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Abstract
We recall some recent results concerning the Initial Value Problem of 1d-cubic non-linear
Schrödinger equation (NLS) and other related systems as the Schrödinger Map. For the latter
we prove the existence of a cascade of energy. Finally, some new examples of the Talbot
effect at the critical level of regularity are given.
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1 Introduction

In these pages we recall some recent results concerning the 1d-cubic non-linear Schrödinger
equation (NLS) and other related systems. One of the main objectives is to explain in which
sense

uM (x, t) = cM
∑

k

eitk
2+ikx , (1.1)

for some constant cM , is a “solution” of 1d-cubicNLS and to show the variety of phenomena it
induces.Moreover,wewill explain that it has a geometricalmeaningdue to its connectionwith
theBinormal Flow (BF) of curves in three dimensions and the Schrödingermap (SM). Finally,
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we will explain how the so-called Talbot effect in Optics that is mathematically described by
uM is also present in the non-linear setting with data at the critical level of regularity. As it
will be explained later on, in this geometrical interpretation the regular polygons of M sides
play a crucial role and the choice of the constant cM of (1.1) is particularly delicate. It is for
this reason that we write cM in (1.1) instead of using a generic complex constant c. Also the
notion of solution is quite involved and we will try to give some hints in which sense the
solution has to be understood.

Altogether we are speaking about a family of PDE problems. Consider first NLS which
is a complex scalar equation with a cubic non-linear potential:

{
∂t u = i

(
∂2x u + (|u|2 − M(t))

)
u, M(t) ∈ R,

u(x, 0) = u0(x), x ∈ R.
(1.2)

Let us introduce next SM. Calling T (x, t) a unit vector in R
3 the Schrödinger Map onto

the sphere is given by
∂t T = T ∧ ∂2x T . (1.3)

Finally, observe that the vector T (x, t) can be seen at any given time as the tangent vector
of a 3d-curve χ(x, t)

∂xχ = T ,

with χ a solution of
∂tχ = ∂xχ ∧ ∂2xχ. (1.4)

Da Rios [16] proposed (1.4) as a simplified model that describes the evolution of vortex
filaments. Remember that Frenet equations read

Tx = κN

Nx = −κT + τ B

Bx = −τN

with κ the curvature of the curve, τ its torsion, N the normal vector, and B the binormal
vector. Hence

∂tχ = ∂xχ ∧ ∂2xχ = κB.

That is the reason why sometimes the system of PDEs (1.4) is called the Binormal Flow.
The connection of the two systems BF and SMwith (1.2) was established by Hasimoto in

[26] through a straightforward computation. This computation is slightly simplified if instead
of the Frenet frame one uses the parallel one. This is given by vectors (T , e1, e2) that satisfy

Tx = αe1 + βe2

e1x = −αT (1.5)

e2x = −βT .

Defining u = α + iβ it is proved that u solves (1.2) for some given M(t). From (1.3) and
(1.4) we get

∂t T = αx e2 − βx e1 (1.6)

and
∂tχ = αe2 − βe1.

These two equations are gauge invariant, namely that given any real ϕ we can change e1+ ie2
into eiϕ(e1+ ie2) and α+ iβ into eiϕ(α+ iβ) and (1.3) and (1.4) remain the same. Therefore,
we have the freedom of choosing M(t).
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Observe that u, the solution of (1.2), gives the curvature and the torsion of χ . More
concretely, taking e1 + ie2 = ei

∫ x
0 τ(r) dr (n + ib) we get that

|u|2 = α2 + β2 = κ2

and after some calculation (see [26] and (4.2) below)

u(x, t) = κei
∫ x
0 τ(r) dr , (1.7)

with τ denoting the torsion. (1.7) is usually called Hasimoto transformation.
A relevant simple example is

uo = co
1√
4π t

ei x
2/4t , M(t) = c2o

4π t
, (1.8)

which is related to the self-similar solutions of SM and BF. Formally uo(x, 0) = coδ, and the
corresponding χ has a corner at (x, t) = (0, 0). Here δ stands for the Dirac-δ function. We
will sometimes refer to this solution as either a fundamental brick or a coherent structure [35].
Our main interest is to consider rough initial data as polygonal lines and regular polygons.
As we will see, the latter are related to (1.1) and therefore uM could be understood as a
superposition of infinitely many simple solutions uo(x − j) centered at the integers j . As
a consequence, the curve obtained from uM can be seen as an interaction of these coherent
structures (see https://www.youtube.com/watch?v=fpBcwuY57FU).

