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Abstract
Traffic congestion has become one of the most pressing social problems in today’s society, and research into appropriate 
traffic signal control is actively underway. At present, most traffic signal control methods define traffic signal parameters on 
the basis of traffic information such as the number of passing vehicles. Installing sensors at a vast number of intersections is 
necessary for more precise and real-time adaptive control, but this is unrealistic from the viewpoint of cost. As an alterna-
tive, we propose a swarm intelligence-based methodology that creates routes with a similar traffic volume using the traffic 
information from intersections already equipped with sensors and interpolates this information in the intersections without 
sensors in real time. Our simulation results show that the proposed methodology can effectively create similar traffic routes 
for main traffic flows with high traffic volumes. The results also show that it has an excellent interpolation performance for 
heavy traffic flows and can adapt and interpolate to situations where traffic flow changes suddenly. Moreover, the interpola-
tion results are highly accurate at a road link where traffic flows confluence. We also developed an interpolation algorithm 
that is adaptable to traffic patterns with confluence traffic flows. Experiments were conducted with a simulation of merging 
traffic flows and the proposed method showed good results.

Keywords Swarm intelligence · Ant colony optimization (ACO) · Intelligent transport systems (ITS) · Multi-agent systems

1 Introduction

Traffic congestion is one of the most pressing social prob-
lems in society today because it can lead to environmen-
tal pollution, time loss to drivers, and economic loss. As 
one of the causes of traffic congestion is traffic light con-
trol that cannot adapt to dynamic traffic flow changes, one 
way to reduce traffic congestion is to properly control traffic 

signal parameters. For this reason, there has been extensive 
research on traffic signal control to reduce traffic congestion 
in recent years.

In Japan today, traffic signals are controlled by two 
major methods. One is point control. This method oper-
ates by repeating patterns of control parameters prepared in 
advance. With this method, it is difficult to respond appro-
priately when unanticipated traffic flow patterns occur due 
to accidents or disasters.

The other is centralized control. This method utilizes 
parameter patterns, as with point control, but multiple pat-
terns are designed instead of just one, and in operation, the 
control parameters are selected by the traffic control center 
on the basis of traffic information obtained from vehicle-
sensing sensors installed on the road. In Japan, a method 
called MODERATO [1] is applied to traffic light control 
only at major intersections. Several centralized control meth-
ods exist internationally, including SCOOT [2], SCAT [3], 
and OPAC [4]. In all these methods, parameters are designed 
in advance, and traffic information is collected at the control 
center using vehicle-sensing sensors and probe information 
to estimate parameters in batches.

This work was presented in part at the joint symposium of the 
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The centralized control method determines parameters 
on the basis of traffic information and thus adapts control to 
the current traffic conditions. However, because the control 
is centralized at the control center, the computation amount 
increases when the control area is broad or at intersections 
with many crossroads, and it takes time for the control sys-
tem to reflect the results. This makes the system less respon-
sive to dynamically changing traffic conditions at individual 
intersections.

For this reason, autonomous distributed control systems 
have been attracting interest as a method for traffic signal 
control in recent years. In this approach, a computer unit 
is placed at each intersection, and each unit autonomously 
determines the traffic signal control parameters using the 
traffic information around that intersection.

Examples of autonomous distributed control include 
methods using mixed integer linear programming problems 
[5] or evolutionary strategies [6]. However, these have only 
been validated on fixed control areas or small road networks.

There are also methods that utilize deep reinforcement 
learning to learn the appropriate signal switching method 
for the traffic signal units at each intersection [7–10]. These 
methods have demonstrated excellent performance, but since 
they have the potential to perform fast display switching con-
trol, it would be necessary to set restrictions on the control 
for safety in real-world operation [11].

Another study proposed a highly responsive autonomous 
distributed traffic signal control system with low computa-
tional and communication costs for real-world implementa-
tions [12]. To apply such a method in a real environment, 
however, vehicle-sensing sensors need to be installed at 
intersections to obtain traffic information. As these sensors 
are required at a vast number of intersections to ensure accu-
rate and real-time adaptive traffic signal control, the cost of 
installing them in a real environment becomes prohibitive. 
We, therefore, need a way to interpolate traffic information 
at intersections where vehicle-sensing sensors cannot be 
installed. In addition, real-time interpolation is necessary 
to take advantage of autonomous distributed traffic signal 
control systems that aim for immediacy.

