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Abstract

In this paper, an improvement of the adaptive moment estimation (Adam) method equipped
with standard error (SE), namely the AdamSE algorithm, is proposed. Our aims are to improve
the convergence rate of the Adam algorithm and to explore the utility of the AdamSE algo-
rithm for solving mean-value-at-risk (mean-VaR) portfolio optimization problems. For this,
10 stocks from the top 30 equity holdings list released by the Employees Provident Fund
(EPF) have a weak correlation among them. The weekly stock prices of these stocks are
selected for the period from 2015 to 2019, and then the mean, covariance and required rate
of return are calculated to build a mean-VaR portfolio optimization model. In this way, the
Adam and AdamSE algorithms are used to solve the model, and their results are compared.
During the calculation, the stochastic gradients of the model are simulated through sampling,
and nine samples are taken into consideration. With this sampling, the standard error of each
sample is computed and the optimal weight for each sample is determined using the AdamSE
algorithm. After convergence is achieved, the results show that different sample sizes could
provide a satisfactory outcome for the portfolio concerned and from these nine samples, the
lowest and highest iteration numbers were obtained to guarantee a robust optimal solution
to the model constructed. Hence, we concluded that the AdamSE algorithm through sam-
pling reveals its computational capability for handling the mean-VaR portfolio optimization
problem.
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1 Introduction

Adaptive moment estimation (Adam) method proposed in [10] is one of the latest stochastic
gradient descent methods. This method is another adaptive learning rate method among
other adaptive learning rate methods in the literature, see for examples, momentum [16],
Nesterov accelerated gradient (NAG) [15], Adagrad [4], Adadelta [24], AdaMax [10], Nadam
[3], AMSGrad [17], AdamW [12], QHAdam [14], and AggMo [13]. In Adam method, the
decay averages of past gradients and past squared gradients are computed and stored to give
estimates of the first and second moments of the gradients, respectively. These estimates are
initialized to zeros vectors and are biased towards to zero, especially during the initial time
steps and when the decay rates are small. These biases are counteracted by computing bias-
corrected first and second moment estimates to update the parameters during the calculation
procedure.

The Adam method has been extensively studied across multiple fields, such as risk man-
agement, portfolio selection, and machine learning. Schiele [19] improved the accuracy
of the asset return estimation and the expected associated portfolio performance through a
dynamic portfolio optimization framework and the artificial neural network. Ghahtarani et al.
[6] reviewed recent robust portfolio selection problems from operational research and finan-
cial perspectives. From their study, the classification of models and methods was presented.
Veraguas et al. [23] considered stochastic optimal control problems for which a risk mini-
mization problem for controlled diffusions was solved. They derived a dynamic programming
principle to recover central results of risk-neutral, and the value of the risk minimization
problem can be characterized as a viscosity of a Hamilton—Jacobi—Bellman—Isaacs equation.
Chronopoulos et al. [2] studied a deep quantile estimator based on a neural network to fore-
cast value-at-risk (VaR) and to find significant gains over linear quantile regression, where
the Adam algorithm is used to train the neural network.

On the other hand, portfolio optimization problems have been well-studied in economics
and finance. Baltas et al. [1] studied a robust-entropic optimal control problem for portfo-
lio management. They provided a closed-form solution and a detailed study of the limiting
behaviour by associated stochastic differential game. Thus, the effect of robustness on the
optimal decisions of both players was clarified. Temocin et al. [21] considered the opti-
mal portfolio problem with minimum guarantee protection in a defined contribution pension
scheme. They compared various versions of the guarantee concept, and each guarantee frame-
work was obtained through a classical stochastic control approach. Kara et al. [9] considered
the robust conditional VaR under parallelepiped uncertainty in modelling the robust optimal
portfolio allocation. From their finding, the stability of portfolio allocation was increased,
and the portfolio risk was reduced. Savku and Weber [18] discussed optimal investment
problems using stochastic differential game approaches. They derived regime-switching
Hamilton—Jacobi-Bellman—Isaacs equations to obtain explicit optimal portfolio strategies
with Feynman—Kac representations of value functions.