It is important to stress that to obtain χ from T , besides integrating in the spatial variable
the parallel system (1.5), one has to find the trajectory in time followed by one point of χo.
This is not obvious even for (1.8), see [23]. It turns out that to compute that trajectory of,
say, one corner of a regular polygon is rather delicate. The corresponding curve can be as
complicated as the graph of the so-called Riemann’s non differentiable function:

∑

k

eitk
2 − 1

k2
.

See [5] for more details.
We will review some recent results regarding the IVP for (1.2) in Sections 2 and 3. In

particular, we will show the existence of three new conservation laws (2.4), (3.7), and (3.9),
valid at the critical level of regularity. As it is well known (1.2), and as a consequence also
(1.3) and (1.4), are completely integrable systems with infinitely many conservation laws
that start at a subcritical level of regularity, L2. For the others laws more regularity, measured
in the Sobolev class, is needed. In Section 4 we will recall some work done on the transfer
of energy for the Schrödinger map (1.3). Finally, in Section 5 we revisit the Talbot effect and
modify some examples obtained in [3] to establish a connection with some recent work on
Rogue Waves given in [20].

2 The Initial Value Problem

We start with the IVP associated to NLS equation (1.2):
{

∂t u = i
(
∂2x u + (|u|2 − M(t))

)
u, M(t) ∈ R,

u(x, 0) = u0(x), x ∈ R.

We are interested in initial data which are at the critical level of regularity. There are two
symmetries that leave invariant the set of solutions that wewant to consider. One is the scaling
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invariance: if u is a solution of (1.2), then

λ > 0, uλ(x, t) = λu(λx, λ2t), (2.1)

is also a solution of (1.2) with λ2M(t) instead of M(t). The second one is the so-called
Galilean invariance: If

ν ∈ R, uν(x, t) = e−i tν2+iνxu(x − 2νt, t), (2.2)

then uν is also a solution of (1.2) with the sameM(t).Hence, wewant to work in a functional
setting where the size of the initial data does not change under the scaling and Galilean
transformations.

Let us review the classical results onNLS. Thewell-posedness of 1D cubicNLS on the full
line and on the torus was firstly done in [8, 41] for data in L2. Observe that the space L2(R),
although is invariant by Galilean symmetry (2.2), misses the scaling (2.1) by a power of 1/2
in the homogeneous Sobolev class Ḣ s . In fact, the critical exponet for scaling is s = −1/2
which is not invariant under the Galilean symmetry. The first result obtained beyond the
L2(R) theory was given in [42] using some spaces of tempered distributions built on the
well known Strichartz estimates. Later on in [21] well-posedness is studied in the Fourier–
Lebesgue spaces that we denote by FL p . These are spaces where the Fourier transform
is bounded in L p(R) and therefore leave invariant (2.2). Moreover, FL∞ is also scaling
invariant and therefore critical according to our definition. In [22] local well-posedness, also
under periodic boundary conditions, was shown in FL p with 2 < p < +∞.

In the setting of Sobolev spaces of non-homogeneous type the progress has been remark-
able. On the one hand, there is ill-posedness in Hs with s < 0 in the sense that there is
no uniformly continuous data-to-solution map and even some growth of the Sobolev norms
has been proved, [11, 14, 29, 31, 32]. On the other hand, there is well-posedness in Hs for
s > −1/2 as has been shown in [27]. In this case a weaker notion of continuity for the
data-to-solution map is used.

In this paper, we will consider solutions of (1.2) such that

ω(ξ, t) := eitξ
2
û(ξ, t) is 2π-periodic. (2.3)

Here û denotes the Fourier transform of u,
∫

R

e−i xξu(x) dx .

To prove that this periodicity is preserved by the evolution is not completely obvious and it
is a relevant property of (1.2). It can be proved writing the equation for ω, (M(t) = 0) in
(1.2):

∂tω(η, t) = i

8π3 e
−i tη2

∫ ∫

ξ1+ξ2+ξ3−η=0
eit(ξ

2
1 −ξ22 +ξ23 )ω(ξ1)ω̄(ξ2)ω(ξ3) dξ1dξ2dξ3.