2  Traffic volume prediction

One of the techniques for interpolating unknown data is pre-
diction technology. Many methods for traffic volume predic-
tion that utilize machine learning models have been proposed. 
For example, focusing on the fact that peak and off-peak peri-
ods in traffic conditions are time-series data that show a strong 
seasonal pattern, a traffic volume prediction method using a 
seasonal ARIMA model was proposed [13]. There are also 
prediction models that apply nonparametric methods, such as 
using a regression model [14] or a support vector machine 

model [15]. Recent years have seen an increase in traffic vol-
ume prediction models based on deep learning approaches 
[16]. Zhao et al. [17] proposed a traffic volume prediction 
model using an LSTM model that outperformed the ARIMA, 
SVM, and RNN models.

In general, when environmental changes occur due to 
accidents or road construction, the traffic flow also changes. 
Such changes in traffic flow are abrupt and may involve 
unknown patterns. Therefore, traffic volume prediction based 
on machine learning faces the challenge of how to adapt to 
sudden changes in traffic flow. Moreover, since the machine 
learning-based approaches use the past traffic volume data at 
the prediction target location to predict the future traffic vol-
ume, it is necessary to acquire traffic volume data by installing 
vehicle-sensing sensors at the prediction target location. In 
locations where vehicle-sensing sensors cannot be installed, it 
is difficult to obtain past traffic volume data in real time, which 
makes it difficult to apply the time-series prediction model.

Studies have also been conducted to interpolate traffic 
volumes at unobserved points using information obtained 
from sources other than the road links to be interpolated. For 
example, there is a method to interpolate traffic information 
at unobserved points using geographic information system 
(GIS) datasets and the geostatistical kriging method [18]. 
Another method utilizes an advanced kriging approach that 
attempts to spatially interpolate traffic volumes at unobserved 
locations using regression based on Euclidean distance, net-
work distance, the number of lanes, speed limits, and other 
site attributes [19]. Real-time interpolation is difficult for these 
interpolation methods because the objective variable is average 
annual daily traffic (AADT), and interpolation is performed 
from several years of data.

Methods for real-time interpolation have also been pro-
posed. Aljamal et al. [20] developed a method for real-time 
interpolation of traffic volumes around intersections by utiliz-
ing not vehicle-sensing sensors but rather probe data obtained 
using Kalman filtering techniques. Probe data are obtained 
from vehicles equipped with dedicated probe terminals that 
provide traffic information such as travel speed and location. 
For accurate interpolation, many vehicles need to be equipped 
with probe terminals, but only a low percentage of vehicles in 
Japan are thus equipped. Therefore, in this study, we propose a 
real-time and dynamic traffic information interpolation system 
for roads without vehicle-sensing sensors using only informa-
tion that can be obtained from roads with other vehicle-sensing 
sensors.
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3  Traffic information interpolation system 
based on swarm intelligence

3.1  System overview

As stated earlier, it is not possible to obtain real-time traffic 
information at intersections where vehicle-sensing sensors 
are not installed. Therefore, our proposed system interpo-
lates the traffic information of road links without vehicle 
sensors in real-time based on the traffic information of each 
road link where vehicle sensors are installed. Specifically, it 
creates a route between road links with similar traffic volume 
from the traffic information of each road link that can be 
obtained and then interpolates the traffic information of road 
links without vehicle-sensing sensors based on the newly 
created route. The traffic information includes the traffic vol-
ume per unit time for each road link. We use the ant colony 
optimization (ACO) algorithm [21] to create routes between 
road links with similar traffic volumes.

As the ACO algorithm is robust and can adapt to dynamic 
changes in the environment, its flexible routing capabili-
ties have been applied to a variety of tasks, such as solving 
delivery route optimization and dynamic job-shop sched-
uling problems [22, 23]. There is also a method using the 
ACO algorithm to implement path planning for autonomous 
mobile robots [24]. The ACO algorithm has demonstrated 
excellent results as a path optimization method with dynamic 
changes and is considered effective as a path finding method 
for traffic flow with changes.

3.2  Agent behavior network

Our objective is to create a route featuring similar traffic 
volumes based on the ACO algorithm. Therefore, we need 
to prepare a network in which the ant agents can act. The 
network we constructed is based on the road environment, 
where nodes represent road links and edges represent con-
nections between road links (Fig. 1). The pheromone trail 
changes in accordance with the similarity of the traffic flow. 
The ant agents carry traffic information on such a network 
to create routes between similar traffic volumes.

3.3  Traffic information data flow

In traffic signal control by autonomous distributed control, 
the traffic volume information per cycle length of signal 
control is used for computation. Therefore, the proposed 
method interpolates the traffic volume information once per 
cycle. The traffic information on the road link where a sen-
sor is installed is sent to the traffic information interpolation 
system at the end of one signal control cycle. At the same 

time, to improve adaptability to changes in traffic flow, the 
pheromone trail updates by the ACO algorithm (defined in 
3.2) are performed repeatedly during one cycle of signal 
control. The pheromone value in the pheromone trail is not 
initialized when the signal control advances to the next cycle 
step, and the pheromone trail state continues.

