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Abstract
We propose a class of generalized multiplicative stochastic processes obtained by introducing an endo-perspective into one-
dimensional maps with additive noise. We define an internal state for the noisy dynamics of a given one-dimensional map 
and study its statistical behavior. We found intermittency characterized by two power-laws in the dynamics of the internal 
state for the logistic map and the BZ map with noise which exhibit different noise-induced phenomena, namely, noise-induced 
chaos and noise-induced order, respectively. We show that the power-laws can be explained in a unified way from the theory 
of generalized multiplicative stochastic processes.
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1  Introduction

Power-law distributions are observed ubiquitously in nature 
and society [2, 19]. It is known that there are many different 
generating mechanisms for them [17]. Random multiplica-
tive processes [18] are one of such mechanisms with multi-
ple power-law distributions in their dynamical behavior. In 
this paper, we show that they arise from one-dimensional 
maps with additive noise under certain conditions and inves-
tigate their statistical behavior both by numerical simula-
tion and in terms of the theory of generalized multiplicative 
stochastic processes.

Given a one-dimensional map with additive noise and an 
initial value, we have a sequence of linear maps consisting 
of the tangent line at each point in the noisy trajectory (xn) 
of the map from the initial value. Then, we can generate 
a sequence (yn) by applying the linear maps successively 
starting from the same initial value. The motivation for con-
sidering (yn) is to see what looks like the behavior of one-
dimensional maps with noise from the endo-perspective [4, 
14] in the sense that it can only use the local information 
of the map and use it blindly without knowing the external 
noise. Since the application of the linear maps ignores the 
additive noise at each time step in (xn) , (yn) is different from 
(xn) in general unless the noise is absent. In addition, if the 
Lyapunov exponent of (xn) is positive, then (yn) can diverge. 
On the other hand, if the Lyapunov exponent of (xn) is nega-
tive, then yn can return to a value close to xn even when it 
takes a very large value tentatively.

Here, we study the statistical behavior of (yn) generated 
by the BZ map [13] and the logistic map with additive noise 
[3, 15]. We choose the parameters of these maps so that 
the Lyapunov exponents of the noisy trajectories are nega-
tive but close to zero. When (xn) for the BZ map exhibits 
noise-induced order (NIO), we observe intermittent bursts 
in (yn) . For the logistic map, if the parameter of the map and 
the strength of the additive noise are chosen in the range 
close to the onset of noise-induced chaos (NIC), then we 
also observe intermittent bursts in (yn) . We show that the sta-
tistics of the intermittent bursts in these different situations 
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can be understood on the same ground. In particular, the 
distribution of the burst amplitude and the distribution of 
the duration of the bursts follow power-laws and they can 
be analyzed in terms of the theory of generalized multiplica-
tive stochastic processes. We apply the theoretical analysis 
to the numerically obtained sequence (yn) and confirm the 
consistency of the theory in terms of the exponents of the 
power-laws.

2 � Model

Let f be a differentiable map from a real interval I to itself. 
Without loss of generality, we take I = [0, 1] . We consider 
the following discrete-time dynamical system with additive 
noise

where n = 0, 1, 2,… , x0 ∈ I and (un)n≥0 are an realization of 
i.i.d. random variables. � ≥ 0 is the strength of the additive 
noise. In the following examples, un are sampled from the 
standard normal distribution with mean 0 and variance 1.

Let gz(x) = f (z) + f �(z)(x − z) , where f �(z) denotes 
the derivative of f at z ∈ I  . The graph of f can be 
regarded as the envelope of its tangent lines (Fig. 1). In 
particular, we have f (xn) = gxn(xn) . Thus, when � = 0 , 
xn+1 = gxn◦gxn−1◦… ◦gx0 (x0) . However, when 𝜖 > 0 , Eq. (1) 
leads to

Put 

(1)xn+1 = f
(
xn
)
+ �un,

(2)

xn+1 =gxn◦gxn−1◦… ◦gx0

(
x0
)