In our study, we improve the convergence rate of the Adam method by reducing the iteration
number. For this, the standard error (SE) is added to the updating rule of the Adam algorithm,
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and hence, the name AdamSE algorithm is given. To begin, a mean-value-at-risk (mean-VaR)
portfolio optimization problem for the Employees Provident Fund (EPF) is formulated. The
mean, covariance and required rate of return are calculated from the weekly stock prices of
10 assets selected for the period from 2015 to 2019. The simulation results obtained by using
the Adam and AdamSE algorithms are compared and discussed. In addition, we consider
nine samples of the past gradients through sampling simulation, which differs from only
one sample in [20]. Therefore, different iteration numbers are given to arrive at the optimal
weights and three different confidence levels are used to provide the portfolio risk for the
model under study.

This paper is organized as follows. In Section 2, a mean-VaR portfolio optimization
problem for the EPF is described. The weekly stock prices of 10 assets from the top 30 equity
holdings list released by the EPF are utilized to calculate the mean, covariance and required
rate of return. These parameters are used to construct the portfolio model. In Section 3, the
Lagrange function is defined and the first order necessary conditions are derived. Furthermore,
the calculation procedures of Adam and AdamSE algorithms are presented. In Section 4,
simulation results obtained using the Adam and AdamSE algorithms are provided. In addition,
the results of the nine samples through sampling are discussed. Finally, concluding remarks
are given.

2 Problem Description

Consider a mean-VaR portfolio optimization problem [7, 25], which is to minimize the
objective function,

fw) = zovVwT Zwv/Ar (1

subject to the following constraints,

w'n=R, ©)
w'l=1, 3)
0<w=<l, 4
where w = (wy, wp, ..., w,,)T € N" is an n-vector of the portfolio weights, X € R"*" is an
n x n covariance matrix of the portfolio, and u = (1, no, .. ., //Ln)T € N is an n-vector of
the expected return rate of the portfolio, whereas I = (1,1, ..., 1) T9H" is an n-vector with

Is elements, and R is the minimum threshold at which investors can tolerate the expected
rate of return on their portfolio.

Here, the portfolio’s VaR is given by the objective function (1), the confidence level «
reflects the degree of risk aversion, z, is the z-score for the confidence level & and At is the
holding period. Since the portfolio consists of a set of assets with uncertain stock prices, and
the portfolio weights are random variables, for which the initial weights are average weight.
This mean-VaR problem is defined as a stochastic optimization problem.

Now, a mean-VaR portfolio optimization problem is stated as follows. Consider the case
where 10 stocks are selected [5] from the top 30 equity holdings list released by the EPF.
These stock prices have a weak correlation. The weekly stock prices of these stocks are
selected for the period from 2015 to 2019 and retrieved from the website investing.com.
Using these past historical stock prices data, the mean, covariance and required rate of return
of the portfolio are calculated, and they are given below.

@ Springer



S.S.W.Suetal.

(a) The means of return rates
—0.001935268
—0.000349588
0.001131086
—0.00147822
_ | 0.000463904
H=1 0.000831973
—0.00354601
—0.000959335
—0.000252542
0.00302638

(b) The covariance of the portfolio

[1.192 0.151 0.297 0.339 0.106 0.329 0.198 0.388 0.213 0.2137]
0.151 1.094 0.072 0.205 0.108 0.143 0.217 0.375 0.138 0.136
0.297 0.072 2.805 0.210 0.091 0.240 0.394 0.261 0.116 0.276
0.339 0.205 0.210 1.594 0.197 0.307 0.248 1.004 0.327 0.215
0.106 0.108 0.091 0.197 0.339 0.190 0.139 0.193 0.131 0.013
0.329 0.143 0.240 0.307 0.190 1.299 0.268 0.407 0.260 0.134
0.198 0.217 0.394 0.248 0.139 0.268 1.804 0.646 0.144 0.300
0.388 0.375 0.261 1.004 0.193 0.407 0.646 2.829 0.285 0.188
0.213 0.138 0.116 0.327 0.131 0.260 0.144 0.285 0.537 0.216
1 0.213 0.136 0.276 0.215 0.013 0.134 0.300 0.188 0.216 0.851 |

(c) The required return rate
R = 0.0005.