3.4  Interpolation system flow

The following subsections describe the details of the traffic 
information interpolation system using the ACO algorithm. 
First, ant agents are generated on a road link where traffic 
information is available. These agents have the traffic infor-
mation of that road link. Next, each agent decides the move-
ment route based on the amount of pheromone on the phero-
mone trail and propagates the traffic information it possesses 
to the destination road link. The agent moves by choosing 
a route based on the pheromone trail until it reaches a road 
link where more traffic information is available. After the 
movement, the agent compares its departure traffic infor-
mation with that of the current road link and evaluates the 
movement route. Then, on the basis of the evaluation value, 
the pheromone value on the moving route is updated. We 
attempted to create similar traffic flow routes and interpo-
late appropriate traffic information by repeating this process. 
Since the traffic flow changes over time, the flexibility and 
adaptability of the ACO algorithm are effective properties. 
Figure 2 shows the overall flow of the traffic information 
interpolation system.

3.4.1  Generate agents

As stated earlier, ant agents are initially generated on each 
road link where traffic information is available. We define 
a signal cycle as c, a step of the ACO algorithm as t, a road 
link as i, and the number of agents generated at step t as 
Ni(t) . The moving average of the traffic volume information 

Fig. 1  Structure of pheromone map
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of a road link in a signal cycle c is defined as RVi(c) , which 
in this study is the moving average of the last five cycles of 
traffic volume at road link i. A moving average is calculated 
and smoothed to reduce the range of prediction errors per 
cycle. The agent has the role of propagating this information 
to other road links. The number of agents Ni(t) to be gener-
ated is determined on the basis of the moving average RVi(c) 
of the traffic information of the road link:

The reason for applying this as the number of ant agents that 
generate traffic volume information is to make interpolation 
concerning heavy traffic flows more accurate. When there 
are more ant agents, the amount of pheromone increases, and 
this combined with the increase in the amount of pheromone 
due to traffic similarity results in a stronger emergence of 
paths between similar traffic volumes in main traffic flows. 
In this study, Eq. (1) is applied to facilitate the emergence 
of similar traffic flow paths at locations with high traffic 
volumes.

(1)Ni(t) = RVi(c)

3.4.2  Select a route

The next step is to determine the route of each agent. Each 
agent’s destination road link choice is a road link that it 
can proceed to from its current location. For example, if 
the agent is on a road link that connects to a four-way 
intersection, three road link options are listed: go straight 
ahead, turn right, and turn left. The edges on which the 
agent proceeds have a pheromone value indicating the 
similarity of traffic information between the start road 
and the connection road links. This pheromone value is 
increased by pheromone addition performed by the agents. 
The evaporation of the pheromone reduces this value. We 
set the initial pheromone value at system start time 0.1 for 
all edges. Each agent prioritizes the route with the high 
pheromone value. In the case of road link i to destination 
road link j, if we define the pheromone value between i 
and j as �i,j(t) , the movement probability of the agent from 
road link i to j is defined as

where J denotes the set of road links that can be moved to 
from road link i. The agent randomly selects one road link 
from among the candidates for the destination road link with 
a certain probability, regardless of the route selection by 
Eq. (2). This selection is designed to prevent excessive con-
vergence of the pheromone trail, which would prevent the 
discovery of routes to other road links with high similarity. 
The agent follows this method to perform route selection 
and movement until it reaches another road link where traffic 
information is available.

3.4.3  Propagate traffic information and calculate reliability

The traffic information interpolation is based on the reli-
ability of the traffic information propagated by the agents 
(details are explained in 3.4.6). Here, we explain how to 
calculate the reliability of the propagation data. After deter-
mining the route, the agent moves to the destination road 
link and propagates its traffic information to the road link 
where traffic information cannot be obtained. At the same 
time, it calculates the reliability of its traffic information. In 
general, the traffic information possessed by agents gener-
ated on road links close to the road link to be interpolated is 
reliable as interpolated values. In addition, the traffic infor-
mation between road links with high pheromone value edges 
is considered to have high reliability thanks to being similar. 
Therefore, the factors involved in the reliability level are 
the distance moved and the pheromone value of the moving 
route.

(2)pi,j(t) =
�i,j(t)∑
j∈J �i,j(t)

,

Fig. 2  Overview of the traffic information interpolation system
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When agent k, which started from road link i, is passing 
through road link m, and the distance it has moved is hi,m , 
the interpolated traffic information AVk

m
(c) and the reliability 

level ARk
m
(c) it possesses are calculated as

where Hreduce is a parameter indicating the rate of decrease 
in the reliability of the agent’s travel movement, which is 
Hreduce ∈ (0, 1] . In this study, we set Hreduce = 0.05 . In 
Eq. (4), 

∑hi,m

n=1
�pn−1,pn

(t) represents the sum of the pheromone 
values of each edge that the agent has passed from the start-
ing road link to road link m when it passes road link m at 
step t.

