 
deterministically and affected by two controls (emission control and savings rates). 
We then extend the model by adding a discrete stochastic shock variable to the gross 

5 The real GDP was not significantly affected during previous global pandemics; see for example GDP 
data for the United States available from https://www.measuringworth.com.
6 www. imf. org/ en/ Topics/ imf- and- covid 19/ Policy- Respo nses- to- COVID- 19.

4 The Paris Agreement is an agreement of over 180 countries to reduce greenhouse gas emissions and 
limit the global temperature increase by 2◦C (above the pre-industrial levels) by 2100, United Nations 
Treaty Collection (2015).

https://www.measuringworth.com
http://www.imf.org/en/Topics/imf-and-covid19/Policy-Responses-to-COVID-19
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world output to shift the economy into a stressed regime owing to events, such as 
COVID-19, assuming that the economy recovers in full after the stressed period. 
The extended model is solved as an optimal stochastic control problem under differ-
ent scenarios for the world gross output drop owing to these shock events. With the 
reference to the Great Depression (1929–1939) and “Spanish Flu” (1918), for our 
scenarios, we assume that shocks occur on average once during a 100-year period 
and last for 5 years. In addition, the world economic output during a stressed regime 
decreases by 5–10%. We note that during the Great Depression, the real GDP in 
the United States dropped for 6 years (1930–1935) comparing to the pre-depression 
level in 1929 (averaging to 17% drop per annum over that period)7, thus our assump-
tion for the shock magnitude is a bit less conservative. Under all considered con-
servative scenarios, the impact of COVID-19 type events on the long-term tempera-
ture and carbon concentration appear to be quite small. The results show that if the 
world’s gross output recovers in full after each event, the impact of COVID-19 on 
the temperature and carbon concentration will be immaterial even in the case of a 
conservative 10% drop in the annual gross output over a 5-year period. The impact 
becomes noticeable, although remaining extremely small (i.e., a long-term tempera-
ture drop by 0.1◦C ), if the shocks are persistent 5% drops in productivity, leading to 
a 5% drop in output propagating to the subsequent time periods. If the determinis-
tic DICE model policy is applied to the stochastic model (i.e., a suboptimal policy 
is applied in the case of stochastic shocks), then the drop in temperature will be 
larger (approximately 0.25◦C ), that is, the lower economic activities owing to the 
occurrence of a shock imply that more ambitious mitigation targets are now feasible 
at lower costs, which is qualitatively consistent with the results presented in Meles 
et al. (2020).

The remainder of this paper proceeds as follows. The model is defined in Sec-
tion 2. Section 3 describes the numerical method used to solve the model. The results 
are presented in Section 4, and some concluding remarks are given in Section 5.

2  DICE model

The DICE model maximizes the utility of consumption (social welfare) over an infi-
nite time horizon with a tradeoff between consumption, investment, and CO2 abate-
ment. Let t = 0, 1,… be a discrete time measured in steps of Δ years (e.g., t = 2 
corresponds to 2Δ years). Using the DICE-2016 model as the foundation8, the sto-
chastic DICE model can be formulated as

(1)V0(X0) = sup
�,c

�

[
∞∑

t=0

e−�̃ΔtU(ct, Lt)

]
,

7 See, for example, real GDP data for the United States available from www. measu ringw orth. com
8 www. econ. yale. edu/ ~nordh aus/ homep age/ homep age/ DICE2 016R- 09191 6ap. gms

http://www.measuringworth.com
http://www.econ.yale.edu/%7enordhaus/homepage/homepage/DICE2016R-091916ap.gms
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subject to the state vector Xt = (Kt,Mt,Tt, It) evolving over time9 as

Here, superscript ′ denotes a transposition, �̃  is the utility discount rate10, �K is the 
annual rate of depreciation of capital, and ( �M,�T,�,�1 ) are parameters for the car-
bon and temperature transition from t to t + 1 . Other variables and functions are as 
follows.

