Skip to main content

Advertisement

Log in

Anti-angiogenic and macrophage-based therapeutic strategies for glioma immunotherapy

  • Review Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

As a new concept of glioma therapy, immunotherapy combined with standard therapies is a promising modality to improve glioma patient survival. VEGF and its signaling pathway molecules not only inhibit angiogenesis but also may reinforce the immunosuppressive tumor microenvironment, including promotion of the accumulation of immunosuppressive tumor-associated macrophages (TAMs). In this review, we discuss VEGF-targeted therapy as a new treatment option of the TAM-targeted therapy for high-grade gliomas, as well as other TAM-targeted therapies. The authors also discuss the potential of these therapies combined with conventional immunotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  2. Ishikawa E, Yamamoto T, Matsumura A (2017) Prospect of immunotherapy for glioblastoma: tumor vaccine, immune checkpoint inhibitors and combination therapy. Neurol Med Chir (Tokyo) 57(7):321–330

    Article  Google Scholar 

  3. Akasaki Y, Kikuchi T, Homma S et al (2016) Phase I/II trial of combination of temozolomide chemotherapy and immunotherapy with fusions of dendritic and glioma cells in patients with glioblastoma. Cancer Immunol Immunother 65(12):1499–1509

    Article  CAS  PubMed  Google Scholar 

  4. Cloughesy TF, Mochizuki AY, Orpilla JR et al (2019) Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med 25(3):477–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ishikawa E, Muragaki Y, Yamamoto T et al (2014) Phase I/IIa trial of fractionated radiotherapy, temozolomide, and autologous formalin-fixed tumor vaccine for newly diagnosed glioblastoma. J Neurosurg 121(3):543–553

    Article  CAS  PubMed  Google Scholar 

  6. Narita Y (2015) Bevacizumab for glioblastoma. Ther Clin Risk Manag 11:1759–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541(7637):321–330

    Article  CAS  PubMed  Google Scholar 

  8. Miyazaki T, Ishikawa E, Matsuda M et al (2017) Assessment of PD-1 positive cells on initial and secondary resected tumor specimens of newly diagnosed glioblastoma and its implications on patient outcome. J Neurooncol 133(2):277–285

    Article  CAS  PubMed  Google Scholar 

  9. Reardon DA, Brandes AA, Omuro A et al (2020) Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the checkmate 143 phase 3 randomized clinical trial. JAMA Oncol 6(7):1003–1010

    Article  PubMed  Google Scholar 

  10. Zhao J, Chen AX, Gartrell RD et al (2019) Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat Med 25(3):462–469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Weller M, Butowski N, Tran DD, ACT IV Trial Investigators et al (2017) Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol 18(10):1373–1385

    Article  CAS  PubMed  Google Scholar 

  12. Hashimoto N, Tsuboi A, Kagawa N et al (2015) Wilms tumor 1 peptide vaccination combined with temozolomide against newly diagnosed glioblastoma: safety and impact on immunological response. Cancer Immunol Immunother 64(6):707–716

    Article  CAS  PubMed  Google Scholar 

  13. Johanns TM, Miller CA, Liu CJ et al (2019) Detection of neoantigen-specific T cells following a personalized vaccine in a patient with glioblastoma. Oncoimmunology 8(4):e1561106

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bota DA, Chung J, Dandekar MD et al (2018) Phase II study of ERC1671 plus bevacizumab versus bevacizumab plus placebo in recurrent glioblastoma: interim results and correlations with CD4(+) T-lymphocyte counts. CNS Oncol 7(3):CNS22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Akhavan D, Alizadeh D, Wang D et al (2019) CAR T cells for brain tumors: lessons learned and road ahead. Immunol Rev 290(1):60–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sekiguchi K, Ito Y, Hattori K et al (2019) VEGF receptor 1-expressing macrophages recruited from bone marrow enhances angiogenesis in endometrial tissues. Sci Rep 9(1):7037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Suzuki H, Onishi H, Wada J et al (2010) VEGFR2 is selectively expressed by FOXP3high CD4+ Treg. Eur J Immunol 40(1):197–203

    Article  CAS  PubMed  Google Scholar 

  18. Yao X, Ping Y, Liu Y et al (2013) Vascular endothelial growth factor receptor 2 (VEGFR-2) plays a key role in vasculogenic mimicry formation, neovascularization and tumor initiation by Glioma stem-like cells. PLoS ONE 8(3):e57188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dikov MM, Ohm JE, Ray N et al (2005) Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. J Immunol 174(1):215–222

    Article  CAS  PubMed  Google Scholar 

  20. Mimura K, Kono K, Takahashi A et al (2007) Vascular endothelial growth factor inhibits the function of human mature dendritic cells mediated by VEGF receptor-2. Cancer Immunol Immunother 56(6):761–770

    Article  CAS  PubMed  Google Scholar 

  21. Chinot OL, Wick W, Mason W et al (2014) Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370(8):709–722

    Article  CAS  PubMed  Google Scholar 

  22. Wick W, Gorlia T, Bendszus M et al (2017) Lomustine and bevacizumab in progressive glioblastoma. N Engl J Med 377(20):1954–1963

    Article  CAS  PubMed  Google Scholar 

  23. van den Bent MJ, Klein M, Smits M et al (2018) Bevacizumab and temozolomide in patients with first recurrence of WHO grade II and III glioma, without 1p/19q co-deletion (TAVAREC): a randomised controlled phase 2 EORTC trial. Lancet Oncol 19(9):1170–1179