3.4.4  Pheromone deposition

The agent follows the route it has traveled while deposit-
ing the pheromone and returns to the road link from which 
it was generated. The amount of pheromone deposited is 
determined by the similarity between the traffic information 
at the agent’s starting road link and that at the destination 
road link. When the agent generated on road link i moves 
to road link p, the pheromone increase ��i,p(t) in the route 
traveled by this agent is calculated as

where d is the Euclidean distance between the traffic infor-
mation of the two road links. When traffic information is 
similar between roads, more pheromones are deposited.

3.4.5  Pheromone evaporation

Pheromones evaporate at the rate of e(e ∈ (0, 1]) in one crea-
tion phase. This evaporation effect lowers the pheromone 
value between road links with low similarity, and traffic 
information can be propagated efficiently between road links 
with high similarity. In this study, we set e = 0.05:

3.4.6  Traffic information interpolation

When all agents have finished moving, each road link adopts 
the most reliable interpolated traffic information among the 

(3)AVk
m
(c) =RVi(c),

(4)ARk
m
(c) =(1 − Hreduce)hi,m ×

∑hi,m

n=1
�pn−1,pn

(t)

hi,m
,

(5)d =|RVi(c) − RVp(c)|,

(6)��i,p(t) =
1

1 + d
,

(7)�i,j(t + 1) = �i,j(t) × (1 − e)

candidates propagated to itself as the interpolated traffic 
information. In road link m, the number of propagated inter-
polated traffic information candidates is o, and their infor-
mation is AV1

m
(c),AV2

m
(c),...,AVo

m
(c) and AR1

m
(c) , AR2

m
(c),..., 

ARo
m
(c) . The interpolated value PVm(c) is calculated as

Through the above procedure, the traffic information of road 
links without sensors is interpolated.

3.5  Interpolation method for road link where traffic 
flows confluence

The method proposed in the previous sections considers the 
difference in traffic volume between two road links as a pher-
omone value to form traffic flow routes with similar traffic 
volumes. If two or more traffic flows merge at an intersection 
and the traffic volume at the merging road links needs to be 
interpolated, the difference in traffic volume between the two 
road links will be the difference between the traffic volume 
before and after the merge, and the pheromone trail will not 
form well. For example, in Fig. 3a, the main traffic flows are 
independent. Therefore, the traffic volume on road links A 
and B is similar, and that on road links C and D is similar, 
thus forming a pheromone trail that can be applied by the 
method proposed in the previous sections. In contrast, the 
main traffic flows merge in Fig. 3b, so the traffic volume on 
road link G is the combined volume of traffic on road links 
E and F. Because of the large difference in traffic volume 
between road link E (F) and road link G, the pheromone trail 
cannot be formed, even though the main traffic flow origi-
nally continues from road link E (F) to G. For this reason, 
it is difficult to detect the main traffic flow after the merge, 
making it challenging to interpolate the points marked with 
a star in the figure. Therefore, in this section, we present a 
traffic information interpolation method that can be adapted 
to cases where traffic flows converge.

3.5.1  Route memorization

First, each agent memorizes the routes it has traversed. If pn 
is the road link that the agent has traveled to, the agent has 
the following information:

3.5.2  Pheromone deposition considering confluence 
of traffic flow

The similarity calculation in 3.4.4 is changed to a formula 
that takes into account the confluence of traffic flow.

(8)PVm(c) = AVl
m
(c)(l = argmaxARk

m
(c))(k = 1, 2, ..., o).

(9)Path = {p0, p1, ..., pn}.
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If an agent has information on a transit route Path and 
moves to road link pn , the set of all agents that have moved 
to road link pn is Agentpn , and the set of agents that have 
passed along the same route as the agent is AgentPath . Then, 
the pheromone increase ��i,p(t) in the route traveled by this 
agent is calculated as

where n(Agentpn) indicates the number of agents that have 
moved to the road link pn and n(AgentPath) indicates the 
number of agents that have passed through the same path as 
agent k. From Eq. (10), the number of vehicles only on the 
agent’s route is estimated by multiplying the traffic volume 
on the destination road link by the percentage of agents that 
have passed along the same route.