• U(ct, Lt) is the utility function defined as 

 where � ≥ 0 is the risk aversion parameter ( � = 1 corresponds to a logarithmic 
utility), and Lt is the world population in billions at time t.

• c = (c0, c1,…) is the consumption ct > 0 and � = (�0,�1,…) is the carbon emis-
sion mitigation rate �t ≥ 0 . Their optimal values were determined by solving the 
optimization problem (1).

• Kt is the world economic capital (in trillions of USD as of 2010).
• Mt = (MAT

t
,MUP

t
,MLO

t
)� is the carbon concentration (in billions of metric tons) 

in the atmosphere ( MAT
t

 ), the upper oceans ( MUP
t

 ), and the lower oceans ( MLO
t

).
• Tt = (TAT

t
, TLO

t
)� is the temperature in the atmosphere ( TAT

t
 ) and the lower oceans 

( TLO
t

 ) measured in degrees Celsius ( ◦C ) above the temperature during the year 
1900.

• (It)t≥0 is the random shock process with the transition function T D
(⋅) used 

to model stressed regime in the economy during events, such as COVID-19. 
Depending on the model setup, it may have two or more states. For example, 
one can set It = 0 corresponding to the normal regime and It = 1 correspond-

(2)Kt+1 =Kt(1 − �K)
Δ +

[
Δ × (Qt(Kt, Tt,�t) − ct)

]
e�

K
t+1 ,

(3)Mt+1 =�
M
Mt + Δ × (�Et(Kt,�t), 0, 0)

�e�
M
t+1 ,

(4)Tt+1 =�
T
Tt + Δ ×

(
�1Ft(M

AT
t
)

0

)
+ �

T
t+1

,

(5)I
t+1

=T
D
(I
t
, �I

t+1
).

U(ct, Lt) =
ΔLt

1 − �

((
ct

Lt

)1−�

− 1

)
,

9 State variables are affected by controls �, c . It is standard in the mathematical literature to indicate this 
by corresponding upperscript of the state vector; however, for simplicity of notation, we omit this upper-
script.
10 This is the rate at which the social planner discounts the future utility. In the literature, this is also 
called the “rate of pure time preference,” “subjective discount rate,” “pure rate of time preference,” or 
“welfare discount rate”.
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ing to the stressed regime. Additional states can be introduced to model situa-
tions, where the stressed regime has to continue for two or more time periods.

• (�K
t
, �M

t
, �T

t
, �I

t
 ) are independent and identically distributed random distur-

bances for t = 1, 2,… . The random disturbance �I
t
 corresponds to the shock 

process It . Other random disturbances correspond to the uncertainties of the 
world’s net output, carbon concentration, and temperature, and can be mod-
eled using, e.g., a Gaussian distribution. In this study, all numerical results are 
presented for the case in which all random disturbances are set to zero, except 
for �I

t
.

• Qt(Kt, Tt,�t) is the world’s net output (output net of the damages and abate-
ment) divided between the consumption and investment, Et(Kt,�t) is the car-
bon emission (in billions of tons per year), and Ft(M

AT
t
) is the radiative forc-

ing, which are modelled as 

 where 

(6)Qt(Kt, Tt,�t) = Ωt(�t, �t, T
AT
t
)Y(At,Kt, Lt),

(7)Et(Kt,�t) = (1 − �t)�tY(At,Kt, Lt) + ELand
t

,

(8)Ft(M
AT
t
) = � log2(M

AT
t
∕M̃AT ) + FEX

t
,

(9)Y(At,Kt, Lt) = (1 − �(It))AtK
�
t L

1−�
t ,

Table 1  DICE 2016 model parameters, available from www. econ. yale. edu/ ~nordh aus/ homep age/ homep 
age/ DICE2 016R- 09191 6ap. gms

t = 0,… ,N,N = 99 with time step Δ = 5 years , t = 0 corresponds to the year 2015