+ �

n∑

k=0

(
k−1∏

l=0

f �
(
xn−l

)
)
un−k.

and

Equation (2) is rewritten as

Equivalently, we can write down a pair of recurrence 
formulae

where y0 = x0 and �0 = u0 . Note that we can eliminate xn in 
the right-hand side of Eq. (6) and xn+1 in the right-hand side 
of Eq. (7) using Eq. (5). Namely, given a realization of the 
external noise (un)n≥0 , the time evolution of (yn,�n) is closed. 
However, the values of yn or �n can sometimes become very 
large as we will see in examples in Sect. 3. Hence, cancel-
lation of significant digits can occur when numerically cal-
culating the right-hand side of Eq. (5). To avoid this matter, 
we use Eqs. (1) and (6) in the numerical simulation below. It 
is performed in the double precision floating point number. 
Note also that the noise un occasionally bring xn+1 outside 
of I even when � is very small. To orient xn toward I at the 
successive time steps, we extend f to a map from (−∞,∞) 
to (−∞,∞) by defining f (x) = −x for x < 0 and f (x) = x − 1 
for x > 1 . However, as long as � is sufficiently small so that 
xn rarely goes out of I, this modification of the map has 
negligible influence on the statistical behavior of yn studied 
in Sect. 3.

Equation  (5) can be interpreted as follows. yn is an 
internal state originating from the endo-perspective in 
which one only uses the local information of the map 
f, namely, the tangent line at xn , to update yn , and at the 
same time uses it blindly, namely, one cannot access 
the value of the external noise un when calculating yn+1 . 
Thus, Eq.  (6) represents a kind of “leap in the dark”. 
This is the meaning of the endo-perspective which is 
consistent with that of Matsuno [14] and Gunji [4]. On 
the other hand, �n+1 records the accumulated influence 
of the external noise, which compensates the internal 
fluctuation represented by yn and gives rise to the state 
of the system xn.

Let us calculate initial a few values of yn to see how 
yn deviates from xn . By definition, we have y0 = x0 . y1 is 
obtained as

(3)yn+1 = gxn◦gxn−1◦… ◦gx0

(
x0
)
,

(4)�n =

n∑

k=0

(
k−1∏

l=0

f �
(
xn−l

)
)
un−k.

(5)xn+1 = yn+1 + ��n.

(6)yn+1 = gxn

(
yn
)
,

(7)�n+1 = un+1 + f �
(
xn+1

)
�n,
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Fig. 1   Tangent lines of the logistic map f (x) = ax(1 − x) with 
a = 3.832 . The graph of f is the envelope of its tangent lines
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For y2 , we have

where we used Eqs. (8) and (1) in the last equality.

3 � Results

In this section, we study the statistical behavior of yn . Two 
nonlinear one-dimensional maps are considered. The first 
one is the logistic map, and the second is the BZ map. For 
each map, our main concern is the parameter regime where 
a noise-induced phenomenon is observed.

For the logistic map f (x) = ax(1 − x) , we choose 
a = 3.832 . This value of a lies in the period three window. 
Hence, without noise, xn converges to a periodic solution 
with period three and has a negative Lyapunov exponent � . 
However, when noise is added and its strength is sufficiently 
large, the behavior of xn qualitatively changes, namely 
� becomes positive. This phenomenon is called Noise-
Induced-Chaos (NIC) [3, 15]. It was suggested that the noise 

(8)

y1 = gx0

(
y0
)

= f
(
x0
)
+ f �

(
x0
)(
y0 − x0

)

= f
(
x0
)
= x1 − �u0.