Here, the holding period At = 260 days, the confidence level & = 0.05 and the z-score z, =
1.645 are used in the model’s objective function (1).

Therefore, the mean-VaR portfolio optimization problem for the EPF investment is con-
structed by substituting the values of mean, covariance and required return rate into (1) and
(2). Define the portfolio’s weight w = (wy, wa, ..., wio) T € RO, which is regarded as a
random variable vector, and the aim is to determine the optimal weight w for these 10 assets

of the portfolio such that the VaR of the portfolio is minimized.

3 Adaptive Moment Estimation with Standard Error
Define the Lagrange function,
L(w, %) = zeVwT Zwv At + 0 (R —w' ) 4+ 2ol —w' 1) 4+ 1] w, )

where A = (A1, A2, A3) is the multiplier vector with A1, Ay € i and A3 € N" to be determined
later. From (5), the first order necessary conditions for the model are derived as follows:

IL(w,2) 2oV AI(Zw)
w  Vuwlzw

—Ap =2l + 43 =0, (6)
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OLw,2) _ wTh

—R=0,
oAl
dL(w, A
$=WT1_1=0,
Ao

Mw=0, i;=>0.

Here, (6) is the gradient of the mean-VaR model, which is employed in Adam and AdamSE
algorithms to find the optimal weights for the mean-VaR portfolio optimization problem.

3.1 Analytical Solution for Deterministic Case

We now consider the case where the portfolio weight w is deterministic, requiring to be
determined. Multiplying w ' to (6) and doing some algebraic manipulations, we obtain the
standard deviation of the portfolio as follows,

MR+ A
VuTSw = 17—1_2 @)
ZaN At

Substituting (7) into (6), we obtain the weight as given below:
_ -l AR+ 22) (A1 + A2l — A3)

8
At ®
From (7) and (8), it follows that 1| and A, are given by

AR — B

A= 274V At (C))
V(AC — B2)(AR?2 —2BR +C)

C — BR

A2 2z4V At, (10)

- V(AC — B2)(AR> —2BR +C)

withA=I1T2" ', B=1"T2""u,C=pu" 2 'pwand 13 = 0.

According to the above discussion, the analytical solution of the mean-VaR portfolio
optimization problem [25] defined by (1)—(4) is determined by (8), (9) and (10). However,
we assume that the analytical solution does not exist since the weight variables are random
variables, which depend on the availability of the expected return rate and the covariance of
the portfolio. In addition, the stock prices in the portfolio are uncertain and random.

3.2 Adam Algorithm

Consider the exponential moving averages of past gradients m; and past squared gradients
vy are, respectively, given as follows:

my = Bimg—1 + (1 — B1)gx, (11)
v = Bovk—1 + (1 — B)gl, (12)

where the term gy is the gradient at the time step k, parameter 8 is the exponential decay
rate for the first moment (mean) estimates of the gradient. In contrast, the parameter S, is
the exponential decay rate for the second moment (uncentered variance) estimates of the
gradient. Since the average of the past gradient my is the first moment, it resembles the
momentum that records the past normalized gradients. While the squared gradient vy is the
second moment that gives different learning rates for different parameters.
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The moment estimates are biased towards zero, especially during the initial time steps
and low decay rates. These biases can be counteracted by using the bias-corrected first and
second-moment estimates given by

A Mk (13)
myg = ——,

-t
~ Vk (14)
O = —.