Lt = Lt−1

(
11.500

Lt−1

)0.134

, L0 = 7.403 ( in billions, 109)

At = At−1(1 + gA(t − 1)), gA(t − 1) =
0.076 exp(−0.005tΔ)

1−0.076 exp(−0.005tΔ)
, A(0) = 5.115

�t = �t−1e
gt−1Δ, gt = gt−1(1 − 0.001)Δ, �0 =

35.85

105.5(1−0.03)
, g0 = −0.0152

ELand
t

= 2.6(1 − 0.115)t ,    FEX
t

=
(
0.5 +

t

34

)
1t<17 + 1t≥17

K0 = 223 ,   MAT
0

= 851, MUP
0

= 460, MLO
0

= 1740 ,   TAT
0

= 0.85, TLO
0

= 0.0068

� = 1.45, � = 0.3, � = 0.015, �̃ = ln(1 + �), �K = 0.1

�
M =

⎛
⎜
⎜
⎝

�11 �12 0

�21 �22 �23

0 �32 �33

⎞
⎟
⎟
⎠
, �

T =

�
1 − �1�2 − �1�3 �1�3

�4 1 − �4

�

� = 1∕3.666, �21 = 0.12, �32 = 0.007, �11 = 1 − �21, �12 = �21588∕360

�22 = 1 − �12 − �32, �23 = �32360∕1720, �33 = 1 − �23

�4 = 0.025, �1 = 0.1005, �3 = 0.088, �2 = 3.6813∕3.1

� = 3.6813, M̃AT = 588, �2 = 0.00236, �2 = 2.6

http://www.econ.yale.edu/%7enordhaus/homepage/homepage/DICE2016R-091916ap.gms
http://www.econ.yale.edu/%7enordhaus/homepage/homepage/DICE2016R-091916ap.gms


466 Environmental Economics and Policy Studies (2022) 24:459–476

1 3

 Here, �(It) is the impact of COVID-19 type shocks on the Cobb–Douglas pro-
duction function Ỹ(At,Kt, Lt) = AtK

�
t L

1−�
t  , At is the total productivity factor, and 

Ωt(�t, �t, T
AT
t
) is the damage abatement cost factor. The damage function as a 

fraction of the gross output is �2[TAT
t
]2 ; see (10). The model parameter values 

and deterministic functions FEX
t

 , ELand
t

 , At , and �t are specified in Table 1.
  Note that, Y(At,Kt, Lt) is the annual gross world output (output before dam-

age and abatement costs) affected by the shocks �(It); thus, the shocks affect 
both the net output Qt in (6) and the carbon emissions Et in (7).

• The carbon price (USD per ton) is calculated as 

• The typically quoted savings rate output from the DICE model is defined as 
(1 − ct∕Qt).

Given that (Xt)t≥0 is a Markov process, the solution to the stochastic DICE model 
(1) is a standard optimal stochastic control problem for a controlled Markov process 
(the transition of Xt to Xt+1 is affected by �t, ct ). For a good textbook treatment of 
such problems in finance, see Bäuerle and Rieder (2011). This type of problem can 
be solved using the dynamic programming performed recursively backward in time 
for t = N − 1,… , 0 through the backward induction Bellman equation:

and the optimal strategy can be found as

Note that, the optimal strategy (optimal decision for the values to be set for car-
bon emission reduction �t and consumption ct ) depends on the information available 
at time t, that is, depends on the state variable Xt . In addition, note that to solve 
the DICE model under the infinite time horizon numerically, one should use a large 
enough number of time steps N (it should be confirmed by the sensitivity of the 
numerical solution that N is sufficiently large and thus its impact on the solution for 
the period of interest is immaterial).

If the random disturbances and impact from the random shock �(It) are all set 
to zero, then the above model is reduced to the standard deterministic DICE-2016. 
The dynamic programming solution (11) is still valid in this case and can be used to 
solve the model. Note that the standard DICE-2016 solution is a brute force maximi-
zation in (1) with respect to ( c0,… , cN−1,�0,… ,�N−1 ) and their constraints simulta-
neously (a total of 200 parameters plus their constraints when N = 100).