3.5.3  Traffic information propagation and prediction 
calculation considering confluence of traffic flow

By considering the number of agents with respect to the 
route, we attempt to calculate an interpolation value that is 
close to the post-merge traffic volume. To obtain the neces-
sary information for this purpose, when agents propagate 
traffic information, they propagate the information APk

m
(c) , 

which is the agent’s travel route up to road link m, in addition 
to the interpolated traffic information AVk

m
(c) and confidence 

level ARk
m
(c) (discussed in 3.4.3), as

(10)

d =

{
|RVi(c) − RVpn

(c)| (RVi(c) ≥ RVpn
(c))

|RVi(c) − (RVpn
(c) ×

n(AgentPath)

n(Agentpn )
)| (RVi(c) < RVpn

(c))

𝛥𝜏i,p(t) =
1

1 + d
,

In the calculation of the traffic interpolation values, o candi-
date interpolation values are propagated to the road link m 
(discussed in 3.4.6). Their information is AV1

m
(c)...AVo

m
(c) , 

AR1
m
(c)...ARo

m
(c) and AP1

m
(c)...APo

m
(c) . The interpolated 

value PVm(c) is calculated as

where n(APl
m
(c)) indicates the number of propagation infor-

mation that is the same path as the l-th transit route informa-
tion. The total number of propagation information is divided 
by this value and multiplied by the estimated traffic volume 
to estimate the volume of traffic after confluence.

3.5.4  Increase in the number of agents generated

The extended interpolation algorithm that takes into account 
the merging of main traffic flows calculates pheromone deposit 
values and interpolation values based on the ratio of ant agents 
that followed the same path, as shown in Eqs. (10) and (12). In 
this case, although the ant agent takes into account the phero-
mone value, it chooses its route by probability. Therefore, the 
number of agents must be increased to eliminate fluctuations 
in path selection due to probability and to perform proper 
pheromone deposition. The greater the number of agents, the 
more appropriate the agent path selection according to the ratio 
of pheromone values. We, therefore, increase the number of 

(11)APk
m
(c) = {p0, p1, ..., pm},

(12)
PVm(c) = AVl

m
(c) ×

o

n(APl
m
(c))

(
l = argmaxARk

m
(c)

)
(k = 1, 2, ..., o),

Fig. 3  Two traffic flow patterns
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agents by multiplying the number of agents generated by n 
times the moving average of traffic information on road links:

In this study, we set n = 5.

4  Evaluation experiment

4.1  Performance evaluation

We evaluate the effectiveness of the proposed system 
with experiments using the Simulation of Urban Mobility 
(SUMO) [25] traffic simulator. Specifically, we examine 
the accuracy of traffic information interpolation for a road 
link that flows into an intersection with no sensors, which 
is the main traffic flow with high traffic volume. The root 
mean square error (RMSE) is calculated for the actual value 
obtained by the simulator. The range of the evaluation target 
is set to within the range of the agent’s behavior, as shown 
in Fig. 4.

4.2  Comparison methods

We assume the algorithms discussed here will be applied 
in the real world, so we used the following three methods, 
which are considered applicable in the real world, as com-
parison methods.

(13)Ni(t) = RVi(c) × n.

4.2.1  Traffic volume survey

In Japan, a traffic survey is conducted once every five years 
to obtain the hourly traffic volume of a road link on a par-
ticular day. Traffic volume surveys are generally conducted 
under normal traffic flow conditions, not under special situ-
ations such as accidents. Since this experiment uses virtual 
simulation, we conducted simulations under the same con-
ditions as normal traffic flow to simulate a traffic volume 
survey, and 1-h traffic volume data for all road links were 
obtained. Under the same situation as normal traffic flow 
means that the parameters of the vehicle routes that form 
the main traffic flow, the vehicle inflow probability, and the 
vehicle route choice probability (described in detail in 5.1) 
are the same as in the simulations conducted in 5.1. The 
interpolated value in the comparison method is the aver-
age traffic volume for one cycle, calculated by dividing the 
hourly traffic volume for the target time of the road link to 
be interpolated by the number of cycles per hour.

4.2.2  Clustering

From the traffic survey data values for each road link 
obtained in 4.2.1, k-means++ [26] is used to group road 
links with similar traffic flow patterns. In the interpolation 
scene, based on the result of clustering, the average value of 
real-time traffic volume data acquired from sensor-installed 
road links that belong to the same cluster as the road link to 
be interpolated is applied as the interpolated value.

4.2.3  Neighbor interpolation

Traffic volume surveys are based on historical statistics. The 
clustering method uses real-time traffic as interpolated val-
ues, but the clustering calculation itself relies on historical 
statistical data. Therefore, we use the neighbor interpolation 
method as an interpolation method utilizing real-time traffic 
volume data. The experiment evaluates the results of traffic 
information interpolation for road links on main traffic flows. 
Therefore, in the neighbor interpolation method, the average 
value per five cycles on the road link with the largest traffic 
volume among adjacent road links within two hops of the 
road link to be interpolated is applied as the interpolated 
value. The reason for taking a moving average of five cycles 
is to reduce the range of prediction error per cycle, as with 
the proposed method.

