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Abstract
The human oral structure contains organs with distinctly different physical properties, such as teeth, gums, and tongues. 
When food enters the oral cavity, we can recognize the tactile sensation and shape of the object from multiple perspectives 
through the texture of the teeth and tongue. Therefore, it is possible to regard oral structures as a group of tactile sensors 
based on these functions. In this study, we developed a soft-matter artificial mouth that can accurately detect subtle differ-
ences in texture by creating and combining oral structural organs using polymer materials with different physical properties 
and mounting them as end-effectors for a robot arm. The same piezoelectric film sensor was embedded inside each organ, 
making it possible to acquire tactile sensations from the same object as completely different signal waveforms. We tested 
whether the sensor data obtained from each soft-matter material could be used for excellent object recognition by applying 
various machine learning methods. In an actual experiment, we learned the waveform data obtained from chewing sweets and 
snacks, such as rice crackers, and applied machine learning to classify the data, which led to an accuracy rate of over 90%.

Keywords Soft materials · Soft robotics · Physical reservoir computing · Machine learning · Food texture

1 Introduction

As the words “food, clothing, and shelter” suggest, eating 
is an important process for fulfilling the appetite, one of 
the three major human needs. Research reports related to 
nutrition education, which analyze the actual state of eating 

behavior by surveying participants regarding their daily eat-
ing behavior, have shown that increasing interest, aware-
ness, and knowledge about food, nutrition, and cooking 
throughout life is effective for health [1, 2]. Therefore, in 
recent years, texture which is an important factor in human 
perception of food taste has been extensively researched in 
the food field [3–7], so that we can enjoy our daily meals 
more. There are two main methods for evaluating food tex-
tures: sensory evaluation [8, 9] and physical property evalu-
ation [10, 11]. The sensory table is a statistical analysis of 
texture based on qualitative indicators using five human 
senses. Physical property evaluation involves a numerical 
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interpretation based on quantitative indices obtained from 
compression, tension, and crushing. Both methods play a 
role in the development of food products that appeal to all 
tastes and new textures. This study focuses on a quantitative 
texture evaluation with characteristics in which the evalu-
ation index strongly depends on the softness of the food. 
Among the quantitative texture evaluation studies, an inter-
esting study combines machine learning with time-series 
data obtained from crushing food products in a compression 
testing machine to perform food classification. Yoshida et al. 
have shown that classification is possible with approximately 
80% accuracy using time-series data available from load cell 
sensors when crushing three types of commercial potato 
chips [12]. A combination of existing quantitative analyzers 
and machine learning can be used to propose a new texture 
evaluation method.

Next, a new framework of computational methods using 
tactile sensation is physical reservoir calculation [13], 
which combines physical properties and sensors. Sudo et al. 
embedded a piezoelectric sensor in an owl composed of soft 
materials and applied the obtained data to machine learning 
to demonstrate that it is possible to determine the touched 
area with high accuracy. The physical reservoir computa-
tion derived from the recurrent neural network replaces the 
nonlinear transformation function of the reservoir compu-
tation with a physical system that performs the computa-
tion suitable for fast machine learning of time-series data. 
This calculation is faster and has lower power than software 
implementation [14, 15]. In particular, the ability to pro-
cess time-series data acquired from physical systems in real-
time has raised expectations for industrial applications, and 
various studies have been reported [16–20]. This physical 
system has been employed in a wide range of fields includ-
ing electrical and electronic systems, optical systems, and 
biological and biomedical systems. Among them, the use of 
softness as a computational resource, which deforms when 
a force is applied to a material-mechanical system [21, 22], 
has a wide range of applications because it exhibits multiple 
degrees of freedom and nonlinear behavior that cannot be 
handled by conventional mathematical models of robotics.

This study proposes a new soft machine that can classify 
even minute differences in food products with high accuracy 
by combining physical storage calculations and texture eval-
uation of soft matter, which are soft substances such as poly-
mers. We then aimed to establish it as a food texture evalu-
ation device to improve the reproducibility of cooking and 
mapping in future food production. To achieve this highly 
accurate recognition capability, we focused on the advanced 
texture recognition capability of human oral structures. As 
is well known, food texture is recognized by chewing with 
a combination of organs with different elastic moduli, such 
as the teeth and tongue. If we can mimic these functions, 
we can perform classification with higher accuracy than in 

related studies. Therefore, we propose a tactile recognition 
robot that combines several polymeric materials in the end-
effector of a robotic arm and attaches a tooth model to a 
sensor for tactile recognition inside each material. Using a 
robotic arm instead of a conventional compression tester, 
we can perform a pinching method of compression using 3D 
modeled materials, such as oral structures, and by control-
ling the servo motors of the end-effector, we can make the 
robot bite like a living creature, which is highly promising 
for achieving tactile detection that is more human-like. The 
proposed soft machine classifies hard and soft snacks on the 
market. We examined the shapes and hardnesses of snacks 
that were easy or difficult to classify. We also examined 
whether the robot could imitate the mouth-like perception 
of an object from multiple angles by classifying the objects 
by combining materials or using only one material.