(10)Ωt(�t, �t, T
AT
t
) = 1 −

�t550(1 − 0.025)t�
�2
t

1000�2
− �2[T

AT
t
]2.

Pt =
�Qt∕��t

�Et∕��t

× 1000 = 550(1 − 0.025)t�
�2−1
t .

(11)Vt(Xt) = sup
�t ,ct

(
U(ct, Lt) + e−�̃Δ�[Vt+1(Xt+1)|Xt]

)
, s.t. VN(XN) = 0,

(12)(�∗
t
(Xt), c

∗
t
(Xt)) = arg sup

�t ,ct

(
U(ct, Lt) + e−�̃Δ�[Vt+1(Xt+1)|Xt]

)
.
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In one of the scenarios presented in this paper, to introduce a persistent shock to 
the gross output Yt(At,Kt, Lt) , we consider the total productivity At affected by the 
shock variable It . Then, At becomes an additional state variable, and the new state 
vector is Xt = (At,Kt,Mt,Tt, It) with the additional state transition equation:

where �(It) is the impact of shock It on productivity, which leads to a persistent 
shock on the annual economic net output and emission through the above recursive 
formula.

Remark 1 Utility discounting can be interpreted as the relative weighting given to 
the well-being of various generations. The choice of an appropriate utility discount 
rate �̃  is a controversial subject in the literature on global warming models. Some 
economists have argued that a small or zero utility discount rate �̃� should be used 
to weight different generations. This topic is discussed in detail in a Stern Review 
(Stern 2007, Chapter 9). In DICE-2016, the utility discount rate �̃� is set to 1.5% per 
year, and the risk-aversion parameter � is 1.45. These parameters are set to generate 
consumption rates and real returns on capital, consistent with observations (see the 
discussions in Nordhaus (2018)). This approach to setting the discount rate in the 
DICE model is called a “descriptive approach.” Under this approach, the real return 
on capital r is not an exogenous but endogenous variable determined through the 
Ramsey equation r = �̃� + 𝛼g∗ , where g∗ is the rate of growth of consumption; see 
(Nordhaus 2008, chapter 3). Thus, we assume that the economy shock events do not 
affect the utility discounting rate, although the real return on capital r implied by the 
affected consumption and risk aversion can change.

3  Numerical solution

The stochastic DICE model can be solved using the Bellman equation (11) and the 
optimal decisions �∗

t
(Xt), c

∗
t
(Xt) can be found using (12) applied backward in time 

through numerical deterministic dynamic programming (and then if needed we can 
simulate forward in time random trajectories of Xt based on the calculated optimal 
decisions to assess the uncertainty). The logical steps of this numerical procedure 
are presented in Algorithm 1. This type of algorithm is often referred to in the litera-
ture as a value function iteration. Hereafter, T(⋅) denotes the transition function for 
the evolution of state variables:

implied by the state processes (2-4), where �t+1 is the vector of random disturbances 
of the state variables. Algorithm  1 is the standard approach for solving dynamic 
programming problems numerically. Its performance depends on problem-specific 
details, such as the type of interpolation across grid points and the type of method 
used to calculate the required expectations. For example, Cai et al. (2012) utilizes 

(13)At+1 = At(1 + gA(t)) × (1 − �(It)),

Xt+1 = T(Xt,�t, ct, �t+1)



468 Environmental Economics and Policy Studies (2022) 24:459–476

1 3

Chebyshev nodes for grid points and the Chebyshev polynomial approximation for 
interpolation. Cubic spline interpolation is also a possible choice. In our numeri-
cal experiments, we observed that even the simplest linear interpolation works 
extremely well for DICE model (it is not the most efficient but is the simplest and 
quickest way to implement the algorithm).