1—ph

When the moments m; and vy are expanded and expressed by the gradient gy, it is found
that after dividing by the correction factor 1 — %, the sum of the coefficients of all gradients
gi approximates to 1, so it is called the normalized correction. Both moments mj and vy are
initialized to 0, the gradients have not accumulated in the first few iterations, and the values of
moments my and v are close to 0. In particular, the parameter §, is often set closer to 1 than
B1, which leads to the initial update step size being too large. By normalization correction,
the moments my, and vy can be enlarged so that the size of moment estimates 17 and 0 with
a small k value is at the same level as that of moment estimates 1 and Uy when the gradient
with a large k value has been fully accumulated.

The Adam algorithm updates exponential moving averages of past gradient my and past
squared gradient v; by using hyper-parameters B, 2 € [0, 1) to control the exponential
decay rates of the moving in (13) and (14). The Adam algorithm has the following updating
rule,

wkHD = @

(15)

iy
-y X —,

Vi +8
where o, 5 > 0. In the Adam algorithm, the learning rate that increases or decreases its
value is dependent on the gradient value of the loss function. The learning rate will be lower
for the higher gradient values, and the learning rate will be larger for the lower gradient
values. Hence, the learning decelerates at steeper and speeds up at shallower parts of the loss
function curve.

The learning rate for the Adam algorithm is set at o, (\/ka + &)~ 1. Tts value varies from
one iteration to another iteration because the parameter «, is divided by the square root of
the mean square sum of (1 — B>)~! parametric gradients at each iteration. The gradient of
each parameter is different, so the learning rate of each parameter is not the same even in
the same iteration. Moreover, the direction of parameter update is not only the gradient g; of
the current iteration but also the average of the gradient of the current and the past iterations,
thatis (1 — B1)~ L.

The parameter ¢ is a small number that prevents any division by zero during the algorithm
implementation. Assuming § = 0, the effective step taken in the parameter space at iteration
kis Ay = ap X n%k/\/fT , where the smaller signal-to-noise ratio (SNR), represented by
m/ \/f)» , indicates that there is a greater uncertainty about whether the direction m corre-
sponds to the direction of the actual gradient. Meanwhile, the effective step size is closer to
zero towards an optimum when the SNR is small. This SNR is often close to zero, resulting
in smaller effective steps in the parameter space. When approaching the minimum value, the
noise in all directions will be very large, resulting in an SNR close to 0. The updating step
size quickly reduces to 0, which is called automatic annealing, as mentioned in [10]. When
a saddle point is encountered, the noise generated by moving around the saddle point can
quickly make the current point jump out of the saddle point.

The calculation procedure of the Adam algorithm is summarized as Algorithm 1.
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Algorithm 1 (Adam algorithm).

Data: Given the initial value w© = w(, the number of samples n, the step-size «;- and the tolerance ¢. Set
k=0.

Step 1: Set the random index j.

Step 2: Evaluate the augmented objective function L ; (w(k), ) from (5).

Step 3: Compute the stochastic gradient VL ; (w(k), 2) from (6).

Step 4: Compute the decaying averages of the past gradient m; and past squared gradient vy from (11) and
(12), respectively.

Step 5: Calculate the bias-corrected first and second-moment estimates, which are 71y and vy, from (13) and
(14), respectively.

Step 6: Update the vector w® from (15). 1f ||w<k+l) —w® || < e then stop the iteration. Otherwise, set
k =k + 1, and repeat from Step 1.

Remark 1 The default values for the decay rates [10] are 81 = 0.9, B2 = 0.999, and the
smoothing term is § = 10~8, while the tolerance is ¢ = 10~°, and the learning rate is
o = 0.001.

3.3 AdamSE Algorithm

From the perspective of sampling theory, the standard error is used to measure the discrepancy
of the sample mean and the population mean [11]. In other words, the standard error measures
how accurately a sample distribution is representative of a population by using the standard
deviation. The standard error is defined by

o

SE = —, (16)
n

where o is the population standard deviation and n is the sample size of the sampling distri-

bution concerned. This standard error will increase when the population standard deviation

increases, while this standard error will decrease when the sample size is increased. Accord-

ing to the central limit theorem [8], as the sample size approaches the actual population size,

the sample means will increasingly cluster around the true population mean.