2  Design and create of Gel Biter

2.1  Using material and sensing 
with the characteristics of each material

Figure 1 shows a schematic and the external appearance 
of the Gel Biter. Gel Biter is the name of the soft robot 
proposed in this research, which combines the words “gel,” 
which is a substance form between solid and liquid and 
has viscosity, and “Biter,” which expresses chewing. As 
described in Sect. 1, the Gel Biter consists of a soft-matter 
artificial mouth with a tactile sensor embedded inside a tooth 
model made of polymer materials with different physical 
properties attached to a robot arm.

Piezoelectric film sensors (TE Connectivity Ltd.) were 
attached inside each part of the artificial mouth to extract 
contact information. The piezoelectric effect, in which an 
electric charge is generated when pressure is applied, is 
used to measure the vibrations that spread from the tooth 
surface to the entire mouth when an Gel Biter is bitten by 
an object. We believe that this system is close to the human 
sense of touch [23], which enables us to recognize mechani-
cal interactions with the outside and feel the contact, shape, 
texture, and hardness of objects through the sense of touch. 
As the sensing procedure in this research, the data acquired 
from the piezoelectric sensor are sent to Arduino, one of 
the one-board microcontrollers, and after transforming the 
data range by a normalization process to apply it to machine 
learning, it is sent to a Python script via serial communica-
tion. Finally, the data were subjected to machine learning 
in Python, as described below, to perform classification 
learning (Fig. 2). Because the data values obtained from the 
piezo unit are quite small, an A/D converter was inserted to 
perform analogue conversion.
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First, as a hard polymer material, polylactic acid resin 
(PLA), which is one of the hard resins and widely used as 
a filament for 3D printers, was used to create the upper and 

lower tooth models. Next, as a soft polymer material, sili-
cone, which is a two-component mixture whose hardness 
can be adjusted, is used to imitate the gum parts by placing 
the silicone cured in the mold on the bottom surface of the 
lower tooth model as described above. Finally, as a soft and 
viscous polymer material, Wizard Gel [24], a type of self-
healing hydrogel with “high toughness, high elasticity, and 
drying resistance”, was used to create a tongue model. Pie-
zoelectric sensors are attached inside the above three areas 
to obtain the aforementioned contact information, enabling 
the Gel Biter to simultaneously generate data from three 
completely different signal waveforms when the object is 
chewed. The fact that different waveforms can be obtained 
for different parts of an object is related to the elastic modu-
lus of each material, and previous research has shown that 
the softer the object, the higher the data value obtained [25]. 
Therefore, the materials used in this study were subjected to 
compression testing, and from Fig. 3, Hooke’s law indicates 
that Wizard Gel > Silicone > PLA are softer materials, in 
that order.

2.2  Multiple soft matter reservoir computing

The purpose of this study is to confirm whether materials 
with different elastic moduli can be utilized as physical 
storehouses and whether things can be viewed from multi-
ple angles, such as the human oral structure. Figure 4 shows 
the reservoir section and computing model in Gel Biter. 
The material and shape of the teeth in the reservoir section 
were varied to verify how the combination of different data 
acquired from the sensors affects the accuracy of machine 
learning.

To connect to machine learning, raw data were obtained 
from the upper and lower teeth and tongue in one batch, and 

Fig. 1  Configuration of Gel Biter

Fig. 2  Data acquisition process



677Artificial Life and Robotics (2022) 27:674–683 

1 3

then denoised and linearized using low-pass processing of 
Fourier transform. Peak extraction and feature creation were 
performed in Python scripts. Fig. 5 shows the waveforms 
after a series of processes.

