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Abstract
We propose an interior point method (IPM) for solving semidefinite programming problems
(SDPs). The standard interior point algorithms used to solve SDPs work in the space of
positive semidefinite matrices. Contrary to that the proposed algorithm works in the cone of
matrices of constant factor width. We prove global convergence and provide a complexity
analysis. Our work is inspired by a series of papers by Ahmadi, Dash, Majumdar and Hall,
and builds upon a recent preprint by Roig-Solvas and Sznaier [arXiv:2202.12374, 2022].
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1 Introduction

Semidefinite programming problems (SDPs) are a generalization of linear programming
problems (LPs). While capturing a much larger set of problems, SDPs are solvable up to
fixed precision in polynomial time in terms of the input data, and linear in terms of the
precision [17]; see [10] for the complexity in the Turing model of computation.

Practical computation is, however, more complicated. While we are able to solve lin-
ear programs with millions of variables and constraints routinely, SDPs become intractable
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already for a few tens of thousands of constraints and for n × n matrix variables of the order
n ≈ 1, 000. The reason is that each iteration of a typical interior point algorithm for SDP
requires O(n3m + n2m2 + m3) operations, where n is the size of the matrix variable and m
is the number of equality constraints; see e.g. [15] or [3]. However, solving large instances
of SDPs is of growing interest, due to applications in power flow problems on large power
grids, SDP-based hierarchies for polynomial and combinatorial problems, etc. (see [13, 23,
24]). In the following we will revisit a relaxation of a given SDP, where the cone of positive
semidefinite matrices is replaced by a more tractable cone, namely the cone of matrices of
constant factor width [7]. The simplest examples of matrices of constant factor width are
non-negative diagonal matrices (corresponding to linear programs), and scaled diagonally
dominant matrices (corresponding to second order cone programming) [4]. We then review
how iteratively rescaling the cone and solving the given optimization problem over this new
set leads to a non-increasing sequence of optimal values lower bounded by the optimum of
the sought SDP. This iterative procedure, due to [1], does not lead to a convergent algorithm.
However, its essence can be used to construct a convergent predictor-corrector interior point
method, as was done in [19]. Our paper is inspired by ideas from [1, 2, 4, 5, 19]. In partic-
ular, we will extend the results in [19], and give a more concise complexity analysis in our
extended setting.

1.1 Iterative Approximation Scheme

Let the set of symmetric n × n matrices be given by S
n , where n ∈ N is a positive integer.

We write [m] for the set {1, 2, . . . ,m}, where m ∈ N. Consider a set {Ai ∈ S
n : i ∈ [m]} of

symmetric data matrices and define the linear operator

A(X) = (〈A1, X〉, . . . , 〈Am, X〉) ∈ R
m,

where 〈X , Y 〉 := tr(XY ) for X , Y ∈ S
n . Furthermore, define for b ∈ R

m the affine subspace

L = {X ∈ S
n : A(X) = b}.

Consider the following semidefinite program

v∗
SDP = inf

{〈A0, X〉 : A(X) = b, X ∈ S
n+
}
, (1)

which we assume to be strictly feasible. Replacing the cone of positive semidefinite (psd)
matrices in (1) by a cone K ⊆ S

n+, which is more tractable, leads to the following program

vK = inf {〈A0, X〉 : A(X) = b, X ∈ K} , where K ⊆ S
n+. (2)

Clearly, vK ≥ v∗
SDP. The quality of the approximation depends on the chosen coneK. In [4],

while focusing on sums-of-squares optimization the authors consider the cones of diagonally
dominant and scaled diagonally dominant matrices. Ahmadi and Hall developed the idea of
replacing the psd cone by a simpler cone further in [1], leveraging an optimal solution of the
relaxation. Essentially, the idea is as follows. Define the feasible set for (1) as

FSDP = {X 	 0 : A(X) = b} .

Wewill consider a sequence of strictly feasible points for (2), denoted by X� for � = 0, 1, . . ..
Since X� 	 0, the matrix X1/2

� is well-defined. One can update the data matrices in the
following way

A(�)
i = X1/2

� Ai X
1/2
� (i ∈ {0, 1, . . . ,m}, � = 0, 1, . . .),
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giving rise to a new linear operator

A(�)(X) = (〈A(�)
1 , X〉, . . . , 〈A(�)

m , X〉) ∈ R
m .

