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Abstract
The authors are studying hardware neural networks (HNN) to control the locomotion of the microrobot. The neural networks 
chip is the integrated circuit chip of the HNN. We proposed the electrostatic motor that is the new actuator of the microrobot 
in our previous research. The electrostatic motor used the waveform generator to generate the driving waveform. In this paper, 
the authors will propose the driving circuit using neural networks chip. The cell body model is the basic component of the 
neural networks chip that outputs 3 MHz frequency of electrical oscillated pulse waveform. Therefore, large capacitors need 
to connect outside of the neural networks chip to generate the low-frequency driving waveform. The proposal neural networks 
chip generates a long delay without using large capacitors. In addition, the neural networks chip generated a two-phase anti-
phase synchronized waveform by incorporating a mechanism for adjusting synaptic weight. As a result, the proposal neural 
networks chip can generate the electrostatic motor’s driving waveform with variable frequency. The frequency of the driving 
waveform could vary from 40 to 126 Hz.
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1  Introduction

Insects have an excellent function. Although insects are 
small bodies, they perform external recognition through 
vision and touch. In addition, insects respond to the exter-
nal environment with excellent control. Insects have a brain, 
muscles, sensory organs, and energy sources in small bodies. 

If the autonomous robots need to be small as insects, each 
component has to miniaturize. The microrobots are expected 
to search for a small place where people cannot enter. The 
centimeter-sized robot "HAMR" developed by Harvard Uni-
versity is equipped with a control circuit and a power supply 
to achieve independent walking [1]. In addition, the millim-
eter-sized robot developed by the University of Maryland 
has successfully walked using an external magnetic field 
[2]. However, miniaturization of a power supply, sensors, a 
control circuit, and actuators are a difficult subject [3].

This work was presented in part at the 25th International 
Symposium on Artificial Life and Robotics (Beppu, Oita, January 
22–24, 2020).
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Programming control by microcontrollers is the dominant 
system for robot control. On the other hand, insects have 
excellent sensory information processing and body control, 
enabling them to adapt to various environments despite their 
small size [4]. Therefore, research on applying the control 
method of biological neural networks to robots is conducted 
[5]. Information processing methods that mimic living 
organisms have the potential to create simple and compact 
systems.

The authors are studying hardware neural networks 
(HNN) [6–10]. The neural networks chip and the body parts 
of the microrobot were both made by a silicon wafer. The 
neural networks chip can integrate directly into the body 
parts of the microrobot. The development of neural net-
works chip has an advantage because microcontrollers need 
to mount on a circuit board.

Previously, our constructed microrobot system succeeded 
to perform walking using an external power supply [7]. The 
neural networks chip generates the gait pattern of the micro-
robot. The neural networks chip is the integrated circuit chip 
of the HNN. A shape memory alloy (SMA) actuator is used 
for driving the legs of the microrobot. SMA actuator has a 
large generating force and is simple and easy to miniatur-
ize. However, the power consumption was high. Therefore, 
we developed an electrostatic motor as a new actuator [11]. 
Replacing the SMA actuator with the electrostatic motor can 
achieve a low power consumption of 60 V drive. The micro-
robot can also drive by solar cells. A variable frequency 
square waveform is required to drive the electrostatic motor. 
A waveform generator has been used to generate the driving 
waveform of the electrostatic motor. Therefore, we proposed 
HNN to generate the driving waveform of the electrostatic 
motor to miniaturize the microrobot system [12]. In the sim-
ulation result, the HNN generated the driving waveform of 
the electrostatic motor. In addition, we fabricated the neural 
networks chip. The neural networks chip successfully gener-
ated pulses with a variable frequency (around 50–100 Hz). 
However, the neural networks chip could not generate a two-
phase waveform with anti-phase synchronization [13].

In this paper, the authors will propose the neural networks 
chip that introduced a variable inhibitory-synaptic model. 
The two-phase waveforms can synchronize as anti-phase by 
adjusting the synaptic weight. In addition, we will discuss 
the measuring result of the neural networks chip.

2 � Microrobot system

2.1 � Microrobot

Figure 1 shows our previously proposed microrobot system 
[7]. The external dimensions are 4.6 mm × 9.0 mm × 6.4 mm. 

Each part of the robot was manufactured using micro-elec-
tro-mechanical systems technology. The SMA actuator 
drives the microrobot. The neural networks chip mounted on 
the robot can generate a gait pattern of the microrobot. The 
neural networks chip realizes miniaturization and weight 
reduction of the microrobot.

2.2 � Electrostatic motor

Figure  2 shows our previously proposed electrostatic 
motor [8]. The size of the electrostatic motor was 
2.2 mm × 2.5 mm. The electrostatic motor consists of two 
pairs of electrostatic actuators, a central shuttle, arms, 
sub-springs, a main-spring, and three-electrode pads, VD1, 
VD2, GND. The arms transmit the force of the electrostatic 
actuators. The electrostatic motor produces linear motion 
of the shuttle by energizing the electrodes. Sub-springs 
and main-spring return the shuttle to the primary position. 
The electrostatic motor outputs more than 1.3 mN that is 
suitable to actuate the microrobot’s legs.