Under the condition ξ1 − ξ2 + ξ3 − η = 0, we get

ξ21 − ξ22 + ξ23 − η2 = 2(ξ1 − ξ2)(ξ1 − η).

The last quantity is invariant under translations so that the periodicity is formally preserved.
Interestingly this calculation does not work for general dispersive systems as for example for
modified KdV.
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One of the three new conservation laws is precisely

∫ 2π

0
|ω(ξ, t)|2 dξ = constant. (2.4)

This can be seen writing ω(ξ, t) = ∑
j A j (t)ei jξ and looking for the ODE system that the

Fourier coefficients A j have to satisfy. Historically, our approach to this question has been
different and this is what we explain next.

For solving (1.2) and following Kita in [30], we considered the ansatz

u(x, t) =
∑

j

Ã j (t)e
it∂2x δ(x − j) (2.5)

and therefore
û(ξ, t) = e−i tξ2

∑

j

Ã j (t)e
i jξ .

Define
V (y, τ ) =

∑

j

V̂τ ( j)(τ )ei j y, (2.6)

with V̂τ ( j) the j-Fourier coefficient of V (y, τ ). Then

u(x, t) = 1

(4π i t)1/2
∑

j

Ã j (t)e
i (x− j)2

4t

= 1

(4π i t)1/2
ei

|x |2
4t

∑

j

Ã j (t)e
i j2

4t −i x
2t j

:= 1

(4π i t)1/2
ei

|x |2
4t V

(
x

2t
,
1

t

)
,

with

V̂τ ( j) = B̃ j (τ )e−i τ
4 j2 , B̃ j (τ ) = Ã j

(
1

τ

)
. (2.7)

Finally, doing the change of variables

y = x

2t
, τ = 1/t,

we easily obtain that V solves

∂τV = i

(
∂2y + 1

4πτ
(|V |2 − m)

)
V ; m(τ ) = 4π

τ
M

(
1

τ

)
. (2.8)

We actually have that V is a pseudo-conformal transformation of u.

Remark 2.1 1. Observe that formally solutions of (2.8) remain periodic if they are periodic
at a given time. That means that given the Fourier coefficients V̂τ ( j) and using (2.7)
to define Ã j we conclude that the periodicity of ω(ξ, t) = eitξ

2
û(ξ, t) is also formally

preserved.
2. The change of variable transforms t = 0 into τ = ∞. Hence, the initial value problem

for u becomes a question about the scattering of the solutions of (2.8).
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3. If V (1) = co, and m = c2o then V (ξ, t) = co for all t . The corresponding solution is the
fundamental brick (1.8)

u(x, t) = uo = co
(4π i t)1/2

ei
|x |2
4t ,

and u0 = coδ. This implies that unless we include the term M(t) = c2o/(4π t) in (1.2)
the IVP for the Dirac delta is ill–posed, something observed in [29]. It was proved in [1,
2] that even if this term is added and one looks for solutions of the type V = co + z with
z small with respect to co the corresponding u of (1.2) cannot be defined for t = 0.

4. It immediately follows from the conservation of mass of (2.8) that

m0 =
∫ 2π

0
|V (ξ, τ )|2dξ =

∑

j

|B̃ j (τ )|2

is formally constant for τ > 0. And from (2.7) we also get that
∑

j | Ã j (t)|2 =
∑

j |B̃ j (1/t)|2 = ∫ 2π
0 |ω(ξ, t)|2 dξ remains constant, which is (2.4).

3 Conservation Laws

In [3] a first result on the IVP (1.2) within the functional setting we have just described was
obtained. The solution u is written as in (2.5) and for any a j it is defined R j by the identity

Ã j (t) = a j + R j (t).

Then, an infinite ODE system for R j can be easily obtained. The corresponding solution is
constructed through a fixed point argument in an appropriately chosen space which among
other things implies that R j (0) = 0. The condition on the data is that

∑
j |a j | is finite (i.e.

a j ∈ l1) but not necessarily small. This condition implies the

lim
x→±∞ T (x, t) = A±, t ≥ 0.

It is proved that A± is independent of t and therefore

T̂x (0, t) =
∫ +∞

−∞
Tx (x, t) dx = A+ − A−. (3.1)

The result in [3] is local in time. A global result is obtained by assuming the extra condition
∑

j

j2|a j |2 < +∞, (3.2)

whose evolution
∑

j j
2| Ã j (t)|2 is easy to determine as we explain next.