We may also refer to this operation as rescaling with respect to X�. Via this rescaling one
obtains the following sequence of reformulations of (1):

v∗
SDP = min

{
〈A(�)

0 , X〉 : A(�)(X) = b, X ∈ S
n+
}

, (3)

whose feasible set we define as

FSDP�
=

{
X 	 0 : A(�)(X) = b

}
.

For each � the identity matrix is feasible, i.e., we have X = I ∈ FSDP�
. To see this, note that

for all i ∈ [m] we have
〈A(�)

i , I 〉 = 〈(X�)
1
2 Ai (X�)

1
2 , I 〉 = 〈Ai , X�〉 = bi .

Similarly, the identity leads to the same objective value in (3) as X� in (2). Let X0 be an
optimal solution to (2). Rescaling with respect to X0 we find by the same reasoning that
v

(0)
K ≤ vK, where

v
(�)
K = min

{
〈A(�)

0 , X〉 : A(�)(X) = b, X ∈ K
}

. (4)

Reiterating this procedure leads to a non-increasing sequence of values
{
v

(�)
K

}

�∈N lower

bounded by v∗
SDP.Unfortunately, this procedure does not always converge to the true optimum

of (1) if K is a cone of matrices of constant factor width, as mentioned in [19]. Indeed, it can
happen that lim inf�→∞ v

(�)
K > v∗

SDP. The rest of this paper is devoted to the development
and analysis of an interior point algorithm, which converges to the optimal value v∗

SDP. We
thereby refine and extend results from [19], where a different interior point method (based on
the factor width cone) was introduced. Our contribution is to give a concise polynomial-time
convergence analysis, since the iteration complexity bounds given in [19] involve constants
that depend on the data, but the dependence is not made explicit; see e.g. [19, Theorem 4.12].
Moreover, the authors of [19] only consider factor width at most 2 (i.e. the scaled, diagonally
dominant matrices), while we analyse the general case.

Outline of the Paper

This paper is conceptually divided into two parts. The first part contains Sections 1 and 2
and is devoted to introducing the setting as well as the algorithm. Our aim with the first part
is to convey the concept in a comprehensible way. The second part consists of the remaining
Sections 3–6. It is more technical and contains the derivation of objects used in the algorithm
as well as the formal complexity analysis.

1.2 The FactorWidth Cone

Fix n ∈ N. The cone of n × n matrices of factor width k, denoted by FWn(k), is defined as

FWn(k) =
{

Y ∈ S
n : Y =

∑

i∈N
xi x

T
i for xi ∈ R

n, supp(xi ) ≤ k, ∀i
}

.
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The notion of factor width was first used in [7] where the authors proved that FWn(2) is the
cone of scaled diagonally dominant matrices. Trivially, FWn(1) is the cone of non-negative
n × n diagonal matrices. Clearly, we have that

FWn(k) ⊆ FWn(k + 1) ⊆ S
n+ ∀k ∈ [n − 1].

Moreover, FWn(n) = S
n+. It is easy to see these cones are proper. As they define an inner

approximation of the cone S
n+ we may use them in the aforementioned iterative scheme.

Define J := {J ⊂ [n] : |J | = k} for fixed n, k ∈ N with k|n.
S

(n,k) := (Sk)J and S
(n,k)
+ := (Sk+)J .

An optimization problem over the cone FWn(k) may be formulated as an optimization prob-
lem over the cone product S(n,k)

+ . To see this we need to consider principal submatrices.
For a matrix S ∈ R

n×n we define the principal submatrix SJ ,J for J ⊆ [n] to be the
restriction of S to rows and columns whose indices appear in J . Furthermore, for a set
J = {i1, . . . , i|J |} ⊆ [n] and a matrix S ∈ R

J×J we define the n × n matrix S→n
J as follows

for i, j ∈ [n]
(S→n

J )i, j =
{
Sk,l if i = ik, j = il ,
0 otherwise.

