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Abstract
Honey bees (Apis mellifera L.) are social insects that makes frequent use of volatile pheromone signals to collectively navi-
gate unpredictable and unknown environments. Ants have been shown to effectively use pheromone trails to find the shortest 
path between two points, the nest and the food source. The ant pheromone trails are accomplished by depositing pheromones 
which are then diffused passively, creating isotropic (i.e., non-directional and axi-symmetric) signals. In this study, we report 
the first instance of the honey bees’ ability to solve the shortest path problem to localize the queen and aggregate around her 
by using a collective flow-mediated scenting strategy. In this strategy, individual bees not only emit pheromones but also 
fan their wings to actively direct the flow of the signals, providing colony members with directional messages to the queen’s 
location. We use computer vision and deep learning approaches to perform automatic and accurate image analysis. As a 
result, we quantify the number of bees in the short and long paths, and show that the short path is frequented by significantly 
more bees over time. We also reconstruct attractive surfaces using the positions and directions of scenting bees, and show 
that this surface is more “attractive” along the short path and around the queen as scenting bees send out directional messages 
and the swarm makes their way to the queen. Overall, we show that honey bees can effectively use the collective scenting 
behavior to overcome local and volatile pheromone communication and find the shortest path to the queen.

Keywords  Honey bees · Swarm intelligence · Self-organization · Problem solving · Traveling salesman problem

1  Introduction

In social insect colonies, members must effectively commu-
nicate to navigate unpredictable and unknown environments. 
Pheromones, or volatile chemical messages, are one of the 
prevalent signals that insects employ to exchange informa-
tion and coordinate group processes, such as foraging or 
aggregating [1, 7, 15]. Although prevalent, pheromones 
decay rapidly in time and space, limiting the range and dura-
tion of information exchange. Thus, social insects must col-
lectively solve this problem by creating effective and robust 
communication networks.

Ant pheromone trails are a well-known example of a col-
lective, self-organized solution to the traveling salesman 
problem of finding the shortest route between the nest and 
a food source [3, 13]. Ants employ the method of passively 
depositing pheromones in their trajectories, producing iso-
tropic (i.e., non-directional and axi-symmetric) signals. 
These chemical signals are reinforced on a given path over 
time as ants traverse the path in both directions, leading to 
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the collective choice of the shortcut. Additionally, previ-
ous studies have shown that, a true slime mold, the plasmo-
dium of Physarum polycephalum, can find the shortest path 
through a maze or connect different arrays of food sources 
in an efficient manner with low total length [9]. Similar to 
the ants, these single-celled amoeboid organisms employ 
passive signaling without centralized control or global infor-
mation to also form networks with the efficiency, fault tol-
erance, and cost comparable to those of the real Tokyo rail 
system [14].

In this work, we aim to show that another species employ-
ing chemical signaling is capable of solving the shortest 
route problem: the honey bees (Apis mellifera L.). In our 
previous study of how honey bees can search for and swarm 
around the queen, we show that beyond passive depositing 
of chemical signals seen in the ants and amoeba, honey bees 
organize into a communication network and “scent” to emit 
pheromones and fan their wings to actively direct the sig-
nal flow and expanding the reach of the signals, providing 
colony members with directional messages of the queen’s 
location [10]. Now, we investigate whether the honey bees 
can solve the shortest path problem in the swarming context 
using the directional pheromone signaling strategy. To that 
end, we present worker bees with a Y-maze consisting of a 
short and a long path to the queen, who is caged and placed 
in a fixed location at the opposite end of the maze. This 
maze is inspired by the design in the classic work on the 

self-organized shortcut in ants above-mentioned [3]. We also 
ran a control experiment by presenting the bees with a mir-
rored version of the maze, to show the reproducibility of the 
behavior and eliminated any directionality bias of the bees’ 
behavior. We then track the search behavior of individuals 
and the swarming behavior of the group over time with com-
puter vision and machine learning methods to automatically 
and accurately detect the bees’ location and their directional 
scenting behavior. Through these experiments, we aim to 
assess whether and how the honey bees employ a collective 
flow-mediated approach with volatile signals to solve the 
problem of finding the shortest path to a target, the queen, 
for aggregating.