(9)

y2 = gx1

(
y1
)

= f
(
x1
)
+ f �

(
x1
)(
y1 − x1

)

= x2 − �u1 − �f �
(
x1
)
u0,

makes chaotic aperiodic solutions of Lebesgue measure zero 
visible. The Lyapunov exponent � for a given trajectory (xn) 
is calculated according to the formula

Figure 2 shows the initial 1000 time steps of the absolute 
values of xn and yn from a random initial condition for two 
different noise strength: (a) � = 0.002 , and (b) � = 0.01 . For 
� = 0.002 , � ≈ −0.047 , and xn is contracting on average. On 
the other hand, for � = 0.01 , � ≈ 0.401 , and xn is expanding 
on average. In the latter case, |yn| diverges as n → ∞ as shown 
in Fig. 2b corresponding to the positive Lyapunov exponent 
for (xn) . In the former case, we observe an intermittent 
behavior for |yn| (Fig. 2a). |yn| is also contracting on average 
corresponding to the negative Lyapunov exponent for (xn) . 
However, if |f �(xn)| larger than 1 accumulates locally in time, 
then a large burst of |yn| can occur. Here, we define a burst 
as a maximal subsequence of (yn) with consecutive indices 
such that yn ∉ I for all yn in the subsequence.

Two statistical properties of the bursts in |yn| are shown in 
Fig. 3. The first one is the distribution of the maximum value 
|y|max of |yn| in each burst. In Fig. 3a, we plot the probability 
distribution P(z) of z = ln

(
|y|max

)
 . It seems that P(z) can be 

well-approximated by an exponential form exp (−�z) with 
� = −0.019 for sufficiently large values of z. The value of � 
is calculated by applying the maximum likelihood estimator 
of the exponential distribution to the numerical data which 

(10)� = lim
N→∞

1

N

N−1∑

n=0

ln
|||f

�
(
xn
)|||.

Fig. 2   Time series of |xn| 
and |yn| for the logistic map 
f (x) = ax(1 − x) with additive 
noise, where a = 3.832 . a Noise 
strength � = 0.002 . b Noise 
strength � = 0.01 . See the main 
text for details
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are larger than a give threshold (which is the left-most value 
of z for the line in Fig. 3a corresponding to exp (−�z) ). The 
probability distribution of |y|max is obtained as

Thus, the distribution of |y|max follows a power-law with 
exponent −1 − �.

The second one is the probability distribution of the burst 
duration (Fig. 3b). There seems to be a range of the burst 
duration such that the distribution follows a power-law with 
exponent −3∕2.

Thus, we found two statistical properties following a 
power-law in the intermittent burst behavior of |yn| for the 
logistic map with additive noise of strength slightly below 
the onset of NIC.

The next example is the BZ map given by

for 0 ≤ x < 0.125,

for 0.125 ≤ x < 0.3 , and

for 0.3 ≤ x ≤ 1 , where a = 0.50607357 , b = 0.023228 , and 
c = 0.121205692 . For the chosen values of the parameters, 
the Lyapunov exponent � for (xn) is positive (data not 
shown). However, if an appropriate level of noise is added, 
� becomes negative. This noise-induced phenomenon is 
known as Noise-Induced Order (NIO) [13]. It was suggested 
that the uniform coarse graining of the phase space induced 
by noise destroys the nonuniform Markov partition of 
the deterministic chaotic dynamics of the BZ map and 
contributes to contraction of different solutions. Here, we 
take � = 0.001 and obtain � ≈ −0.049.

Figure 4 shows the initial 10000 time steps of the absolute 
values of xn and yn from a random initial condition for 
� = 0.001 . As in the case of the logistic map with a negative 
� seen above, |yn| exhibits an intermittent burst behavior.

The distribution of z = ln
(
|y|max

)
 for the BZ map is 

shown in Fig. 5a. This indicates that P(|y|max) ∝
1

|y|1+�max

 with 
� ≈ −0.12 for sufficiently large values of |y|max . In Fig. 5b, 
the probability distribution of the burst duration is shown. 
As in the case of the logistic map above (Fig.  3b), the 
distribution seems to follow a power-law with exponent 
−3∕2 for a moderate range of the burst duration.