A feature value is a quantified characteristic of an object, 
and in object recognition, it is an important element for rec-
ognizing a specific object, such as a face or person, from an 
image [26]. If one tries to create features from time-series 
data from scratch, a large number of features, such as maxi-
mum value, minimum value, average value, and number 
of peaks, can be calculated, resulting in a huge amount of 
computation. In this study, we use tsfresh [27], which auto-
matically creates features from time-series data. We also 
used three training tools: nonlinear support vector machines 
(SVM) [28], a type of pattern recognition that solves clas-
sification and regression problems; K-Neighbors [29], a 
two-class discriminator; and random forest [30], a type of Fig. 3  Stress–strain curve and Young’s modulus of adopted polymer 

materials (PLA, silicone, hydrogel)

Fig. 4  Framework PRC in Gel 
Biter

Fig. 5  An example of waveform and peak extraction obtained for each material. Maker X is the peak, and the gray background is the peak 
extraction area. Left is an overall view and Right is an enlarged view of the peak extraction area
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ensemble learning that builds powerful models and com-
pares their accuracies. K-partition cross-validation is used 
instead of the usual holdout method to improve generaliza-
tion performance and to verify and confirm the validity of 
the analysis itself. Figure 6 briefly summarizes the flow of 
the machine-learning part of the Gel Biter described above.

3  Subtle texture identification of sweets 
and snacks

In this study, we examined the accuracy with which the 
commercial sweets and snacks shown in Fig. 7 can be clas-
sified using Gel Biter. Experiments I, II(a), II(b), and III 

were conducted four times in sequence so that the shape 
and hardness of the snacks to be classified would become 
more similar as the experiments progressed. In Experiment 
III, the crackers were classified into the same type, but each 
cracker was different. The purpose of this experiment was to 
determine whether tiny differences in the shape and hardness 
of each cracker could be detected. We set up a program that 
allows the robot to chew the sweets and snacks mentioned 
above 20 times at 1-s intervals and collect training and vali-
dation data by having the robot chew each object five sets, 
for a total of 100 chews. The acquired data were passed to a 
trainer to check the classification accuracy, but no parameter 
tuning was performed in this study because we wanted to 
take full advantage of the differences in the acquired wave-
forms caused by the Young’s modulus and elastic modulus, 
which differ from one material to another. Table 1 shows 
the hardness of each sweet and snack, as measured using a 
durometer. 

3.1  Shape and material dependance in Gel Biter

Human teeth chew and grind food in the mouth for swallow-
ing. Therefore, there are teeth with different functions such 
as shovel-like incisors for cutting food, canine teeth for slit-
ting, and molar-like teeth for grinding. In other words, dental 
contact is a combination of surface, line, and point contact. 
We then created upper and lower teeth with surface, line, and 
point contact shapes in addition to the normal tooth shape 
shown in Fig. 8 as basic research and examined what kinds 
of contact shapes affect Gel Biter’s sensing and classifica-
tion results using only the two-sensor data obtained from 
the upper and lower teeth, without including the tongue. In 

Fig. 6  Gel Biter’s machine learning flow

Fig. 7  Sweets and snacks to be 
classified: Class I (a–e), five 
types with distinctly different 
hardness, texture and ingre-
dients; Class II (A) (f–j), five 
types of rice crackers as hard 
snacks; Class II (B) (k–o), five 
types of cream sandwiches as 
soft sweets; Class III (p–t), five 
crackers of the same type
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addition, we examined the material dependency of the com-
bination of PLA and silicone used in the upper and lower 
tooth reservoirs to determine how the classification results 
are affected by the combination of the two materials. As 
mentioned above, wizard gel was used as the tongue material 
in this study, but comparisons with other materials such as 
PLA and silicone as tongue reservoirs were also examined 
in parallel. Classes III in Fig. 7 were used as classifiers, and 
their respective accuracies are summarized below.(Table 2, 
3, 4)   

3.2  Classification accuracy of sweets and snacks 
by Gel Biter

In this section, we examine whether Gel Biter can chew 
and classify sweets, as shown in Fig. 7. As described in 
Sect. 2.2, we calculated the average accuracy in the training 
data when the acquired data were divided into five parts by 

cross-validation and finally visualized the results in a heat 
map. First, the average accuracy per experiment was calcu-
lated as SVM = 100.0%, K-NN = 100.0%, and RF = 100.0% 
for Experiment I, SVM = 93.7%, K-NN = 91.6%, and RF = 
92.6% for Experiment II (a), SVM = 85.6%, K-NN = 80.4%, 
and RF = 80.4% for Experiment II (b), and finally SVM = 
83.3%, K-NN = 74.0%, and RF = 84.4% for Experiment 
III. A heat map is shown in Fig. 9 to illustrate the results 
in detail. A heat map is a visualization of a large amount 
of multidimensional data using colors to briefly show the 
relationships. In this study, the vertical axis represents the 
actual object bitten by the Gel Biter, that is, the correct label, 
whereas the horizontal axis represents the predicted label 
derived by the learning model. The contents of the table 
represent the correctness of the answers: the stronger the 
red color, the higher the accuracy, and the stronger the blue 
color, the lower the accuracy.