The calculation of �[V̂t+1 (̃x)|Xt] in Algorithm 1 can be accomplished through a 
simulation or quadrature integration methods with respect to the continuous state 
random variables and simple summation with respect to the discrete state random 
variables. In our study, we consider only one discrete random variable representing 
the shock of COVID-19 type events on the world gross output. Thus, the expec-
tation is simply the sum over the states of the shock variable It . In addition, note 
that the interpolation on line 4 in Algorithm 1 is required across grid points of the 
continuous state variables only. In the case of many stochastic state variables (i.e., 
if we want to account for stochasticity in all state variables), we can use the least 
squares Monte Carlo with control randomization proposed in Kharroubi et al. (2014) 
with some special adjustments to handle the expected utility problems introduced in 
Andréasson and Shevchenko (2021). This goes beyond the purpose of this study and 
is the subject of our ongoing research project.
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For numerical calculations, we implemented Algorithm 1 in the statistical com-
puting programming language R11 and then in Fortan because of the long computa-
tional times for some scenarios12. We used the following settings:

• Each of the six continuous state variables is discretized using equally spaced 
points (9 points for Kt and 5 points for other variables) and we use a two-state 
discrete shock variable It , i.e., in total, there are 2 × 9 × 55 points in the deter-
ministic grid in Algorithm 1. We verified that the increase in the number of dis-
cretization points does not have a material impact on the results. In the case of 
productivity At affected by shocks, see Eq. (13), we discretize At using 9 points.

• To approximate the infinite time horizon, we use N = 50 (i.e., 250-year time 
horizon) and then report the results for t = 0, 1,… , 40 (i.e., up to 200 years). We 
verified that increasing the time horizon did not materially change the results.

• The range for Kt state variable is selected to be time-varying, because this vari-
able changes from K0 = 223 to approximately 8,000 at t = 40 . We denote the 
solution of the standard DICE-2016 model for capital Kt as K̃t . The range 
is then set to [0.6K̃t, 1.4K̃t] for t = 0,… ,N . The ranges for temperatures Tb

t
 

( b = AT , LO ) are set to [0, 1.4T̃b
max

] , and the ranges for carbon concentrations Ma
t
 

( a = AT ,UP,LO ) are set to [0.6M̃a
min

, 1.4M̃a
max

] . Here, T̃b
max

 , M̃a
min

 , and M̃a
max

 are 
the maximum temperature, minimum concentration and maximum concentration 
of the standard DICE-2016 solution, respectively. It was verified that increasing 
the bounds did not cause any material difference. In the case of stochastically 
affected productivity At , the range is set as [0.6Ãt, Ãt] , where Ãt is a determinis-
tic function of productivity used in the standard DICE-2016 (see Table 1).

• The optimal values of the control variables (�t, ct) are not calculated at t = 0 
but set to the values produced by the standard DICE-2016, because t = 0 cor-
responds to the year 2015, which is already in the past. For other time periods, 
optimal controls are calculated in Algorithm 1 on lines 6 and 13 using numerical 
maximization with the same bounds on �t as in the standard DICE-2016.

• We verified that when stochasticity is set to zero, then our numerical dynamic 
programming solution leads to virtually the same results as from the original 
deterministic DICE model.

• We also set I0 = 0 and I1 = 1 for all trajectories in Algorithm 1 to reflect the fact 
that there is a shock at the beginning of 2020 and no shock in 2015.

To allow for a random change from the normal economy regime to the stressed 
regime for each time period owing to COVID-19-like events, one could consider 
the shock variable It with two states such that It = 0 corresponds to the normal 
regime and It = 1 corresponds to the stressed regime. To enforce the change from 
the stressed to the normal regime, the matrix of transition probabilities Pr[It+1|It] 
can be defined as

11 https://www.r-project.org/
12 Depending on the scenario, the computational time was between 2 and 20 h
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Here, q is the probability of moving from It = 0 to It+1 = 0 , and (1 − q) is the prob-
ability of moving from It = 0 to It+1 = 1 . If the annual probability of a COVID-19 
type event is p, then the transition probability q over Δ years can be approximated as 
q = (1 − p)Δ.