    Article  PubMed  Google Scholar 

  24. Montana V, Sontheimer H (2011) Bradykinin promotes the chemotactic invasion of primary brain tumors. J Neurosci 31(13):4858–4867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Uemae Y, Ishikawa E, Osuka S et al (2014) CXCL12 secreted from glioma stem cells regulates their proliferation. J Neurooncol 117(1):43–51

    Article  CAS  PubMed  Google Scholar 

  26. Kovalchuk B, Berghoff AS, Karreman MA et al (2020) Nintedanib and a bi-specific anti-VEGF/Ang2 nanobody selectively prevent brain metastases of lung adenocarcinoma cells. Clin Exp Metastasis 37(6):637–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sharma I, Singh A, Siraj F et al (2018) IL-8/CXCR1/2 signalling promotes tumor cell proliferation, invasion and vascular mimicry in glioblastoma. J Biomed Sci 25(1):62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Le Joncour V, Filppu P, Hyvönen M et al (2019) Vulnerability of invasive glioblastoma cells to lysosomal membrane destabilization. EMBO Mol Med 11(6):e9034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Auf G, Jabouille A, Guérit S et al (2010) Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci USA 107(35):15553–15558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Krusche B, Ottone C, Clements NP et al (2016) EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells. Elife 5:e14845

    Article  PubMed  PubMed Central  Google Scholar 

  31. Griveau A, Seano G, Shelton SJ et al (2018) A glial signature and Wnt7 signaling regulate glioma-vascular interactions and tumor microenvironment. Cancer Cell 33(5):874-889.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang H, Langenkamp E, Georganaki M et al (2015) VEGF suppresses T-lymphocyte infiltration in the tumor microenvironment through inhibition of NF-kappaB-induced endothelial activation. FASEB J 29(1):227–238

    Article  CAS  PubMed  Google Scholar 

  33. Gabrilovich DI, Chen HL, Girgis KR et al (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2(10):1096–1103

    Article  CAS  PubMed  Google Scholar 

  34. Wheeler KC, Jena MK, Pradhan BS et al (2018) VEGF may contribute to macrophage recruitment and M2 polarization in the decidua. PLoS ONE 13(1):e0191040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Lisi L, Pia Ciotti GM et al (2020) Vascular endothelial growth factor receptor 1 in glioblastoma-associated microglia/macrophages. Oncol Rep 43(6):2083–2092

    CAS  PubMed  Google Scholar 

  36. Min AKT, Mimura K, Nakajima S et al (2021) Therapeutic potential of anti-VEGF receptor 2 therapy targeting for M2-tumor-associated macrophages in colorectal cancer. Cancer Immunol Immunother 70(2):289–298

    Article  CAS  PubMed  Google Scholar 

  37. Tamura R, Tanaka T, Akasaki Y et al (2019) The role of vascular endothelial growth factor in the hypoxic and immunosuppressive tumor microenvironment: perspectives for therapeutic implications. Med Oncol 37(1):2

    Article  PubMed  CAS  Google Scholar 

  38. Voron T, Colussi O, Marcheteau E et al (2015) VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med 212(2):139–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Friebel E, Kapolou K, Unger S et al (2020) Single-cell mapping of human brain cancer reveals tumor-specific instruction of tissue-invading leukocytes. Cell 181(7):1626-1642.e20

    Article  CAS  PubMed  Google Scholar 

  40. Chuang HY, Su YK, Liu HW et al (2019) Preclinical evidence of STAT3 inhibitor pacritinib overcoming temozolomide resistance via downregulating miR-21-enriched exosomes from M2 glioblastoma-associated macrophages. J Clin Med 8(7):959

    Article  CAS  PubMed Central  Google Scholar 

  41. Takenaka MC, Gabriely G, Rothhammer V et al (2019) Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39. Nat Neurosci 22(5):729–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kaneda MM, Messer KS, Ralainirina N et al (2016) PI3Kγ is a molecular switch that controls immune suppression. Nature 539(7629):437–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pyonteck SM, Akkari L, Schuhmacher AJ et al (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19(10):1264–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Miyazaki T, Ishikawa E, Matsuda M et al (2020) Infiltration of CD163-positive macrophages in glioma tissues after treatment with anti-PD-L1 antibody and role of PI3Kγ inhibitor as a combination therapy with anti-PD-L1 antibody in in vivo model using temozolomide-resistant murine glioma-initiating cells. Brain Tumor Pathol 37(2):41–49

    Article  CAS  PubMed  Google Scholar 

  45. Miyazaki T, Ishikawa E, Sugii N et al (2020) Therapeutic strategies for overcoming immunotherapy resistance mediated by immunosuppressive factors of the glioblastoma microenvironment. Cancers (Basel) 12(7):1960

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Alexander Zaboronok, Department of Neurosurgery, Faculty of Medicine of the University of Tsukuba for professional and English revision. This study was supported by a Grant-in-Aid for Scientific Research in Japan (Grant number: 18K08962).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiichi Ishikawa.

Ethics declarations

Conflict of interest

Materials for the AFTV described in this review article were partly provided by Cell-Medicine, Inc. (CMI), a venture company for research and development of immunotherapy established by the initiative of RIKEN (The Institute of Physical and Chemical Research) and the University of Tsukuba in Japan. The authors declare that T.M. is a member of CMI, and E.I, S.T., and H.A. have no conflicts of interest regarding this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishikawa, E., Miyazaki, T., Takano, S. et al. Anti-angiogenic and macrophage-based therapeutic strategies for glioma immunotherapy. Brain Tumor Pathol 38, 149–155 (2021). https://doi.org/10.1007/s10014-021-00402-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-021-00402-5

Keywords

Navigation