Table 1  Hardness of Fig. 7a–t by Type E durometer (- notation if not 
measurable)[10]

Type E durometer [/S]

Class I (a)–(e) 79.5 – 74.0 91.8 61.6
Class II(A)(f)–(j) 79.5 63.2 64.0 65.0 66.0
Class II(B) (k)–(o) 6.5 16.9 – – 10.9
Class III (p)–(t) 79.5 79.5 79.5 79.5 79.5

Fig. 8  List of tooth shapes with 
different shapes

Table 2  Comparison of accuracy with change in shape (Use Stage III 
group snacks)

Normal Surface Line Point

Accuracy (%) 83.1 79.6 78.7 75.0
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3.3  Classification accuracy of sweets and snacks 
dependent on the sensing material of Gel Biter

In the previous section, we validated the classification evalu-
ation by combining all the data waveforms acquired from 
three different sites: the upper teeth (PLA), lower teeth (sili-
cone), and tongue (gel). As described in Sect. 2.1, the data 
values obtained in this case are different for each part of the 
mouth, even if Gel Biter chews the same object and the peak 
values are also different. The purpose of this study was to 
clarify whether it is possible to perceive objects from multi-
ple angles using multiple polymer materials, that is, whether 
it is possible to achieve advanced object recognition by inte-
grating different signal waveforms. Therefore, by selecting 
the sensor to be used in the program, we can compare the 
accuracy of the material combination patterns, such as the 
accuracy when only one sensor is used, and the accuracy 
when two sensors are combined (Table 5). The SVM that 
had the highest level of accuracy in the previous section was 
selected as the trainer used in this section. In addition, no 
parameter tuning was applied to the learners, as described 
in the previous section (Fig. 9).

4  Discussion

First, from the results of Sect. 3.1, we can assume that the 
most accurate results are obtained when normal teeth with 
multiple contacts are used as the effective tooth shape and 
that tooth structures with various shapes are suitable for the 
perception of texture. Next, as a comparison of the upper and 
lower teeth reservoirs, the highest accuracy was obtained 
with the combination of silicone silicone, which provided 
the clearest waveform data, but the accuracy was also high 
when PLA was used for the upper teeth and silicone for the 
lower teeth, suggesting that the combination may influence 
the classification accuracy. In the comparison of tongue res-
ervoirs, the order of accuracy was Wizard Gel > Silicone > 
PLA, suggesting that the softness of materials can be uti-
lized for machine learning.

The results for each stage are presented in Sect. 3.2. Stage 
I, which is the classification of sweets with clearly differ-
ent shapes and hardness, is clearly different from the ones 

humans see and eat; therefore, all the training machines 
achieved 100% accuracy. Next, Stage II (a), which classifies 
crackers of different types, is less accurate than Stage I but 
still achieves more than 90% accuracy. From Table 1, most 
crackers have similar hardness except for (f), but (i) and (j) 
have a distinctive shape compared to the other crackers, and 
we assume that this is the result of being able to detect this 
difference. In stage II(b), the classification of different types 
of chocolate pies is slightly less accurate at approximately 
80%, but it achieves the same level of accuracy as in a pre-
vious study [12]. A detailed look at Fig. 9c shows that the 
chocolate-coated surfaces of (k) and (l) can be determined 
with high accuracy, but the accuracy is lower for the soft and 
spongy surfaces of (m), (n), and (o). Currently, Gel Biter is 
difficult to classify unless the food is soft and the surface of 
the food has no noticeable characteristics. Finally, stage III, 
in which the same type of crackers is classified according 
to only minuscule differences, was found to be classifiable 
in approximately 90% of cases, exceeding previous studies. 
Although we were able to obtain a highly accurate classi-
fication evaluation overall, it is possible that some of the 
features created automatically by tsfresh were used without 
selection and that some of them were not related to improv-
ing accuracy at all or may have reduced accuracy. Sorting 
by importance from the overall feature set and reducing the 
number of unnecessary features leads to further improve-
ments in accuracy. As mentioned above, the results of this 
study show that accuracy tends to be higher in the order of 
Stage I > II(a) > III > II(b), and the softer the object, the 
lower the accuracy. Here, we compare the evaluation results 
obtained using the other methods. Using a creep meter, 
which was used to evaluate food texture, we analyzed the 
breaking strength of each rice cracker and chocolate pie in 
Stages II (a) and (b) to determine the difference between the 
snacks (Fig. 10). As a result, first, the test results obtained 
for each type of cracker in Stage II(a) are different from each 
other, which leads to good classification accuracy with Gel 
Biter. In Stage II (b), the waveforms of (m) and (n) were very 
similar among the chocolate pies, although they were clearly 
different for each type, as was the case for rice crackers. The 
heat map in Fig. 9c shows that the decrease in accuracy is 
related to this result, and the reason for the lower accuracy 
in Stage II(b) is now known. Finally, the waveforms of the 
same type of crackers in Stage III show that the shape and 
hardness of each crack vary aesthetically, and the Gel Biter 
was able to detect this with high precision. The data derived 