Note that modeling of climate tipping point shocks such as in Cai et al. (2012) 
can be achieved using the above setup with the important difference; the probability 
of shock (1 − q) should become a function of temperature TAT

t
 and the second row 

of the transition probability matrix (14) should be changed from (1 0) to (0 1) . 
That is, the shock of the tipping point event is irreversible, whereas in the case of 
COVID-19 type shocks, the stressed regime is forced to be followed by the normal 
regime. Scenario B calculated and discussed in the next section assumes persistent 
shocks somewhat similar to the tipping point modeling but note that tipping point 
modeling assumes shocks to the net output only and no shocks to the emission.

4  Results

To study the impact of the COVID-19 type events on the world economy and cli-
mate under the DICE model, we calculated the following four scenarios. We set the 
recovery duration, the decrease in gross world output, and frequency of such events 
with reference to the Great Depression (1929–1939) for the economic impact and to 
the “Spanish Flu” (1918) for the frequency of the events.

Scenario A1) Random shocks reduce the gross world output by 5% and it takes 5 
years to recover in full. That is, in equation (9) for gross output, we set �(It) = 0.05 
if It > 0 , and is zero otherwise. These events occur on average once in a 100-year 
period (i.e., the annual event probability is p = 0.01).

Scenario A2) Random shocks reduce the gross world output by 10% and it takes 
5 years to recover in full. That is, in equation (9) for gross output, we set �(It) = 0.1 
if It > 0 , and is zero otherwise. These events occur on average once in a 100-year 
period (i.e., the annual event probability is p = 0.01).

Scenario B) Random shocks reduce productivity At by 5%, i.e., in equation (13) 
we set �(It) = 0.05 if It > 0 , and is zero otherwise. We also set �(It) in equation (9) 
to be the same as �(It) so that gross output persistent drop starts at time t. This leads 
to the persistent drop in the net output and emission.

Scenario C) The same shock parameters as in Scenario B are used, i.e., 
�(It) = 0.05 and �(It) = 0.05 for It > 0 ; however, we assume that the control deci-
sions �t and ct undertaken are the same as in the deterministic DICE model. That 
is, when simulating trajectories, in Algorithm 1 on line 13, we do not calculate the 
optimal stochastic control for the stochastic DICE model but use controls found by 
deterministic DICE. This also means that we undertake suboptimal decisions.

Figures 1, 2, and 3 show the DICE outputs under the four scenarios described 
above.

(14)
(
q 1 − q

1 0

)
.
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• Figure 1 presents numerical results for the carbon emission mitigation rate �t , 
savings rate (1 − ct∕Qt) , economic capital Kt , and the net world output Qt , cor-
responding to plot titles MIU, S, K, Ynet.

• Figure 2 plots the results for temperatures TAT
t

 and TLO
t

 , carbon price Pt , and frac-
tion of output lost owing to a temperature increase �2(TAT

t
)2 , see equation (10), 

corresponding to plot titles TATM, TOCEAN, Cprice, DamFct.
• Figure 3 plots the results for carbon concentrations MAT

t
 , MLO

t
 , and MLO

t
 , corre-

sponding to the plot titles MAT, MU, and ML.

All plots show results under the standard DICE model (i.e., in the case of no ran-
dom shocks) using the dashed line. For the case of stochastic DICE model, to see 
the uncertainty/range of outcomes introduced by the shock process (It)t≥0 , all plots 
show the 95% probability intervals (indicated by the gray area in the plots); these 
intervals are calculated by simulating 1000 random trajectories and calculating 2.5% 
and 97.5% quantiles over the trajectories at each t = 1,… ,N to form the interval. 