From the observation, we notice that the Adam algorithm uses the sampled gradients.
Therefore, we assume that multiple gradient samples can be generated with a fixed sample
size. From this point of view, we hypothesize that the standard error can be reduced and it is
more appropriate to use instead of the standard deviation. This is because the standard error
varies with sample size, but the standard deviation does not. Thus, to improve the updating
rule of the Adam algorithm, it is assumed that the sampling distribution of the average past
gradient my follows a normal distribution of the biased-corrected first and second moments
my, and vy, the standard error of the bias-corrected first-moment estimate 71y, similar to (16),

is defined as
o _ VUk+ 36
Sk = 7\/5 )
where n is the number of samples of the average past gradient my and § is a very small

positive number that prevents division by zero during the implementation. As the result of
(17), the updating rule (15) of the Adam algorithm is replaced by

an

A

m
wktD = ® _ o X A—k, (18)
Sk

as the updating rule of the AdamSE algorithm.
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Note that the standard error is always smaller than the standard deviation [22]. Thus, with
smaller standard errors, the step size of the AdamSE algorithm will become more effective
than the step size of the Adam algorithm. This effective step size of the AdamSE algorithm
speeds up the optimal search step. Therefore, we express the result in the following theorem.

Theorem 1 Suppose that the step size of the AdamSE algorithm is
m
Ap = ar x =K. (19)
Sk
Then, the convergence rate of the AdamSE algorithm is better than the convergence rate of
the Adam algorithm. That is,

(k+1) _

llw W Nl adamse < 1w ™ — w® | 4gam. (20)

Proof From (17) and (19), consider the step size of the AdamSE algorithm,

7 My i 1 m

Ap = o X =0y X

it k

— =0 X ————  —= < :

Sk Vi T i+ VT Jo+s
N

Therefore, the convergence rate of the AdamSE algorithm follows from (20) for n > 1. This
completes the proof. O

The calculation procedure for the AdamSE algorithm is summarised as Algorithm 2.

Algorithm 2 (AdamSE algorithm).

Data: Given the initial value w(©® = w(, the number of samples n, the step-size ;- and the tolerance €. Set
k=0.

Step 1: Set the random index j.

Step 2: Evaluate the augmented objective function L w® 1) from (5).

Step 3: Compute the stochastic gradient VL ; w® | 1) from (6).

Step 4: Compute the decay averages of the past gradient my and past squared gradient vg from (11) and
(12), respectively.

Step 5: Calculate the bias-corrected first and second-moment estimates, which are 1y, and 0y, from (13) and
(14), respectively.

Step 6: Calculate the standard error of the bias-corrected first-moment estimate g from (17).

Step 7: Update the vector w® from (18). If ||w(k+l) —w® || < e, then stop the iteration. Otherwise, set
k = k + 1 and repeat from Step 1.

Remark 2 The default values for the decay rates [10] are 81 = 0.9, B2 = 0.999, and the
smoothing term is § = 1078, while the tolerance is ¢ = 107°, and the learning rate is
a = 0.001. These values are the same as in the Adam algorithm.

4 lllustrative Results

The optimal portfolio weights after implementing the Adam and AdamSE algorithms are
shown in Table 1, where only one sample (n = 1) of the past gradients is employed in the
AdamSE algorithm.