2 � Methods

2.1 � Experimental setup

Honey bees have been shown to scent while standing sta-
tionary on a surface [8]. Thus, our experimental arena (50  
cm x 50 cm x 1.5 cm) on top of a backlight board is semi-
two-dimensional to prevent flying for easier handling and 
analysis. Wood blocks are used to build a maze with a short 
and long path (35 and 65 cm, respectively). See Fig. 1A 
for an image of the experimental setup, in which the bees 
are recorded from an aerial view with a video camera (4k 

Fig. 1   Experimental setup and 
image analysis with machine 
learning. A Experimental setup 
of the semi-two-dimensional 
area of 50 x 50 x 1.5 cm, in 
which the short path (green) is 
approximately 35 cm in length 
and the long path (orange) 
is approximately 65 cm. B 
Examples of training data 
for two convolutional neural 
network models, the binary 
image classifier to classify 
scenting and non-scenting bees 
and the orientation estimator. C 
Example detection of individual 
bees (green boxes) and clusters 
(purple boxes). D Example 
detection of scenting bees and 
their scenting directions (teal 
arrows pointing from head to 
tail). E Zoomed-in part showing 
example annotated scenting 
bees with wide wings
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resolution, 30 fps). Before the experiments, the queen and 
worker bees are collected from a colony. Workers are iso-
lated from their original queen for 24 hours, then introduced 
to a different queen in a cage (10.5 x 2.2 x 2.2cm) from our 
queen bank and stayed with her for another 24 hours. In 
each experiment, the caged queen is placed at the right end 
of the maze consisted of two paths. Worker bees are placed 
at the other end. A sheet of plexiglass is placed on top of the 
arena to enclose the space. We regularly monitor tempera-
ture to make sure the heat from the backlight board does not 
exceed 32–35 °C and does not affect the fanning behavior. 
We perform three trials with the maze orientation shown 
in Fig. 1A, and three more trials with a mirrored version of 
this maze, shown in Fig. 4(D–F), in which the short path is 
at the top and the long path is at the bottom. The ratio of the 
long and short paths is approximately 2, consistently with 
the ratio used in the maze in the classic ant paper [3]. We use 
different sets of bees for each trial so that our replications of 
the maze do not increase the capacity of the colony to find 
the preferred path (i.e., to eliminate learning). We also wash 
the cover with soap and water and use Lysol spray for the 
arena and maze in between trials to eliminate any leftover 
pheromone from the previous trial.

2.2 � Bee detection & scenting recognition

To automatically detect scenting bees and their scenting 
directions in the videos, we employ computer vision and 
deep learning approaches originally presented in detail in 
[10]. First, to detect individual bees, we extract images at 1 
fps and use Otsu’s method to adaptively threshold the images 
[11, 12]. Morphological transformations (opening) are itera-
tively applied to remove noise and separate individual bees 
from clusters of bees that are difficult to parse out [2]. The 
connected component algorithm is then applied to obtain 
the components’ centroids (x, y positions) and areas. Large 
clusters are filtered out by area to isolate individual bees. 
See Fig. 1C for an example image annotated with individuals 
(green boxes) and clusters (purple boxes).

Second, to binarily classify individual bees as scenting 
or non-scenting, we train a ResNet-18 convolutional neu-
ral network (CNN) model [6] using 28,458 labeled images 
[10]. Examples of scenting and non-scenting bees are shown 
in Fig. 1B under “Binary image classifier.” The model is 
trained with augmented data (horizontal and vertical flip-
ping, brightness adjustments, scaling, translation, and rota-
tion) and balanced sampling to combat the class imbalance 
(9:1 non-scenting to scenting) for 1203 epochs with early 
stopping to prevent overfitting. On the test set, the model 
achieves 95.17% accuracy, indicating that our model can 
generalize to unseen data.

Lastly, we use the same ResNet-18 CNN for orientation 
prediction to provide us with the scenting directions. While 

the scenting classifier model outputs binary categorical 
labels, the loss function here is modified for the model to 
output continuous values for the predicted angles: 
L =

√

[

arctan
(

sin
(

y − yp
)

, cos
(

y − yp
))]2 , where y is the 

true label, and yp is the model’s prediction. We created a 
labeled dataset of 15,435 images, each image with a head 
and tail positions from which we compute the ground-truth 
orientation angle [10] (Fig. 1B under “Orientation estima-
tor”). On the test set, this model achieves 96.71% with 15◦ 
of error tolerance. Fig. 1C–E show the complete result of 
detecting individual bees, detecting scenting bees out of the 
individual bees, and estimating the scenting directions (teal 
arrows).