Table 3  Comparison of upper and lower tooth reservoir combinations 
(Use Stage III group snacks)

Upper Lower Accuracy (%)

PLA PLA 78.2
PLA Silicone 80.0
Silicone PLA 61.5
Silicone Silicone 82.6

Table 4  Comparison of accuracy with change in shape (Use Stage III 
group snacks)

PLA Silicone Wizard Gel

Accuracy (%) 88.4 93.3 96.5
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Fig. 9  Classification results of sweets and snacks in each class in Fig. 7 for the three clustering methods
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from Gel Biter are largely unknown at this stage. Therefore, 
we would like to prove that the data obtained from Gel Biter 
are accurate by utilizing existing measurement devices for 
food products.

In addition, Table 5 shows that the combination of the 
materials had the lowest accuracy when the gel was used 
alone and the highest accuracy when the three parts were 
integrated. These results indicate that it is possible to iden-
tify a wide range of foods by capturing objects from multi-
ple perspectives using Gel Biter. However, looking at other 
results, there are parts where high accuracy is achieved even 
when only one part is used alone or when two parts are com-
bined; conversely, there are parts where the accuracy does 
not change significantly when the two parts are combined, so 
it can be said that simply increasing the number of sensors 
does not necessarily lead to a comparative increase in accu-
racy. In addition, as shown in Fig. 5, the waveform obtained 
from the gel tongue is smaller than that of the other parts, 
and it is thought that the problem of discharged waveforms 
and the fact that vibrations spreading from the teeth are not 
transmitted directly when the object is bitten compared to 
other parts are directly related to the decrease in accuracy. 
As countermeasures, it may be necessary to attach masking 
tape or waterproof tape to the sensor to prevent discharge, 

add a tongue-pressing or licking action when biting, and 
consider other materials suitable for the bottom.

5  Conclusion

In this study, a soft matter artificial mouth that mimics the 
structure of the human oral cavity was created by incorporat-
ing multiple polymer materials, and the vibrations generated 
during actual biting were collectively acquired as waveform 
data using a piezoelectric film sensor. We placed the data 
into three types of training devices and conducted four 
experiments to verify whether classification was possible 
and whether the objects could be captured from multiple per-
spectives. As a result, the maximum accuracy of all stages 
exceeded 80% in the previous study, and the classification 
was also able to take advantage of the characteristics of the 
materials. However, issues such as a decrease in the accu-
racy of stage II(b) and the location and operation of the gel 
tongue may be raised. In the future, as part of our pursuit of 
the human oral structure, we would like to investigate the 
combination of other materials that were not used in this 
study, improve the appearance of the Gel Biter and the way 
it is chewed, and make it more human-like in appearance, 
which would lead to even more realistic data acquisition 
and improved accuracy. In addition, we attempt to establish 
a new robot that has never existed before by making the 
most of the specifications of the robot arm. Based on the 
relationship between polymeric materials and accuracy in 
detecting even the tiniest food, we discuss their performance 
as an evaluation device to improve the reproducibility of 
food preparation in the future.
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Table 5  Comparison of 
classification accuracy 
between sweets and snacks 
by combination of sensing 
materials (using SVC)

Sensing materials Accuracy for class (%)

PLA Silicone Gel I II(A) II(B) III

○ – – 99.3 84.2 81.4 83.3
– ○ – 100 85.3 67.0 76.0
– – ○ 98.6 78.9 54.6 53.1
○ ○ - 100.0 91.6 88.7 85.4
○ – ○ 99.3 90.5 85.6 83.3
– ○ ○ 100.0 92.6 69.1 75.0
○ ○ ○ 100.0 93.7 85.6 83.3

Fig. 10  Waveforms for each sweets and snacks obtained from rupture 
strength analysis using creep meter
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