Fig. 4  Simulation of normal traffic flow
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5  Results

5.1  Experiment in normal traffic flow

First, we performed interpolation experiments in normal traffic 
flow. The vehicles that form the main traffic flow travel along 
the defined route shown in Fig. 4. During the entire simula-
tion period, the main traffic flow routes remain unchanged. 
Therefore, the road links for accuracy evaluation in this experi-
ment are those on the main traffic flow (indicated by the green 
arrows) in Fig. 4, where no sensors are installed. The layout 
of the road links where the sensors are installed is shown in 
Fig. 4. The sensors are assumed to be installed near traffic 
lights and acquire traffic volumes for each road link enter-
ing the intersection. The acquisition range of the sensors is 

assumed to be 150 m. Figure 5 shows an enlarged image of 
one intersection from Fig. 4.

We set the congestion time for each simulation period. The 
ratio of vehicle inflow during congestion and non-congestion 
times is set to 2 : 1. Vehicles form the main traffic flow, but 
some vehicles also choose other routes with probability at the 
intersection. The inflow ratio between these vehicles and the 
vehicles that form the main traffic flow is set to 1 : 6.

5.2  Creation of routes between similar traffic 
volumes

The results for similar traffic volumes created by the pro-
posed method are shown in Fig. 6. Nodes indicate road links, 
and edges are placed between road links that can be pro-
ceeded on. The color of the node indicates the traffic volume 
in one cycle, where a darker color means a greater amount of 
traffic. The color of the edge indicates the pheromone value, 
where the higher the pheromone value, the darker the color. 
As we can see in the figure, routes with high pheromone 
values were formed along the nodes with high traffic vol-
ume. This demonstrates that the proposed method can create 
routes that connect similar traffic volumes.

However, in Fig. 6, no similar paths could be generated 
for the left-most node and its right neighbor among the 
nodes that represent the main traffic flow. This is because the 

Fig. 5  Sensor installation details

Fig. 6  Creation of routes between similar traffic volumes

Table 1  Average RMSE of interpolation values in normal traffic flow

Method Avg. RMSE

Traffic volume survey 3.91
Clustering 3.39
Neighbor interpolation 2.84
Proposed 2.88

Fig. 7  Interpolation results in normal traffic flow



375Artificial Life and Robotics (2023) 28:367–380 

1 3

starting point of the road link where the sensor is installed 
in the main traffic flow is not the left-most road link, but the 
one to the right of it. In this case, the starting point of the ant 
agents is also not the left-most road link, but its right neigh-
bor, and thus no similar paths could be generated between 
the left-most road link and the right-neighbor road link.

5.3  Interpolation results for normal traffic flow 
simulation

The results of traffic information interpolation are shown 
in Fig. 7 and Table 1. The horizontal axis in the figure 
shows the number of cycles, and the vertical axis shows 
the RMSE values. The green, blue, orange, and red lines 
show the interpolation results by traffic volume survey, by 
clustering, by neighbor interpolation, and by the proposed 
method, respectively. Note that the red and orange lines 
overlap because the neighborhood interpolation method 
produced similar results to the proposed method.

With the interpolation by the traffic volume survey, we 
can see that the RMSE values were higher when the traffic 
inflow changed. In contrast, since the clustering, neighbor 
interpolation method, and proposed method interpolate 
from real-time traffic data, the interpolation was adaptive 
to the inflow changes. In particular, since the proposed 
method interpolates only from the road links existing on 
the route with similar traffic volume, it was more accurate 
than the clustering method.

5.4  Experiment under changing traffic flow

Next, we conducted a simulation experiment to examine 
how well the proposed method could deal with sudden 
changes in traffic flow. In the first half of the simulation, 
we use the same main traffic flow (Fig. 4) and parameters 
as in 5.1. In the second half, the main traffic flow route 
changes from the route shown in Fig. 4 to that shown in 
Fig. 8. Therefore, the road links for accuracy evaluation in 
this experiment are those on the main traffic flow (green 
arrows) in Figs. 4 and 8, where no sensors are installed. 
The layout of the road links where the sensors are installed 
is shown in Fig. 8.