(5)

In other words, S→n
J has SJ as principal sub-matrix indexed by J , and zeros elsewhere. Now,

to write a program over FWn(k) as an SDP note the following observation. It is easy to see
that, for any X ∈ FWn(k), we have

X =
∑

J∈J
Y→n
J

for suitable YJ ∈ S
k+ indexed by J . Thus, we can write

inf{〈C, X〉 : A(X) = b, X ∈ FWn(k)} (6)

as

inf

⎧
⎨

⎩

∑

|J |=k

〈CJ ,J , YJ 〉 :
∑

|J |=k

〈(Ai )J ,J , YJ 〉 = bi , YJ ∈ S
k+, ∀|J | = k

⎫
⎬

⎭
. (7)

It is straightforward to show that the dual cone is given by

FWn(k)
∗ = {S ∈ S

n : SJ ,J 	 0 for J ⊆ [n], |J | = k}.
The dual cone has been studied in the context of semidefinite optimization in [8], where it
was shown that the distance of FWn(k)∗ and Sn+ in the Frobenius norm can be upper bounded
by n−k

n+k−2 for matrices of trace 1. For k ≥ 3n/4 and n ≥ 97 this bound can be improved to
O(n−3/2) (see [8]).

2 Interior Point Methods and the Central Path

Interior point methods (IPMs) are among the most commonly used algorithms to solve conic
optimization problems in practice. Notable software for IPMs include Mosek [16], CSDP
[9], SDPA [12, 22], SeDuMi [20] and SDPT3 [21]. In the remainder of this section, we will
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closely follow the notation used in [18], since we will make use of several results from this
book. Consider the following conic optimization problem for a proper convex coneK ⊂ R

n :

min {〈c, x〉 : 〈ai , x〉 = bi , i ∈ [m], x ∈ K} .

In IPMs the cone membership constraint is replaced by adding a convex penalty function
f to the objective. This function f is a so-called self-concordant barrier function. Loosely
speaking, the function f returns larger values the closer the input is to the boundary of the
cone and tends to infinity as the boundary is approached. In order to formally define self-
concordant barrier functionals, let f : Rn ⊃ D f → R be such that its Hessian H(x) is
positive definite (pd) for all x ∈ D f . With respect to this function, we can define a local
inner product as follows

〈u, v〉x := 〈u, H(x)v〉,
where u, v ∈ R

n and 〈·, ·〉 is some reference inner product. Let Bx (y, r) be the open ball
centered at y with radius r > 0 whose radius is measured by ‖ · ‖x , i.e., the norm arising
from the local inner product at x .

Definition 1 (see [18, Section 2.2.1]) A functional f is called (strongly non-degenerate) self-
concordant if for all x ∈ D f we have that Bx (x, 1) ⊂ D f and whenever y ∈ Bx (x, 1) we
have

1 − ‖y − x‖x ≤ ‖v‖y
‖v‖x ≤ 1

1 − ‖y − x‖x for all v �= 0.

A functional f is called a self-concordant barrier functional if f is self-concordant and
additionally satisfies

ϑ f := sup
x∈D f

‖H(x)−1g(x)‖2x < ∞,

where g(x) is the gradient of f .

We refer to ϑ f as the complexity value of f (see [18, p. 35]), which will become crucial
in our complexity analysis. Henceforth, let f be a self-concordant barrier functional for K
and consider the following family of problems for positive η ∈ R+

zη = argmin η〈c, x〉 + f (x) (8)

s.t. 〈ai , x〉 = bi i ∈ [m].
The minimizers zη of (8) define a curve, parametrized by η in the interior of K. This curve
is called the central path. For η → ∞ one can show that zη → x∗, where x∗ denotes an
optimal solution. Interior point methods work by subsequently approximating a sequence
of points {zηi : i = 1, . . . , N } on the central path, where η1 < η2 < · · · such that zηN
is within the desired distance to the optimal solution. The type of interior point method we
consider is an adaptation of the (primal) predictor-corrector method (see [18, § 2.4.4]). This
method uses the ordinary affine scaling direction to produce a new point inside the cone
with decreased objective value. Afterwards, a series of corrector steps is performed to obtain
feasible solutions with the same objective value that lie increasingly close to the central path.
Interior pointmethods typically rely onNewton’smethod in each step, where the convergence
rate depends on the so-called Newton decrement.

Definition 2 If f : Rn → R has a gradient g(x) and positive definite Hessian H(x) � 0 at
a point x in its domain, then the Newton decrement of f at x is defined as

�( f , x) =
√

〈g(x), H−1(x)g(x)〉 = ‖H−1(x)g(x)‖x .
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For self-concordant functions f , a sufficiently small value of �( f , x), e.g., �( f , x) <