Fig. 1  Trajectories of optimal solution of DICE model for MU, S, K, YNET under various scenarios. The 
horizontal axes represent time (measured in 5-year steps) from 2015 ( t = 0 ) to 200 years later ( t = 40 ). 
The dashed lines correspond to the solution of the standard deterministic DICE model (i.e., in the case 
of no COVID-19 type events), and the gray area represents the 95% probability interval calculated over 
1,000 random trajectories simulated
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Fig. 2  Trajectories of TATM, TOCEAN, Cprice, DamFct. See the caption of Fig. 1 for further details

Fig. 3  Trajectories of MAT, MU, ML. See the caption of Fig. 1 for further details
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These trajectories were simulated forward in time using optimal controls �∗
t
(X

t
) and 

c∗
t
(X

t
) obtained by solving the stochastic DICE model, except for Scenario C, where 

controls are taken from the deterministic DICE solution.
The results for Scenario A1 show no material change for all DICE outputs from the 

deterministic case; only the net output Ynet has a small visible gray area owing to stochas-
tic shocks. The gray area is below the deterministic DICE solution for Ynet as expected, 
because shocks reduce net output Qt . The capital state variable Kt also has very small gray 
area below the deterministic DICE solution consistent with the saving rate S virtually unaf-
fected by stochastic shocks, while output Ynet is reduced by the shocks.

Scenario A2 leads to a more visible (compared to Scenario A1) impact on the economic 
variables K and Ynet. The gray area for these variables is below the deterministic solution 
and corresponds to approximately 10% variation in 200 years. This is expected, because 
the shock size in Scenario A2 is 10%, larger than 5% shock under Scenario A1. Saving rate 
S is also slightly but visibly affected with most of trajectories below the deterministic case. 
However, the impact on climate variables (temperature, carbon concentration, emission 
control rate) from shocks in this scenario is immaterial. Though, we still can note a very 
small decrease is emission control rate MIU and as a result a small decrease in carbon price 
Cprice; also a tiny drop in TATM and in resulting DamFct. This is also not surprising, 
because shocks reduce not only the net output but the carbon emission too.

Scenario B clearly leads to larger and material impacts on economic variables K and 
Ynet compared to Scenarios A1 and A2, because shocks on the economic output are per-
sistent (propagate recursively to all subsequent time periods). Under Scenario B, there is a 
material impact on the emissions control MIU and carbon price Cprice, a small but vis-
ible impact on the temperature TATM, and a small but visible impact on the concentrations 
MAT and MU. Other variables, such as ML and TOCEAN, are not affected. There is a small 
impact on the savings rate S, which is larger than under Scenario A1, but smaller than that 
under Scenario A2. The gray area of stochastic DICE trajectories is below deterministic 
DICE solution for most of the trajectories across all plotted variables. More specifically, 
stochastic trajectories of MIU and Cprice are always below those under the deterministic 
DICE solution between now and to about 100 years (corresponding to approximately 25% 
range for drop of Cprice in about 100 years); then, for longer time horizons, there is no 
difference between trajectories of these variables and their solutions from the deterministic 
DICE. This means that if we account for stochastic persistent shocks, then the policy for 
a carbon emission reduction can be less demanding compared to the deterministic case. 
This is because persistent shocks reduce emission (leading to a reduction in concentration 
and temperature) more than simple shocks in Scenarios A1 and A2. Trajectories for K and 
Ynet are also below those under the deterministic DICE which is explained by persistent 
shocks on the net output. In the case of atmospheric temperature TATM, and concentrations 
MAT and MU, most of the gray area is below the deterministic DICE solution, though there 
are few trajectories going a bit above deterministic solution after approximately 200 years 
only.