2.3 � Time‑series analysis

From the computer vision pipeline above-described, we have 
the position and scenting information of the bees to extract 
time-series data. Per frame, we obtain the number of scent-
ing, non-scenting, and all bees in the short and long path. 
In the results, we present the cumulative sum of the three 
types of bees as a rolling average with a window size of 60 
frames or seconds.

2.4 � Attractive surface reconstruction

To correlate the scenting events with the spatiotemporal 
density of bees, we reconstruct an attractive surface for 
each frame of a video, with a method originally presented 
in detail in [10]. To describe briefly, for each scenting bee 
i at time t, we define its position as �p

i,t
 , and its direction of 

scenting as �d
i,t

 (unit vector). Assuming the scenting bees 
provide directional information to non-scenting bees, we 
treat �p

i,t
 and �d

i,t
 as a set of gradients that define a minimal 

surface of height f(x, y, t). Thus, f(x, y, t) corresponds to the 
probability that a randomly moving non-scenting bee will 
end up at position (x, y) by following the scenting directions 
of scenting bees:

where ∇f = �
p

i,t
+ �

d
i,t

 . We regularize the least squares solu-
tion of the surface reconstruction from its gradient field, 
using Tikhonov regularization [4, 5].

3 � Results

To characterize how honey bees collectively behave when 
presented with two paths to the queen, we observe the exper-
iments qualitatively and quantitatively over time. In Fig. 2, 
we show an example experiment with snapshots of the bees 

(1)f (x, y) =
∑

∀∇f
∫ ∇fdxdy
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interacting in the semi-two-dimensional arena with a caged 
queen. As shown in Fig. 2A, the worker bees perform early 
exploration of the two paths (t = 455 sec), then converge 
and scent on the short path to signal the queen’s location 
to the rest of the swarm (t = 570 sec). By approximate 820 
sec, most of the bees have aggregated around the queen. In 
Fig. 2B, we present the corresponding attractive surfaces f 
reconstructed from the scenting bees’ positions and direc-
tions. The strongest signals tend to lie along the short path 
and around the queen.

We also quantify the temporal dynamics of the search 
for the shortest path and aggregation around the queen. 
In Fig. 2C, we show the cumulative sum of the number 
of scenting bees on the short (green) and long (orange) 
paths over time, shown as a rolling average with a window 
size of 60 seconds. In Fig. 2D and E, we show the data 

for non-scenting bees and all bees (e.g. scenting and non-
scenting), respectively. There are significantly more bees of 
all kinds on the short path, suggesting that the collective 
scenting communicates the preferred path to the queen to 
the rest of the swarm.

We perform six total trials of this experiment and show 
the time-series data for scenting bees and all bees in Fig. 3 
for all trials. In three trials (1–3), we present the bees with 
the maze as shown in the example in Fig. 2. In the rest of 
the trials (4–6), we flip the maze to prevent any memory 
or directional bias. In trials 1 to 5, the number of scent-
ing and all bees on the short path are consistently higher 
than on the long path. In the outlier trial 6, we observe the 
opposite dynamics. Note that we record the number of bees 
on the two paths per video frame. In trial 6, the cumulative 
sum may include bees that travel the paths back and forth 

Fig. 2   Time series of an example maze experiment. A Snapshots 
of an example experiment in a semi-two-dimensional arena where 
worker bees are placed at one end of the maze with short and long 
paths, and the queen is located at the opposite end. Over time, the 
bees communicate via the collective scenting behavior to find the 
short path and swarm around the queen. B Snapshots of the cor-
responding surfaces f according to Eq.  1 to show how the scenting 
events correlate to the spatial-temporal density of the bees. C The 

cumulative sum of the number of scenting bees on the short (green) 
and long (orange) paths over time, shown as a rolling average with a 
window size of 60 seconds. D The cumulative sum of the number of 
non-scenting bees on the short (green) and long (orange) paths over 
time, shown as a rolling average with a window size of 60 seconds. 
E The cumulative sum of the number of scenting and non-scenting 
(i.e. all) bees on the short (green) and long (orange) paths over time, 
shown as a rolling average with window size of 60 seconds
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rather than most bees forming a swarm at the queen’s loca-
tion as seen in trials 1–5. In this trial, there are relatively less 
scenting bees on the short path, possibly preventing a robust 
communication network from forming to communicate the 
queen’s location.