1/9, implies that x is close to the minimizer of f (cf. [18, Theorem 2.2.5]).
Suppose we are given a starting point x0, which is close to zη0 for some η0 ∈ R. The

affine-scaling direction is given by −H(x0)−1c and points approximately tangential to the
central path in the direction of decreasing the objective value 〈c, x〉 (−H−1(zη0)c is exactly
tangential to the central path). The predictor step moves from x0 a fixed fraction σ ∈ (0, 1) of
the distance towards the boundary of the feasible set in the affine-scaling direction, thereby
producing a new point x1 satisfying 〈c, x1〉 < 〈c, x0〉. The new point x1 is not necessarily
close to the central path. The algorithm then proceeds to produce a sequence of feasible
points x2, x3, . . . satisfying 〈c, x1〉 = 〈c, xi 〉 for i = 2, 3, . . . while each xi for i = 2, 3, . . .
is closer to the central path than its predecessor xi−1. In other words, the algorithm targets the
point zη1 on the central path with the same objective value as x1 and produces a sequence of
points converging to zη1 . Once an x j is found such that �( f , x j ) < 1/9, the next predictor
step is taken. This procedure is repeated until an ε-optimal solution is found. The corrector
phase works by minimizing the self-concordant barrier restricted to the feasible affine space
intersected with the set of all x ∈ R

n such that 〈c, x〉 = 〈c, xi 〉, where xi is the point
produced by the most recent predictor step. This minimization problem is solved iteratively
by performing line searches along the direction given by the Newton step for the restricted
functional. We provide a visualization of the predictor-corrector method in Fig. 1.

Newton Decrements for Functions Restricted to Subspaces

If a self-concordant function f is restricted to a (translated) linear subspace L , and denoted
by f|L , then the Newton decrement at x becomes

�
(
f|L , x

) = ‖PL,x H
−1(x)g(x)‖x ,

where ‖ · ‖x is the norm induced by the inner product 〈u, v〉x = 〈u, H(x)v〉, and PL,x is the
orthogonal projection onto L for the ‖ · ‖x norm; see [18, § 1.6].

Note that we have

�( f , x) = 〈g(x), H−1(x)g(x)〉1/2 = 〈g(x),−n(x)〉1/2
= 〈n(x), n(x)〉1/2x = ‖n(x)‖x = sup

‖d‖x=1
〈d, n(x)〉x ,

where n(x) is the Newton step at x , i.e., n(x) = −H(x)−1g(x). Hence, restricting the
function f to a subspace L we find

�
(
f|L , x

) = sup
‖d‖x=1

〈d, PL,xn(x)〉x = sup
‖d‖x=1,

d∈L

〈d, n(x)〉x

= sup
0 �=d∈L

〈d, n(x)〉x
‖d‖x ≥ 〈d, n(x)〉x

‖d‖x for all d ∈ L \ {0}. (9)

2.1 A Predictor-Corrector Method Using FW(k)

In this subsection we propose our algorithm which makes use of the rescaling introduced
in Section 1.1; see Algorithm 1 below. Our aim is to provide a comprehensible exposition,
while the details are postponed to the second part of the paper, beginning with Section 3.
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Fig. 1 Visualization of predictor-corrector method. Initial feasible solution close to central path (red) is given
by x1. Algorithm performs predictor step returning x2. Corrector steps are taken until point close enough to
central path (x4) is found. Next predictor step returns x5. Corrector steps are taken until x8 is found, which
is close enough to central path to perform next predictor step returning x9. After one corrector step the final
point x10 is ε-close to x∗

Algorithm 1 is an adaption of the predictor-corrector method as described in [18, Sec-
tion 2.2.4]. Before describing the algorithm in detail we fix some notation. Let Y ∈ S

(n,k) be
a collection of

(n
k

)
matrices of size k × k. We define the operator � as

�(Y) =
∑

J∈J
Y→n
J ,

where we made use of the notation defined in (5). Hence, if Y is a collection of positive
semidefinite k × k matrices, then �(Y) ∈ FWn(k). Furthermore, let

Y0 =
{

YJ =
(
n − 1

k − 1

)−1

Ik×k : J ⊂ [n], |J | = k

}

, (10)

so that �(Y0) = I . Now let X� be a strictly feasible solution to a problem of form (1) and
rescale the data matrices with respect to X�. Recall that the feasible set of the resulting SDP
is contained in the following affine space

L� =
{
X ∈ S

n : A(�)
0 (X) = b

}
. (11)

Likewise, the feasible set of the factor width relaxation written over S(n,k)
+ (cf. (7)) is con-

strained to lie in the affine space

L�
� =

{
Y ∈ S

(n,k) : (A(�) ◦ �)(Y) = b
}

.
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Note that I ∈ L� and Y0 ∈ L�
� . We emphasize that, by definition, for any element Y ∈ L�

�

we have �(Y) ∈ L�.