First of all, it is much more convenient to work with the solution V of (2.8) which was
defined in (2.6). Moreover, we define

A j (t) = Ã j (t)e
iφ j (t), φ j (t) = ei

|a j |2
4π log t , (3.3)

and correspondingly (cf. (2.7))
Bj (τ ) = Ā j (1/τ).
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Let us introduce for each k the non-resonant set

N Rk = {( j1, j2, j3), k − j1 + j2 − j3 = 0, k2 − j21 + j22 − j23 �= 0}.
Similarly the resonant set is given by the solutions of

k − j1 + j2 − j3 = 0, k2 − j21 + j22 − j23 = 0.

Define
wk, j1, j2 := k2 − j21 + j22 − j23 .

It is immediate to see that if k − j1 + j2 − j3 = 0 then

wk, j1, j2 = 2(k − j1)( j1 − j2). (3.4)

Taking m = 2
∑

j |a j |2. After some computation one gets that the ODE system that Bj has
to verify is

i∂τ Bk(τ ) = 1

8πτ

∑

N Rk

e−iτ(k2− j21 + j22 − j23 )− i
4π (|ak |2−|a j1 |2+|a j2 |2−|a j3 |2) log t B j1(τ )Bj2(τ )Bj3(τ )

− 1

8πτ
(|Bk |2 − |ak |2)Bk . (3.5)

Hereafter this is the system we are going to solve. Recall that we have got it choosing
m = 2

∑
j |a j |2 < +∞. For a regular polygon, an example we will consider below,m is not

finite any more and therefore we are doing a renormalization as the Wick renormalization
done in [9] and in [13].

For any real function c(k) we want to understand the behavior of

d

dτ

∑

k

c(k)|Bk(τ )|2 (3.6)

as a function of τ . A symmetrization argument makes to appear c(k)− c( j1)+ c( j2)− c( j3)
that vanishes in the resonant set because of (3.4). Then, we have that

d

dτ

∑

k

c(k)|Bk(τ )|2

= 1

2iτ

∑

k− j1+ j2− j3=0

(c(k) − c( j1) + c( j2) − c( j3))e
−iτwk, j1, j2 Bj1(τ )Bj2(τ )Bj3(τ )Bk(τ )

= 1

2iτ

∑

k;N Rk

(c(k) − c( j1) + c( j2) − c( j3))e
−iτwk, j1, j2 Bj1(τ )Bj2(τ )Bj3(τ )Bk(τ ).

Relevant examples are c( j) = 1 that gives (2.4), the L2 conservation law already mentioned,
and c( j) = j , that yields a second conservation law:

∑

j

j |Bj (τ )|2 =
∑

j

j |A j (1/τ)|2 is constant. (3.7)

The final example is c( j) = j2, cf. (3.2). In this case (3.6) can be written in terms of V as
∫ 2π

0
|∂yV (y, τ )|2 dy.
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Then, defining

E(τ ) =
∫

|∂yV (y, τ )|2 − 1

16πτ
(|V (y, τ )|2 − m)2 dy,

a direct computation gives that solutions of (2.8) satisfy

d

dτ
E(τ ) = 1

16πτ 2

∫
(|V (y, τ )|2 − m)2 dy.

The next step about (1.2) with the ansatz (2.5)-(3.3) was given in [5], where the Picard
iteration is done measuring more carefully the first iterate. Particular attention is given to the
example

a j = 1 for | j | ≤ N and zero otherwise, (3.8)

see [5].
Finally in [10], Bourgain’s approach [8] is followed. This amounts to use the Sobolev

spaces of the coefficients Bj (τ ). The results in that paper can be summarized as follows, for
initial datum in l p , p ∈ (1,+∞):

1. Local well-posedness with a smallness assumption in l p for the initial datum: for any
T > 0, there exists ε(T ) > 0 such that if the l p norm of the initial datum {a j } is
smaller then ε(T ), then there exists a unique solution of (1.2)-(2.5)-(3.3) in [0, T ] in an
appropriate sense.

2. Local well-posedness with a smallness assumption in l∞ for the initial datum: if the l∞
norm of {a j } is small enough then there exists a time T (‖α‖l∞ , ‖α‖l p ) such that a unique
solution of (1.2)-(2.5)-(3.3) exists in [0, T ] in an appropriate sense.