5.5  Results of interpolation in traffic flow 
with sudden change

The interpolation results in traffic flow with sudden changes 
are shown in Fig. 9 and Table 2. The main traffic flow varied 
after 240 cycles. In the first half of the simulation, there is 
no significant difference between the results of the different 

Fig. 8  Simulation of the traffic flow after sudden change

Fig. 9  Results of interpolation in traffic flow with sudden change

Table 2  Average RMSE of interpolation values in traffic flow with 
sudden change

Method Traffic flow Avg. RMSE

Traffic volume survey Before change 4.23
After change 8.77

Clustering Before change 3.60
After change 8.54

Neighbor interpolation Before change 3.01
After change 3.30

Proposed Before change 3.05
After change 3.40
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methods. A normal traffic flow simulation is performed here, 
so the method with the traffic volume survey simulates simi-
lar parameters and even the interpolation method based on 
the traffic volume survey gives relatively good interpola-
tion results. However, we can see that the RMSE values of 
the traffic volume survey and clustering methods increased 
significantly in the second half of the simulation when the 
traffic flow changed.

In contrast, the neighbor interpolation method and the 
proposed method exhibited only a slight increase in RMSE 
values. The traffic volume survey and clustering method 
were not able to adapt to sudden changes in traffic flow 
because there was no data for such changes. We presume the 
slight increase in the proposed method was due to the phero-
mone trail not being adapted immediately after the change. 
Since the neighbor interpolation method also interpolates 
the moving average of five steps, the RMSE is considered 
to have increased due to errors immediately after the traffic 
flow change. These interpolation results demonstrate that the 
proposed method can interpolate traffic information adap-
tively to changes in traffic flow.

5.6  Experiments under sparse sensor placement

Since the proposed method generates routes based on 
the traffic volume between road links where sensors are 
installed, it is likely to be affected by the sensor placement 
status. Therefore, we conducted interpolation experiments 

with changing traffic flow under sparse sensor placement 
conditions using the sensor placement pattern shown in 
Fig. 10, where the sensors are not placed over a long section 
near the center of the road. The parameter settings for the 
traffic simulation are the same as in 5.4. The accuracy evalu-
ation was performed on road links on the main traffic flow 
(green arrows in Fig. 10) where no sensors were installed.

Fig. 10  Experimental setup with sparse sensor placement

Fig. 11  Results of interpolation under sparse sensor placement
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5.7  Experimental results for sparse sensor 
placement

The interpolation results under sparse sensor placement are 
shown in Fig. 11 and Table 3. The main traffic flow changed 
over 240 cycles. As in the previous experiments, the traffic 
volume survey and the clustering method can perform ade-
quate interpolation before the traffic flow changes but are not 
able to adapt to the changes after. In the neighborhood inter-
polation method, the RMSE values were higher when the 
sensor placement was sparse, because the main traffic flow 
could not be detected regardless of the traffic flow change. 
As for the proposed method, it shows a slight increase in 
RMSE value under sparse sensor placement compared to 
the densely populated sensor condition. This can be attrib-
uted to the longer distance between the sensors, which took 

longer to form an appropriate pheromone trail immediately 
after the change in traffic flow. Although the RMSE value 
increased slightly with the proposed method, it was still able 
to perform appropriate traffic information interpolation and 
adapt to changes in traffic flow.

6  Experiments under traffic flow confluence

6.1  Experimental settings

We conducted experiments to investigate the traffic informa-
tion interpolation for a traffic pattern in which two traffic 
flows converge. The vehicles that form the main traffic flow 
travel along the defined route shown in Fig. 12.

There are two main traffic flows at the inflow, and at the 
intersection near the center, they merge to form one large 
traffic flow. In this simulation, the star-shaped point is a road 
link where traffic volumes need to be interpolated after traf-
fic flow confluence, which is difficult to do using the inter-
polation method without considering confluence. As in 5.1, 
we set the congestion time for the simulation period. The 
ratio of vehicle inflow during congestion and non-congestion 
times is set to 2 : 1. Some vehicles also choose the route 
with probability at the intersection. The inflow ratio between 
these vehicles and the vehicles that form the main traffic 
flow is set to 1 : 6.

Table 3  Average RMSE of interpolation values under sparse sensor 
placement

Method Traffic flow Avg. RMSE

Traffic volume survey Before change 4.36
After change 7.88

Clustering Before change 3.79
After change 7.40

Neighbor interpolation Before change 8.18
After change 7.16

Proposed Before change 3.21
After change 3.91

Fig. 12  Simulation of confluence traffic flow
Fig. 13  Creation of route by interpolation method that dose not con-
sider confluence traffic flow
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6.2  Experimental results

We conducted the experiments using one interpolation 
method that does not consider traffic flow confluence and 
one that does consider it. The results for the similar traffic 

volume route created by these two methods are shown in 
Figs. 13 and 14, respectively.

There is a fivefold difference in the number of agents gen-
erated by the two methods. Therefore, the maximum value 
of the pheromone indicated by the colors in Figs. 13 and 14 
has been adjusted to 160 and 800, respectively.