Main Method

The algorithm requires a feasible starting point X0 close to the central path, which is used
in the first rescaling step. We also require an ε > 0, i.e., our desired accuracy as well as a
σ ∈ (0, 1) used in the predictor step. In the following let f FW(k) be a self-concordant barrier
function for S(n,k)

+ (we postpone its derivation to Section 3, for now we assume it exists
and is efficiently computable). In the algorithm we denote the restriction of f FW(k) to the
subspace null(A(�) ◦ �) by f FW(k)

|null(L�
� )
. The algorithm initializes � = 0. The outer while loop

repeats until an ε optimal solution is found. If after rescaling with respect to X� the Newton
decrement at Y0 satisfies

�

(
f FW(k)
|null(L�

� )
,Y0

)
≤ 1/14

the predictor subroutine is called. Here, the affine-scaling direction is projected onto the null
space of L�

� , call it Z. Clearly, Y0 + sZ ∈ L�
� for all s ∈ R. Then the subroutine computes

s∗ = sup
{
s : Y0 − sZ ∈ S

(n,k)
+

}
, (12)

which provides the necessary notion of distance to the boundary in terms of Y0 and Z. The
returned point Y� := Y0 + σ s∗Z is feasible and decreases the objective value, as shown in
Section 5.

If the Newton decrement is not small enough, the corrector subroutine is called. Let
v� = 〈A0, X�〉, i.e., the objective value of the previous iteration, and define

L�
� (v�) =

{
Y ∈ S

(n,k)
+ : 〈A0, �(Y)〉 = v�,A(�)(�(Y)) = b

}
.

Let x0 := Y0. Denote by n|L�
� (v�)

(xi ) the Newton step of f FW(k)
|L�

� (v�)
at a point xi . The corrector

step now computes

xi+1 = argmint f
FW(k)

(
xi + tn|L�

� (v�)
(xi )

)

until xi+1 is close enough to the central path of the rescaled problem over S(n,k)
+ and returns

Y� := xi+1. We will prove in Section 4 how this leads to a decrease in distance to the central
path of the original SDP. Note that multiple calls of the corrector step may be necessary
as after rescaling the Newton decrement might not be small enough anymore. However, as
we prove later on, the maximum number of corrector steps can be bounded in terms of the
problem data. Let Y� be the point returned by one of the subroutines. We set

X�+1 = X1/2
� �(Y�)X

1/2
� .

Then
〈A(�+1)

i , I 〉 = 〈A(�)
i , �(Y�)〉 = 〈Ai , X�+1〉

for all i = 0, 1, . . . ,m.
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Termination Criterion

In the predictor as well as in the corrector subroutine we solve a linear system for y ∈ R
m .

The solution of this linear system may be interpreted as a dual feasible solution provided the
current iterate is sufficiently close to the central path. Hence, we can approximate the duality
gap of our problem by calculating the difference

〈A0, X�〉 − yT b ≥ 0,

where y is calculated in every subroutine call. We may use this as a termination criterion.
Once this quantity falls below some ε > 0 chosen beforehand, we terminate with an ε optimal
solution.

Algorithm 1 Predictor-corrector SDP algorithm using FWn(k).
Require: ε > 0, σ ∈ (0, 1), X0 close to CP

� ← 0
while Duality gap > ε do

A(�)
i ← (X�)

1/2Ai (X�)
1/2, for i = 0, 1, . . . ,m

if �

(
f FW(k)
|null(L�

�
)
,Y0

)
≤ 1

14 then

Y� ← Predictor_Step(A(�), A(�)
0 , σ )

else
Y� ← Corrector_Step(A(�)

0 ◦ �, f FW(k),Y0)
end if
X�+1 ← (X�)

1/2�(Y�)(X�)
1/2

� ← � + 1
end while
return X�

Algorithm 2 Subroutine Predictor_Step.
Require: A, A0, σ ∈ (0, 1)
Solve for y:AA0 = AA∗y
Z = �†(A∗y − A0)
s∗ ← sup{s : Y0 − sZ ∈ FWn(k)}
Y ← Y0 − σ s∗Z
return Y

Algorithm 3 Subroutine Corrector_Step.