3. For p = 2, global in time well-posedness with a smallness assumption in l∞ for the
initial datum. As it can be expected this result follows from (2) and the l2 conservation
law. The smallness condition comes from the linear term that is treated as a perturbation.
We don’t know if this smallness condition can be removed.

For establishing the third conservation law we have to observe that wk, j1, j2 given in (3.4)
is invariant under translations. This implies that solutions of (3.5) such that Bj+M = Bj at
a given time formally preserved this property for all time. Therefore,

M∑

j=1

|a j |2 =
M∑

j=1

|A j (t)|2 =
M∑

j=1

|Bj (1/t)|2 = constant. (3.9)

This conservation law is much stronger than (2.4) because it just assumes an l∞ condition
on a j .

As a consequence, in Proposition 1 of [10] an explicit solution of (3.5) is obtained with

cM = a j for all j (3.10)

as in (1.1). For this solution |Bj (τ )| = cM and Bj (τ ) is independent of j .
Recall that the ansatz (2.5) has to be modified as in (3.3) to construct a solution of (1.2).

The logarithmic correction given by (3.3) implies that even though there is a limit of the
amplitudes |A j (t)| = |Bj (1/t)| when t approaches zero, the limit of the phases does not
exist, and therefore the IVP (1.2) is ill posed. As it was proved in [3] this loss is irrelevant
when (1.2) is understood in connection to BF and SM. For example, for BF the solutions can
be perfectly defined at t = 0 as a polygonal line. Moreover, the behavior close to a corner is
determined by a self-similar solution (1.8). This self-similar solution, and the precise theorem
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given about them in [23], gives the necessary information at t = 0 so that the flow can be
continued for t < 0. A crucial ingredient in this process is the precise relation established in
[23] between co and the angle θo of the corresponding corner, namely

sin θo = e− πc2o
2 .

For a regular polygon with M sides the angle is θM = 2π/M . Chossing cM in such a way
that

sin

(
2π

M

)
= e− πc2M

2 ,

and using it in (3.10), we obtain a solution, once the Wick renormalization is done, for the
case of a regular polygon at the level of NLS. This choice is the one conjectured in [17] based
on the numerical simulations done in [28].

4 Transfer of Energy

Solutions of (1.2) have associated a natural energy/mass density which is |u(x, t)|2 dx . For
solutions of (1.3), this is the same density associated to |Tx |2 thanks to Hasimoto transfor-
mation (1.7). In Section 3 we have constructed solutions of (1.2) whose energy density is
also well described in terms of |̂u|2 as |̂u|2 = |ω|2 with ω given in (2.3). Also remember that
ω is related to V through (2.7) and (2.8). Even though there is no reason a priori to think that∣∣T̂x (ξ, t)

∣∣2dξ is related to a density energy, in Theorem 1.1 of [4] it is proved that

lim
n→∞

∫ 2π(n+1)

2πn

∣∣T̂x (ξ, t)
∣∣2 dξ =

∫ 2π

0
|V (ξ, t)|2dξ. (4.1)

This equality suggests that at least in the limit of large frequencies
∣∣T̂x (ξ, t)

∣∣2dξ is related
to an energy density. Recall that it was proved in Sections 2 and 3 that

∫ 2π

0
|V (ξ, t)|2dξ = constant

and therefore, that there is no flux of energy for û at least for 0 < t < 1. The situation for
Tx is different. It was proved in [6] that there is some cascade of energy. More concretely we
have the following result that was motivated by some numerical experiments done in [18].

Theorem 4.1 Assume {
a−1 = a+1 �= 0,
a j = 0 otherwise.

Then there exists c > 0 such that

sup
ξ

∣∣T̂x (ξ, t)
∣∣2 ≥ sup

ξ∈B
(
± 1

t ,
√
t
)
∣∣T̂x (ξ, t)

∣∣2 ≥ c| log t |, t > 0.