As we can see in Fig. 13, the interpolation method with-
out considering confluence can generate the main traffic flow 
paths up to the road links before confluence, but not after. In 
contrast, Fig. 14 shows that the interpolation method con-
sidering confluence can form the main traffic flow on the 
road link both before and after confluence. Figure 15 and 
Table 4 show the RMSE values for the traffic information 
interpolated road links after traffic flow confluence (marked 
with stars in Fig. 12), where the red and blue lines denote the 
interpolation method without and with considering conflu-
ence, respectively. As we can see, particularly in the latter 
half of the period when the pheromone field is stable, the 
interpolation method considering confluence has superior 
results compared to the method without. Moreover, the aver-
age RMSE values for the road links to be interpolated after 
traffic flow confluence (Table 4) are lower for the interpola-
tion method considering confluence. Fig. 16 and Table 5 
show the overall interpolation results, including other inter-
polated road links on major traffic flows with high traffic 
volumes. We can see here that the interpolation method 
considering confluence is slightly better than that without, 

Fig. 14  Creation of route by interpolation method that does consider 
confluence traffic flow

Fig. 15  Interpolation results at a road link after traffic flow confluence

Table 4  Average RMSE of 
interpolation values at a road 
link after traffic flow confluence

Method Avg. RMSE

Method without 
considering 
confluence

9.02

Method consider-
ing confluence

6.03

Fig. 16  Interpolation results for all interpolated road links

Table 5  Average RMSE of 
interpolation values for all 
interpolated road links

Method Avg. RMSE

Method without 
considering 
confluence

5.40

Method consider-
ing confluence

4.96
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even when the interpolation results include road links other 
than those after the traffic flow confluence. Specifically, 
both methods showed comparable performance except for 
the traffic volume interpolation for the road link after the 
traffic flow merges, and the interpolation method consider-
ing confluence showed superior results for the traffic volume 
interpolation for the road link after the traffic flow merges. 
Thus, the average RMSE value of the interpolation method 
considering confluence was higher, even overall.

7  Simulation on real‑world road maps

7.1  Settings

We are currently planning a real-world implementation of 
the proposed method with an autonomous distributed traffic 
signal control method. Therefore, we conducted an inter-
polation experiment using the simulation map shown in 
Fig. 17, assuming real-world operation. In this experiment, 
the main traffic flow changes in the first and second halves 
of the simulation. The black lines in the figure indicate roads 
and the thick lines indicate arterial roads. The green and 
orange arrows show the main traffic flow in the first and 
second halves of the simulation. The simulation period is 
43,200 steps (12 h) and includes a congested time in which 
the vehicle inflow ratio is 2:1 (congestion time:non-conges-
tion time). We include vehicles that travel at random in addi-
tion to the vehicles that form the main traffic flow. These 
vehicles flow in randomly from all entrances and travel along 
randomly formed routes.

7.2  Results

We evaluated the accuracy of the traffic information interpo-
lation for road links that form major traffic flows (green and 
orange arrows in Fig. 17) where no sensors were installed. 
RMSE is used as the evaluation metric. The interpolation 
results are shown in Fig. 18 and Table 6. We can see that 
the interpolation of the traffic volume survey was the most 
highly evaluated in the first half of the simulation, as the 
distances between intersections were not evenly spaced. This 
indicates that the error between the traffic volume of the road 
link to be interpolated and the road link on the created route 
was large. Since the clustering and the proposed method 
interpolate the values with the traffic volume of the sur-
rounding road links, they had slightly higher RMSE values 
than the traffic volume survey.

In contrast, the interpolation results after traffic flow 
changes show that the proposed method performed better 
than the traffic volume survey and clustering. These two 
methods are not adaptable to sudden changes, while the pro-
posed method can adaptively interpolate to sudden changes 
even in the simulations with the real-world road map.

Fig. 17  Simulation on real-world road maps

Table 6  Average RMSE of interpolation values in real-world road 
map

Method Traffic flow Avg. RMSE

Traffic volume survey Before change 2.93
After change 8.56

Clustering Before change 3.20
After change 7.42

Proposed Before change 3.29
After change 3.59

Fig. 18  Interpolation results in real-world road map
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8  Conclusion

In this paper, we proposed a system for the real-time interpo-
lation of traffic information at intersections without sensors 
based on a swarm intelligence algorithm. The experimen-
tal results demonstrate that the proposed method can create 
similar traffic routes for main traffic flows with high traffic 
volumes, and that it is adaptable to sudden changes in traf-
fic flow. We also developed an interpolation algorithm that 
is adaptable to traffic patterns with confluence traffic flows.

Future work will include implementing a real-world 
application system that combines vehicle-sensing sensors, 
traffic signal control units, traffic signal control research, and 
the proposed system.
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