(11)P
(
|y|max

)
∝ P(z)

dz

d|y|max

=
1

|y|1+�max

.

f (x) =
(
−(0.125 − x)

1

3 + a
)
exp(−x) + b,

f (x) =
(
(x − 0.125)

1

3 + a
)
exp(−x) + b,

f (x) = c
(
10x exp

(
−
10

3
x
))19

+ b,

We have observed that the intermittent burst behaviors of 
|yn| for the logistic map and the BZ map have common fea-
tures. In both cases, the distribution of |y|max can be approxi-
mated by a power-law and the distribution of the burst duration 
has a range within which it is approximated by the power-law 
with exponent −3∕2 . This suggests that there is a common 
mechanism yielding the observed behaviors in the different 
maps. In the following, we show that the mechanism behind 
both maps is the generalized multiplicative stochastic pro-
cesses [18].

A generalized multiplicative stochastic process can be given 
by

where an > 0 and bn are realizations of certain sequences of 
random variables. Here, we assume that they are realizations 
of i.i.d. processes. We also assume that the function g 
satisfies the following two conditions:

and

Equation  (13) implies that the behavior of lnw can be 
approximated by a random walk with average drift velocity 
⟨ln a⟩ when w is large. On the other hand, Equation (14) 
means that w is repelled from zero. Thus, the dynamics of 
lnwn can be understood in terms of a constrained biased 
random walk with a repulsive force from −∞ . To proceed 
further, we need the following three conditions:

(12)wn+1 = eg(wn,an,bn)anwn,

(13)g(w, a, b) → 0 as w → ∞,

(14)g(w, a, b) → ∞ as w → 0.

(15)�g∕�w → 0 as w → ∞,
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Fig. 4   Time series of |xn| and |yn| for the BZ map with additive noise 
of strength � = 0.001
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and there exists 𝜇 > 0 such that

Equation  (15) is a regularity condition to derive the 
Wiener–Hopf integral equation leading to the power-law 
distribution of w. Equation  (16) states that the average 
drift velocity of lnwn is negative, but Eq. (17) implies that 
the drift velocity can becomes positive with a positive 
probability. Thus, one can expect that (wn) exhibits an 
intermittent burst behavior. A burst can be defined as a 
maximal time interval such that wn keeps exceeding a give 
threshold. When these three additional conditions also hold, 
it is shown that the probability distribution of w follows a 
power-law for sufficiently large w [18]

It is known that Eq. (18) also holds when w is replaced by 
the maximum value of w in each burst.

A general theoretical calculation of the first return time of 
general biased random walks [1] suggests that the probability 
distribution of the burst duration t for sufficiently large t can 
be given by

where tc is the characteristic duration for which the power-
law t−

3

2 breaks down. Here, we do not pursue how we can 
obtain the value of tc.

Now, let us explain the connection between the statistical 
behavior of |yn| and the theory of generalized multiplicative 
processes just described. By Eq. (5) and |x| ≤ 1 , |y| ∝ |�| for 
large |y|. Hence, the statistical properties of large |y| can be 
deduced from that of |�| . By taking the absolute value of both 
sides of Eq. (7) and defining

(16)⟨ln a⟩ < 0,

(17)⟨a�⟩ = 1.

(18)P(w) ∝
1

w1+�
.

(19)Q(t) ∝ t
−

3

2 e
−

t

tc ,

(20)g(w, a, b) = ln
||||
1 +

b

aw

||||
,

we obtain

We can regard that |�| follows a generalized multiplicative 
stochastic process Eq. (12) with a = |f �(x)| , b = u except the 
signs of f �(x) and � . Indeed, the signs of a and w in the 
right-hand side of Eq. (20) have negligible influence on the 
value of g for |�| → 0 and |�| → ∞ . In the following, we 
proceed as if xn and xn+1 are independent. This seems to be 
valid approximately for the numerical results in this section 
since the correlation in (xn) expected to damp rapidly in the 
vicinity of NIC or NIO due to inherent chaotic dynamics 
within them. From Eq.  (20), one can see that Eqs.  (13) 
and (14) are satisfied for almost all values of x and u in 
our two examples in this section. Further, checking Eq. (15) 
is straightforward. Equation (16) is equivalent to having a 
negative Lyapunov exponent since � = ⟨ln a⟩ . For the values 
of � in Figs. 3a and 5a, we approximately have Eq. (17), 
respectively. Indeed, we have ⟨�f �(x)��⟩ ≈ 1.000 for the 
former and ⟨�f �(x)��⟩ ≈ 1.045 for the latter.