This type of energy cascade is an alternative to the ones in [15, 25], where results about
the growth of Sobolev norms are proved. In these papers the authors consider Sobolev spaces
Hs with s > 1, so that the growth is a consequence of a transfer of energy from low Fourier
modes to high Fourier modes. From (4.1) we conclude that in our setting T̂x does not tend
to zero in the large frequency limit, so that Tx does not belong to L2. Also observe that the
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initial data given in Theorem 4.1 satisfies (3.2) that together with (3.1) give that T̂x remains
bounded for small frequencies for 0 < t < 1. It is also proved in [6] that T̂x (·, 1) is bounded.
Nevertheless, the L∞ norm grows logarithmically when t tends to zero for frequencies ξ

such that |ξ | ∼ 1/t .
Recall that if u = α + iβ is the solution of (1.2) then T can be obtained from (1.5), and

the equation for Tt is (1.6). After a simple calculation one gets that

∂x (e1 · e2t ) = −1

2
∂x (α

2 + β2). (4.2)

This fact, together with the property that (T , e1, e2) is an orthonormal frame for all (x, t)
gives

Tt = −βx e1 + αx e2

e1t = βx T + 1

2
((α2 + β2) − M(t))e2

e2t = −αx T − 1

2
((α2 + β2) − M(t))e1,

for some real function M(t).
Notice that this is just a linear system of equations which is hamiltonian and that satisfies

the three conservation laws (2.4), (3.7), and (3.9) given in the previous sections for u of type
(2.5). Nevertheless, Theorem 4.1 applies and therefore this system also exhibits a cascade of
energy.

5 Talbot Effect and RogueWaves

In this section we want to revisit the examples on the Talbot effect showed in [3]. The
Talbot effect was originally observed in linear Optics and has received plenty of attention
since the pioneering work of M. Berry and collaborators (see for example [7]). In [17] the
fractal properties of this effect is considered, taking in (1.4) regular polygons as initial data.
These examples suggest a possible connection with the turbulent dynamics observed in non-
circular jets (see for instance [24]). At a more regular level, the Talbot effect for the linear
and nonlinear Schrödinger equations with initial data periodic and given by functions with
bounded variation was studied in [12, 19, 33, 37, 40]. The fractal behavior was already seen
numerically in the setting of the architecture of aortic valve fibers in [36, 38]. These works
use (1.4) but with boundary conditions which are not periodic.

The Talbot effect is very well described by (1.1). As it will be shown below in (5.2) and
(5.3), the values of (1.1) at times which are rational multiples of the period can be written
in a closed form: if the rational is p/q then Dirac deltas appear at all the rationals of Z/q in
space, and the amplitudes are given by a corresponding Gauss sum. Going either backward
or forward in time a phenomenon of constructive/destructive interference appears. We think
that there is a similitude of this phenomenon with the one exhibited in [20] related to the
so-called Rogue Waves.

The examplewe propose is very similar to (3.8). Recall that the construction of the solution
we have sketched in the previous sections is perturbative and therefore, it always implies some
smallness condition. This condition is measured in terms of

∑ |a j | that can be small without
the corresponding solution u being small. For example, from (2.5) it is immediate that at
least for small times the L∞ norm of u is not small. Something similar can be said for the
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L1
loc norm. At this respect it is relevant to notice the definition of u in terms of V given in

(2.8). Observe that

|u(x, t)| = 1√
4π t

|V (x/2t, 1/t)|,

and therefore L1
loc grows with t .

We have the following result.

Theorem 5.1 (Appearance of Rogue Waves) Let 0 < η < 1
4 and let p ∈ N large. There

exists u0 with û0 a 2π -periodic function, supported modulo 2π in
[
−η 2π

p , η 2π
p

]
, such that

the solution u(x, t) of (1.2) obtained from ak = û0(k) satisfies the following properties:

– If t p̃,q̃ = 1
2π

p̃
q̃ with p̃ ≈ q̃ ≈ 1, coprime, p̃ < q̃ , and q̃ odd, then at times t p̃,q̃ on the

interval [− 1
2q̃ , 1

2q̃ ] the solution u(x, t) is localized and has a large amplitude;

– If tp,q = 1
2π

p
q with q ≈ p, coprime, and q odd, then at times tp,q on the interval

[− 1
2q̃ , 1

2q̃ ] the solution u(x, t) has a small amplitude.

We start with a computation for the linear Schrödinger equation on the line, concerning
the Talbot effect related to (1.1).