4 � Discussion

We observe that the cumulative number of scenting bees 
vary for the experiments, and that trial 6 has fewer scent-
ing bees than trial 1 and 2. As the scenting behavior leads 
to finding and swarming around the queen, the number of 
scenting bees could play a role in the failure of the bees 
in trial 6 to reach the queen via the short path. More specifi-
cally, there are relatively less scenting bees on the short path 
compared to the long. Less scenting bees on the short path 
may prevent a robust communication network from forming 
to communicate the queen’s location.

In our experiments, we keep the ratio of the long and 
short path to an approximate value of 2, which has been 
shown in the ants to be a value where the collective choice 
of the shortcut is significant and consistent, a result we also 
observe in the bees. We note that the original work on the 
ants also experimented with ratio values of 1 (i.e. the two 
paths are the same length) and an intermediate value of 1.4. 
When the ratio is 1, the choice between two paths is roughly 
50%. At the ratio of 1.4 and above, the ants show a clear 
preference for the shortest path. To extend our experiments 
with the bees, we aim to construct and test mazes with paths 
of different ratios to set a control (with a ratio of 1) and 
to explore the ratio threshold at which we can observe the 
bees successfully finding the shortest path. This may also be 

investigated in modifying the agent-based model of the col-
lective scenting behavior in bees for swarming presented in 
[10]. The model allows exploration of how behavior param-
eters, such as the pheromone detection threshold and the 
magnitude of the directional signals, change with a more 
complex environment in order for the bees to adapt and suc-
cessfully aggregate.

Finally, in our experimental setup, the bees are not placed 
at the center of the two paths due to the need to quickly 
place them in the nearest corner and enclose the experimen-
tal arena before they escape. To compensate for this initial 
positioning, we explored two controlled conditions: one 
where the bees start in an area closest to the shortest path 
(trials 1–3) and one where the bees start in an area closest 
to the longest path (trials 4–6) (Fig. 4). The combination of 
the two conditions alleviates the need to place the bees in a 
central location. However, as the initial position of the bees 
may influence the choice of traveling paths, in the future we 
will perform experiments where bees are placed at a central 
location to better understand the influence of initial position 
and scenting on the bees’ collective decision-making in the 
context of finding the shortest path to the queen.

5 � Conclusion

In this work, we investigate how the honey bees use a col-
lective flow-mediated communication approach to find the 
shortest path to the queen, the target for swarm formation. 
After some initial exploration stage of the environment, 
the bees can collectively converge on the short path to 
cross and move towards the queen’s location. We observe 
the active chemical signaling behavior of scenting in the 

Fig. 3   Time series data of all six trials. Trials 1–3 consist of a maze 
with the orientation presented in Fig. 2. Trials 4–6 consists of a mir-
rored maze in which the short path is at the top and long path is at 
the bottom. A–F) The cumulative sum of the number of scenting bees 
on the short (green) and long (orange) paths over time, shown as a 
rolling average with a window size of 60 seconds, for all six trials. 
Trial 1 is the example shown in Fig. 2. Besides in trial 6, there are 

more scenting bees on the short path than on the long path. G–L) 
The cumulative sum of the number of all bees (e.g. scenting and 
non-scenting) on the short (green) and long (orange) paths over time, 
shown as a rolling average with a window size of 60 seconds, for all 
six trials. Trial 1 is the example shown in Fig. 2. Besides trial 6, there 
are more bees overall on the short path than on the long path
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bees, especially on the short path as the animals emit and 
propagate the information to swarm members. As a result, 
the short path to the queen is often populated by more 
bees and becomes more “attractive” as the swarm mem-
bers effectively communicate the collective preference for 
the more optimal path to the queen.

Altogether, we present the first findings of the honey 
bees’ capability of finding the shortest path. While indi-
vidual bees are only equipped with local navigational 
information and spatiotemporally limited communica-
tion signals, they interact with one another via the reli-
able scenting strategy that harnesses the power of the 
collective.
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