Fig. 1   Microrobot system [7]

Fig. 2   Electrostatic motor [11]
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Figure 3 shows a circuit diagram of the driving cir-
cuit of the electrostatic motor. The circuit parameters are 
R1 = R2 = 2.2 MΩ, VCC = 60 V.

Figure 4 shows the driving waveform of the electro-
static motor (VD1, VD2). The driving waveform has a pulse 
width of 7.5 ms, a pulse period of 10 ms, and an amplitude 
of 60 V. The driving waveform is generated by switching 
the transistor using a waveform generator. In Fig. 4, VWG1 
and VWG2 are waveforms generated by the waveform gen-
erator. The authors will replace the waveform generator 
with the neural networks chip in this paper.

2.3 � Previous neural networks chip

Previously, we have shown that the neural networks chip can 
generate the drive waveform of the electrostatic motor shown 
in Fig. 4. using HSPICE simulations [12]. However, the fab-
ricated neural networks chip’s measured results could not 
perform the two-phase anti-phase synchronized waveform. 
The reason is the synaptic model that synchronizes the two 
anti-phase outputs did not work correctly due to parasitic 
capacitance [13]. Therefore, in this paper, we fabricated a 
neural networks chip with an additional mechanism to change 
the synaptic model’s weight. The following sections provide 
details.

3 � Neural networks chip

Figure 5 shows the schematic diagram of the constructed 
neural networks chip. The neural networks chip consists 
of four elements: the cell body model, excitatory-synaptic 
model, inhibitory-synaptic model, and variable inhibitory-
synaptic model. Each component of the neural networks 
chip is described in Sect. 3.1.

Figure 6 shows the circuit diagram of the constructed 
neural networks chip. The circuit parameter is as follows. 
MOSFET: Max = W/L = 1.2 μm/8.5 μm, Mbx = 1.2 μm/10 μm, 
Mcx, Mdx = 10 μm/1.2 μm, Mex, Mfx, Mgx, Mhx, Mix, Mjx, 
Mlz, MV11, MV21, MV31, MV41, MV51, MV12, MV22, MV32, 
MV42, MV52 = 10  μm/10  μm, Mky = 2  μm/10  μm, MV61, 
MV62 = 10 μm/20 μm, capacitor: CGx = 1 pF, CMx = 0.1 pF, 
CSx = 8 pF, Power-supply voltage: VA = 3.43 V, VDD = 3.36 V, 
VAS = 0.80 V, Vint = 1.90 V, VW = 1.95 V (x = 1, 11, 12, 2, 21, 
and 22, y = 1, 11, 2, and 21, z = 11, 12, 21, and 22).

3.1 � Hardware neuron model

3.1.1 � Cell body model

In Fig. 6, "Self-OSC 1, Self-OSC 2, S11, S12, S21, and S22" 
shows the cell body model. The circuit consists of capaci-
tors: CGx, CMx, MOSFET: Max, Mbx, Mcx, Mdx, voltage 
source: VA, VAS, VDD. The cell body model is an oscillation 
circuit that outputs pulses. The cell body model can switch 
between "self-excited oscillating mode" and "separately-
excited oscillation mode" by varying the voltage source 
VA. A self-oscillating cell body model oscillates at 3 MHz. 
The cell body model switches to separately-excited oscilla-
tion mode by lowering VA to 0.5–1.5 V. The power supply 
voltage VA of the separately-excited oscillation cell body 
model indicated as VAS. The separately excited oscillation 
cell body model oscillates pulses according to the oscilla-
tion of other cell body models.

Fig. 3   Circuit diagram of driving circuit [11]

Fig. 4   Driving waveform of electrostatic motor

Fig. 5   Schematic diagram of the neural networks chip
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3.1.2 � Synaptic model

The synaptic model mimics the characteristics of the biolog-
ical synapse. Synapse is a connection part between the cell 
body. The synaptic model consists of MOSFET: Mex, Mfx, 
Mgx, Mhx, Mix, Mjx, Mky, Mlz, capacitor: CSx, voltage source: 
VDD, Vint. In Fig. 6, "iE" is transmitted as an output signal by 
an excitatory-synaptic model to the post-cell body model. By 
connecting the excitatory-synaptic model, the pre-cell body 
model excites the post-cell body model. Therefore, both cell 
body models will oscillate with in-phase synchronization. 
On the other hand, "iI" is transmitted as an output signal by 
the inhibitory-synaptic model to the post-cell body model. 
The inhibitory-synaptic model inhibits the oscillation of 
the post-cell body model. Therefore, both cell body mod-
els will oscillate with anti-phase synchronization. In Fig. 6, 
green dotted line shows the circuit diagram of the variable 
inhibitory-synaptic model. The variable inhibitory-synaptic 
model consists of MOSFET: MV1 (MV11, MV12), MV2 (MV21, 
MV22), MV3 (MV31, MV32), MV4 (MV41, MV42), MV5 (MV51, 
MV52), MV6 (MV61, MV62), capacitor: CVS (CVS1, CVS2), volt-
age source: VDD, VW. The variable inhibitory-synaptic model 
has the same function as the synaptic model concerning the 
function to inhibit. The variable inhibitory-synaptic model 
can vary the synaptic weight by varying the voltage VW.