Proposition 5.2 (Talbot effect for linear evolutions) Let 0 < η < 1
4 , p ∈ N and u0 such that

û0 is a 2π-periodic function, supported modulo 2π in [−η 2π
p , η 2π

p ]. For all tp,q = 1
2π

p
q

with q odd and for all x ∈ R we define

ξx := πq

p
d

(
x,

1

q
Z

)
∈

[
0,

π

p

)
.

Then, there exists θx,p,q ∈ R such that

eitp,qΔu0(x) = 1√
q
û0(ξx ) e

−i tp,q ξ2x +i x ξx+iθx,p,q . (5.1)

In particular |eitp,qΔu0| is 1
q -periodic and if d(x, 1

q Z) >
2η
q then eitp,qΔu0(x) vanishes.

Proof We start by recalling the Poisson summation formula
∑

k∈Z f (k) = ∑
k∈Z f̂ (2πk)

for the Dirac comb: (
∑

k∈Z
δk

)
(x) =

∑

k∈Z
δ(x − k) =

∑

k∈Z
ei2πkx ,

as
̂δ(x − ·)(2πk) =

∫ ∞

−∞
e−i2πkyδ(x − y) dy = e−i2πkx .

The computation of the free evolution with Dirac comb data is

eitΔ
(

∑

k∈Z
δk

)
(x) =

∑

k∈Z
e−i t(2πk)2+i2πkx . (5.2)

For t = 1
2π

p
q we have (choosing M = 2π in formulas (37) combined with (42) from [17])

eitΔ
(

∑

k∈Z
δk

)
(x) = 1

q

∑

l∈Z

q−1∑

m=0

G(−p,m, q)δ

(
x − l − m

q

)
, (5.3)
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which describes the linear Talbot effect in the periodic setting. Here G(−p,m, q) stands for
the Gauss sum

G(−p,m, q) =
q−1∑

l=0

e2π i
−pl2+ml

q .

Nowwe compute the free evolution of data u0 with û0 a 2π-periodic function, i.e. û0(ξ) =∑
k∈Z αke−ikξ and u0 = ∑

k∈Z αkδk :

eitΔu0(x) = 1

2π

∫ ∞

−∞
eixξ e−i tξ2 û0(ξ) dξ

= 1

2π

∑

k∈Z

∫ 2π(k+1)

2πk
eixξ−i tξ2 û0(ξ) dξ

= 1

2π

∫ 2π

0
û0(ξ)

∑

k∈Z
eix(2πk+ξ)−i t(2πk+ξ)2 dξ

= 1

2π

∫ 2π

0
û0(ξ)e−i tξ2+i xξ

∑

k∈Z
e−i t (2πk)2+i2πk(x−2tξ) dξ.

Therefore, for tp,q = 1
2π

p
q we get using (5.2)–(5.3):

eitp,qΔu0(x) = 1

q

∫ 2π

0
û0(ξ)e−i tp,q ξ2+i xξ

∑

l∈Z

q−1∑

m=0

G(−p,m, q)δ

(
x− 2tp,qξ− l− m

q

)
dξ.

For q odd G(−p,m, q) = √
qeiθm,p,q for some θm,p,q ∈ R so we get for tp,q = 1

2π
p
q

eitp,qΔu0(x) = 1√
q

∫ 2π

0
û0(ξ)e−i tp,q ξ2+i xξ

∑

l∈Z

q−1∑

m=0

eiθm,p,q δ

(
x − 2tp,qξ − l − m

q

)
dξ.

For a given x ∈ R there exists a unique lx ∈ Z and a unique 0 ≤ mx < q such that

x − lx − mx

q
∈

[
0,

1

q

)
, ξx = πq

p

(
x − lx − mx

q

)
= πq

p
d

(
x,

1

q
Z

)
∈

[
0,

π

p

)
.

We note that for 0 ≤ ξ < η 2π
p we have 0 ≤ 2tξ < 1

2q . As û0 is supported modulo 2π only

in a neighborhood of zero of radius less than η
2π p then we get the expression (5.1). �

Proof of Theorem 5.1 We shall construct sequences {αk} such that
∑

k∈Z αkδk concentrates
in the Fourier variable near the integers. To this purpose we consider, for s > 1

2 , a positive
bounded function ψ ∈ Hs with support in [−1, 1] and maximum at ψ(0) = 1. We define
the 2π-periodic function satisfying

f (ξ) := pβψ

(
p

2πη
ξ

)
, ∀ξ ∈ [−π, π],

with β < 1
2 − 3

2 s, introduce its Fourier coefficients:

f (ξ) :=
∑

k∈Z
αke

ikξ ,
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and the distribution
u0 :=

∑

k∈Z
αkδk .