Moreover, from Table 2, the AdamSE algorithm takes 43 number of iterations to converge,
which is 76.8% faster than the Adam algorithm with the number of iterations being 185. From
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Table 1 Optimal portfolio

. Stock Adam AdamSE

weights

1 0.0538 0.0435

2 0.0853 0.0897

3 0.0263 0.0236

4 0.0017 0.0031

5 0.4964 0.5111

6 0.0121 0.0189

7 0.0155 0.0182

8 0.0017 0.0032

9 0.1478 0.1290

10 0.1594 0.1597
Tablg 2 Performance of Adam AdamSE
algorithms

Number of iterations 185 43
Table 3 Optimal portfolio weights for different sample sizes

Sample number

Stock 1 2 3 4 5 6 7 8 9
1 0.0435 0.0541 0.0538 0.0537 0.0536  0.0540  0.0538 0.0539  0.0533
2 0.0897 0.0919 0.0917 0.0929  0.0901 0.0925 0.0918 0.0913 0.0908
3 0.0236  0.0271 0.0265 0.0250  0.0256  0.0260  0.0261 0.0260  0.0257
4 0.0031 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0062
5 0.5111 0.4971 0.4967 0.4968 0.4950  0.4937 0.4927 0.4953 0.4893
6 0.0189  0.0114  0.0117 0.0129  0.0119 0.0106 0.0119  0.0110 0.0114
7 0.0182  0.0162  0.0158 0.0151 0.0158 0.0154  0.0156  0.0156  0.0154
8 0.0032  0.0017 0.0017 0.0017 0.0017 0.0017 0.0017  0.0017 0.0062
9 0.1290  0.1386  0.1395 0.1410  0.1452  0.1458 0.1459  0.1446  0.1447
10 0.1597 0.1602  0.1609 0.1592  0.1594  0.1586 0.1588 0.1589  0.1570
Table 4 Performance of AdamSE algorithm
Sample numbers 1 2 3 4 5 6 7 8 9
Number of iterations 43 115 130 132 135 128 125 123 126
Table 5 Portfolio risk Confidence level (%) z-Score Portfolio risk (%)

90 1.282 29.78

95 1.645 38.21

99 2.326 54.03
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this result, we can see that these two algorithms are able to give the same optimal weights for
the mean-VaR model. This shows that the AdamSE algorithm performs as well as the Adam
algorithm in providing an optimal solution to the mean-VaR portfolio optimization problem.

Table 3 shows the simulation results when we consider different sample sizes of past gra-
dients forn = 1,2, 3,4,5,6,7, 8,9 using the AdamSE algorithm. Although more samples
could be considered, we only have a limited number of samples in this simulation to avoid
any unnecessary problems such as divergence.

In addition, the performance of the AdamSE algorithm (measured in terms of the number
of iterations for these sample sizes) is shown in Table 4. From the theoretical results, the
smaller the number of iterations, the faster the algorithm converges. However, when using
the AdamSE algorithm, there is no linear relationship between the number of samples and the
number of iterations because the number of iterations decreases after a sample size of 5. Thus,
the optimal weights are robust solutions that are not affected by the number of iterations.

The portfolio risk of the mean-VaR model under different confidence levels is shown in
Table 5. We only consider 90%, 95% and 99% confidence levels, where the portfolio risk is
increased when the confidence level increases. This indicates that the portfolio investment of
the EPF becomes riskier as the confidence level increases, which may increase the possibility
of causing the maximum loss on the investment.

5 Concluding Remarks

This paper discussed the improvement of the Adam algorithm, adding the standard error in
the updating rule of the Adam algorithm. The aim is to improve the convergence rate of the
Adam algorithm, so the improved algorithm is named AdamSE algorithm. For illustration,
the mean-VaR portfolio optimization problem for the EPF was formulated. This portfolio
optimization problem was solved using Adam and AdamSE algorithms, giving rise to their
respective optimal weights. These two optimal weights turn out to be the same. However, the
AdamSE algorithm took fewer number of iterations to converge. In our study, past gradients
of nine samples were simulated through sampling. Different iteration numbers showed robust
optimal weights. From these results, we concluded that the AdamSE algorithm is an efficient
algorithm for handling the mean-VaR portfolio optimization problem. For future research,
the practicality of the AdamSE algorithm will be investigated for solving nonlinear stochastic
optimization problems.
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