In summary, both the intermittent burst behavior for the 
logistic map and the BZ map shown in this section can be 
understood from the theory of generalized multiplicative 
stochastic processes.

4 � Discussion

Recently, the notion of endo-perspective was implemented 
as a probabilistic scheme for a model of consciousness 
[7] or represented by an algebraic structure to capture the 
trilemma associated with free will [6]. In this paper, we 
revisit it in the context of complex dynamical behavior of 
one-dimensional maps [8]. Given a parameterized family of 
one-dimensional maps {fa ∶ I → I}a∈A where A is the set of 
parameter values, Haruna and Gunji [8] expressed the endo-
perspective by a contraction mapping T which gives rise to a 
time evolutionary rule of the parameter value from a single 
datum (xn, fa(xn)) at time step n, extending the idea of the 

(21)||�n+1
|| = eg(�n,f

�(xn+1),un+1)||f �(xn+1)|||�n|.

Fig. 5   Two statistical proper-
ties of the bursts in |yn| for 
the BZ map with additive 
noise of strength � = 0.001 . a 
The probability distribution 
P(z) of z = ln

(
|y|max

)
 . b The 

probability distribution of the 
burst duration. Both numerical 
distributions are obtained from 
a single trial of length 108

(a) (b)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0 20 40 60 80 100

P(
z)

z

Numerical
exp(-0.12z)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

1 10 100 1000 10000

Q
(t)

t

Numerical
t-3/2



20	 Artificial Life and Robotics (2023) 28:15–20

1 3

formal model of internal measurement proposed by Gunji 
et al. [5]. In this model, the change of the parameter value is 
driven by the fractal structure of the fixed point of T. Thus, it 
can be irregular but deterministic in principle. On the other 
hand, noise plays an essential role in the implementation of 
the endo-perspective proposed in this paper.

Wang et al. [20] showed that when there exist a periodic 
attractor and a chaotic saddle in the phase space of a given 
deterministic dynamical system, adding an appropriate level 
of noise can lead to an intermittent behavior due to switch-
ing between the periodic attractor and the chaotic saddle 
through noise. It is reported that the duration of the lami-
nar phase follows an exponential distribution. This is called 
noise-induced on-off intermittency. Such mechanism could 
be inherent in the two maps studied in this paper. However, 
we found an intermittent behavior for the internal state yn not 
for xn such that both the distribution of the burst amplitude 
and the distribution of the burst duration follow power-laws. 
The explanation in terms of the theory of generalized mul-
tiplicative stochastic processes given at the end of Sect. 3 
suggests that the intermittency of yn is not dependent on the 
fine geometric structure of the phase space trajectories of xn.

The framework proposed in this paper could be used in 
reservoir computing [10, 12, 16], particularly for investigat-
ing the memory capacity of nonlinear dynamical systems 
[11]. To calculate the memory capacity of a given dynamical 
system, one adds an i.i.d. input to the system and estimates 
the correlations between the past inputs and the present state 
of the system. Haruna and Nakajima [9] showed that the 
memory capacity of random recurrent neural networks is 
optimized slightly below the edge of chaos, where the inter-
mittent burst behavior would be expected to be observed 
when our framework is suitably extended to higher-dimen-
sional systems and applied. In addition to the maximum Lya-
punov exponent, the exponent � could be useful for character-
izing the behavior of the system around optimality.

In conclusion, the embedding of the endo-perspective into 
the one-dimensional maps with additive noise proposed in 
this paper reveals a universal mechanism based on gener-
alized multiplicative stochastic processes for observing 
power-laws under the condition that the Lyapunov exponent 
of noisy trajectories is negative but deterministic chaotic 
dynamics is latent.
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