In particular, on [−π, π], we have û0 = f and the restriction of û0 to [−π, π] has support
included in a neighborhood of zero of radius less than η 2π

p . We then get from (5.1):

eitp,qΔu0(x) = 1√
q
û0

(
πq

p
d

(
x,

1

q
Z

))
e−i tp,q ξ2x +i x ξx+iθmx ,

that
∣∣∣eitp,qΔu0(0)

∣∣∣ = 1√
q

| f (0)| = 1√
q
pβψ(0) = pβ

√
q

, (5.4)

∥∥∥eitp,qΔu0
∥∥∥
L∞ ≤ 1√

q
‖ f ‖L∞ = pβ

√
q

, (5.5)

and

eitp,qΔu0(x) = 0 if d

(
x,

1

q
Z

)
>

2η

q
. (5.6)

We note that

‖αk‖2l2,r =
∑

k

|k|2r |αk |2 = ‖ f ‖2
Ḣr = p2(β+r− 1

2 )

(2πη)2(r− 1
2 )

‖ψ‖Ḣr .

Since β < 1
2 − s and p is large, it follows that ‖αk‖l2,s is small enough so that we can use

the results in [3] to construct a solution up to time t = 1
2π for (1.2) of type

u(x, t) =
∑

k∈Z
ei(|αk |

2−2
∑

j |α j |2) log t (αk + Rk(t))e
itΔδk(x).

Hence
∣∣∣∣∣u(t, x) − eitΔ

(
∑

k∈Z
αkδk

)
(x)

∣∣∣∣∣

≤
∑

k∈Z

(
1 − ei(|αk |

2−2
∑

j |α j |2) log t
)

αke
itΔδk(x)+

∑

k∈Z
ei(|αk |

2−2
∑

j |α j |2) log t Rk(t)e
itΔδk(x)

≤ C√
t
‖αk‖2l2‖αk‖l2,s + Ctγ√

t
‖αk‖3l2,s = C(η)

p3(β+s− 1
2 )

√
t

(p−s + tγ ),

for γ < 1.
Therefore, in view of (5.4), (5.5), and (5.6) we have for times tp,q and t p̃,q̃ both of size

1
2π , but with rational representation of type q ≈ p which is fixed to be large, and p̃ ≈ q̃ ≈ 1
with p̃ < q̃, that:

– at time tp,q the modulus |u(tp,q , x)| is a 1
q -periodic function of maximal amplitude 1

p
1
2 −β

plus a remainder term of size 1

p3(−β−s+ 1
2 )
, that is negligible provided that β < 1

2 − 3
2 s.

So modulo negligible terms |u(tp,q , x)| has plenty of 1
p -period waves of small amplitude

1

p
1
2 −β

,
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– at time t p̃,q̃ the modulus |u(t p̃,q̃ , x)| is a 1
q̃ -periodic function of maximal amplitude

1

p̃
1
2 −β

plus a remainder term of size 1

p̃3(−β−s+ 1
2 )
, that is again negligible provided that

β < 1
2 − 3

2 s. So modulo negligible terms |u(t p̃,q̃ , x)| has in the interval I := [− 1
2q̃ , 1

2q̃ ]
a wave of amplitude 1

p̃
1
2 −β

, and is upper-bounded by a smaller value on I \ [− 2η
q̃ ,

2η
q̃ ].

Therefore, observing what happens in the interval I we have at time tp,q small waves
while at time t p̃,q̃ a localized large-amplitude (with respect to η) structure emerges. �
Remark 5.3 1. In the above argumentwe needη to be small.As a consequence, the L∞ norm

and therefore the L1
loc norm of the solution is small. This can be avoided by considering

uλ = 1
λ
u(x/λ, t/λ2), where u is any of the solutions constructed above. If λ > 1 the L∞

norm grows, while for λ < 1 the L1
loc norm around the corresponding bump grows.

2. The size of the error can be made smaller following the ideas developed in [5]. This is
due to the type of data (3.8) we are using. In this case the size of the first Picard iterate
is indeed much smaller than the l1 norm we are using in the above argument.
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