3.2 � Mechanism of the hardware neural networks

If the self-oscillating cell body model (Self-OSC 1) is not 
connected with the other cell body model, the Self-OSC 
1 oscillates at 3.0 MHz. The separately-excited oscilla-
tion cell body model S11 and S12 are the delay circuit. The 
delay mechanism is as follows.

1.	 Self-OSC 1 oscillates a pulse.
2.	 The pulse of Self-OSC 1 excites the S11.
3.	 S11 oscillates a pulse.
4.	 The pulse of S11 inhibits the Self-OSC 1. It also excites 

the S12.
5.	 S12 oscillates a pulse.
6.	 The pulse of S12 inhibits the Self-OSC 1.

As a result, Self-OSC 1 could not oscillate a pulse dur-
ing the inhabitation from S11 and S12.

Figure 7 shows an example of a generated waveform of 
neural networks chip. Figure 7 shows that the mechanism 
worked, the pulse period increased and the pulse width 
increased. In addition, S11 and S21 inhibit Self-OSC 1 and 
Self-OSC 2, respectively. Thus, the output of HNN VNN1 
and VNN2 will be an anti-phase waveform.

Fig. 6   Circuit diagram of the neural networks chip
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3.3 � Layout

Figure 8 shows the photograph of the fabricated neural net-
works. A red dotted line indicates the constructed HNN, 
where the other part is the test element. An IC chip’s size is 
2.5 × 2.5 mm. 14 electrode pads used as VA, VAS, VDD, Vint, 
VW, VNN1 (output 1), VNN2 (output 2), and GND for the cre-
ated network part.

4 � Measurement result

Figure 9 shows the example of the generated waveform 
of neural networks chip. The voltage of the circuit is 
as follows. VA = 3.43  V, VAS = 0.80  V, VDD = 3.36  V, 
V int = 1.90  V, VW = 1.95  V. Both of the waveform 

frequencies are 65 Hz. As shown in Fig. 9., the neural net-
works chip output a two-phase waveform with anti-phase 
synchronization.

Figure 10 shows an output-frequency characteristic 
of neural networks chip by varying Vint. The plots show 
the example measurement points. The frequency can be 
varied linearly from 40 to 126 Hz. In Fig. 10, the volt-
age of the circuit is as follows. VA = 3.43 V, VAS = 0.80 V, 
VDD = 3.36 V, Vint = 1.90 V. Vint is a voltage that deter-
mines the degree of delay in the synaptic model with a 
pulse delay function. Each plot in Fig. 10 is data when 
antiphase-synchronized waveforms are generated by 
adjusting the voltage VW of the variable inhibitory-syn-
aptic model.

Table 1 shows the characteristics of Vint and VW in Fig. 10. 
A varying only voltage of Vint does not output an anti-phase 
synchronized waveform. By adjusting VW as shown in 
Table 1, the two pulse outputs synchronize with anti-phase. 
The accuracy required for the voltage VW is ± 10 mV.

As a result of the neural networks chip measurement, 
the fabricated neural networks chip generated a two-phase 
waveform with anti-phase synchronization. The output fre-
quency can be varied from 40 to 126 Hz by changing Vint. 
When the frequency is varied, a two-phase waveform with 
anti-phase synchronization can be generated by adjusting 
the voltage VW.

Fig. 7   Delay mechanism (example of a generated waveform of the 
neural networks chip)

Fig. 8   Fabricated neural networks chip

Fig. 9   Example of a generated waveform of the neural networks chip

Fig. 10   Output-frequency characteristic of neural networks chip (Var-
ying Vint)

Table 1   Characteristics of Vint and VW that output anti-phase synchro-
nization

Vint (V) VW (V) Frequency (Hz)

1.84 1.83 40
1.90 1.95 65
1.94 2.05 87
1.98 2.18 114
2.00 2.29 126
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5 � Conclusion

In this paper, the authors developed the neural networks chip 
that incorporates a mechanism to adjust the synaptic weight. 
As a result, the proposal neural networks chip generated the 
electrostatic motor’s driving waveform with variable fre-
quency. The frequency of the driving waveform could vary 
from 40 to 126 Hz.

In the future, we will experiment with driving the electro-
static motor using the neural networks chip. In addition, we 
will propose the microrobot system using the electrostatic 
motor.
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