Finally, the results for Scenario C show the case of applying decisions MIU and S 
from the deterministic DICE model to the trajectories of stochastic DICE model. That 
is, we apply suboptimal decisions that are optimal under the deterministic DICE but 
suboptimal under the stochastic DICE. Thus, one can see that all trajectories under 
the stochastic DICE for MIU, Cprice and S are the same as the deterministic DICE 
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solution. Trajectories for all other variables are always appear to be below corre-
sponding deterministic DICE solution. Under this scenario, we see even more mate-
rial impact on temperature; all trajectories for TATM in the gray area are below the 
deterministic DICE solution. On average, TATM is approximately 0.25◦C below the 
deterministic DICE solution when temperature peaks after about 150 years, with gray 
area corresponding to about 0.15◦C range. The same is for carbon concentration MAT, 
where all trajectories are below the deterministic solution (on average a 10% drop for 
a concentration at its peak in about 100 years). In other words, this scenario shows that 
more ambitious mitigation targets are now feasible at lower costs, or mitigation targets 
will be achieved faster if the policy is unchanged (i.e. not adapted for environment 
with stochastic shocks). This is qualitatively the same as the results of the analysis 
conducted in Meles et al. (2020). Again, this outcome is somewhat expected due to 
persistent shocks reducing not only the net output Ynet but also carbon emission.

5  Conclusion

In this paper, we studied the impact of the COVID-19 type events on the carbon concen-
tration, temperature, economic capital and other outputs of the DICE model extended to 
include corresponding stochastic shocks on the world gross annual output. We solved the 
extended model under different scenarios as an optimal stochastic control problem, assum-
ing that shock events occur randomly on average once during a 100 period. The results 
show that if the world gross output recovers in full after each event , then the impact of the 
COVID-19 events on the temperature and carbon concentration will be immaterial even 
in the case of a conservative 10% decrease in the annual gross output over a 5-year period. 
The impact becomes noticeable but small (the long-term temperature in the atmosphere 
drops on average by 0.1◦C ) if a 5% decrease in the gross output owing to a shock is allowed 
to propagate over time (i.e., allowed to be a persistent shock). Finally, if the deterministic 
DICE model policy is still applied in the case of stochastic shocks (i.e., it is a suboptimal 
policy in this case), then the drop in temperature will be larger (approximately 0.25◦C ). 
That is, the lower economic activities owing to the occurrence of a shock imply that more 
ambitious mitigation targets are now feasible at lower costs, which is qualitatively consist-
ent with the results presented in Meles et al. (2020).

Shocks considered in our study reduce both the world net output and emission 
through the shock reduction of the gross output, while tipping point modeling stud-
ies such as Lontzek et al. (2015); Cai et al. (2012) assume shock on the net output 
only and no shock on the emission. Thus our shocks lead to a reduction in a policy 
stringency, while tipping point shocks lead to the opposite effect.

In general, incorporation of uncertainty in integrated climate-economy assess-
ment models, such as the DICE model, is an under-developed research topic. Typi-
cally, the uncertainty is assessed by calculating the models under the perturbed 
parameters, and state-of-art stochastic control methods are not really used. This 
can be partly explained by the difficulty of implementing dynamic programming 
algorithms. This is probably due to the large number of state variables that call 
for the use of Monte Carlo simulation methods, while until recently, Monte Carlo 
techniques have not been used for optimal control problems that involve controlled 
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processes. A relatively recent development in this area is the least-squares Monte 
Carlo approach with the control randomization technique developed in Khar-
roubi et al. (2014). However, to solve stochastic control problems maximizing the 
expected utility (as in the DICE model), some special adjustments are required for 
this technique, as discussed in Andréasson and Shevchenko (2021). Implementing 
this approach for the DICE model incorporating stochasticity in all state variables is 
the subject of our research project in progress.

Of course, although the DICE model is a typical reference point for many climate-
economy studies, it is important to remember that IAMs and the DICE models in par-
ticular have significant limitations (in the model structure and model parameters) and 
have been criticized and debated in the literature, for example, see the discussions in 
Ackerman et al. (2009); Pindyck (2017); Grubb et al. (2021); Weitzman (2011).
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