Require: A, f , x(0) : �
(
f |L , x(0)

)
> 1

14 , (L = null(A))

j ← 0

while
(
f|L , x( j)

)
> 1

14 do

Solve for y: AH(x( j))−1A∗y = AH(x( j))−1g(x( j))

n|L (x( j)) ← H(x( j))−1
(
A∗y − g(x( j))

)

x( j+1) ← argmint f
(
x( j) + tn|L (x( j))

)

j ← j + 1
end while
return x( j−1)
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3 Barrier Functionals for Sn+ and FWn(k)

In this section we derive the self-concordant barrier functional for the cone S
(n,k)
+ which

is used in the algorithm. Note that the ordinary self-concordant barrier for Sn+ is given by
f SDP(X) = − log(det(X)). We will emphasize parallels to the work of Roig-Solvas and
Sznaier [19].

In order to construct a self-concordant barrier function for our underlying set, we introduce
the notions of hyper-graphs and edge colorings as well as a well-known result about these
objects.

Definition 3 A hyper-graph H = (V , E) consists of a set V = {1, . . . , n} of vertices and
a set of hyper-edges E ⊆ {J ⊆ V : |J | ≥ 2}, which are subsets of the vertex set V . If all
elements in E contain exactly k vertices, we call the corresponding hyper-graph k-uniform.

Definition 4 LetH = (V , E) be a hyper-graph. A proper hyper-edge coloring withm colors
is a partition of the hyper-edge set E into m disjoint sets (color classes), say E = ∪i∈[m]Si
such that Si ∩ S j = ∅ if i �= j , and two hyper-edges that share a vertex are not in the same
color class. In other words, a proper hyper-edge coloring assigns a color to every hyper-edge
such that, if a given vertex appears in two different hyper-edges, they have different colors.

Theorem 1 (Baranyai’s theorem [6]) Let k, n ∈ N be such that k ≥ 2 and k|n, and let K n
k

be the complete k-uniform hyper-graph on n vertices. Then Kn
k has a proper hyper-edge

coloring using
(n−1
k−1

)
colors.

In (7) we wrote a program over FWn(k) as an equivalent program over the cone product
S

(n,k)
+ . The algorithm uses a self-concordant barrier function over said cone product. The

mapping � from S
(n,k)
+ to FWn(k) is surjective, but not bijective, since multiple elements in

the former may give rise to the same element in the latter set.

Assumption 1 Throughout we will assume k|n for some given n ∈ N and 2 ≤ k ∈ N.

This assumption is not without loss of generality, but one can always border the data
matrices of the SDP problem (3) with (n mod k) extra rows and columns in a suitable way
to ensure the assumption holds.

In the following we will let Y ∈ S
(n,k) be a collection of

(n
k

)
matrices of size k × k. We

recall the operator � is defined as

�(Y) =
∑

J∈J
Y→n
J .

The following generalizes Lemma 4.4 in [19], where a similar result is proved for k = 2.
It will be crucial in our analysis as it allows us to compare the values taken by the barrier
functionals on S

(n,k)
+ and S

n+ at Y and �(Y), respectively. In particular, it will allow us to
bound the reduction in the SDP barrier function in terms of the reduction of the barrier for
FW (k).

Lemma 2 Let
f FW(k)(Y) = −

∑

J∈J
log(det(YJ )) , Y ∈ int

(
S

(n,k)
+

)
.

123



A Predictor-Corrector Algorithm...

The barrier f FW(k)(Y) is self-concordant on int
(
S

(n,k)
+

)
. Furthermore, if X = �(Y) then

f FW(k)(Y) ≥ −
(
n − 1

k − 1

)
log(det(X)) + n

(
n − 1

k − 1

)
log

((
n − 1

k − 1

))

=:
(
n − 1

k − 1

)
f SDP(X) + n

(
n − 1

k − 1

)
log

((
n − 1

k − 1

))
.

Let us emphasize here that f FW(k) is a self-concordant barrier for S(n,k)
+ not FWn(k).

Before proving Lemma 2 we need an auxiliary result which extends Lemma A.1 from [19]
to general values of k such that k|n. To prove it we will make use of Theorem 1.

Lemma 3 Consider a Y = (YJ ) ∈ S
(n,k) consisting of positive definite k × k matrices and

let �(Y) ∈ FWn(k). Then there exists a set of
(n−1
k−1

)
matrices Zi � 0 of size n × n such that

�(Y) = ∑(n−1
k−1)

i=1 Zi and f FW(k)(Y) = −∑(n−1
k−1)

i=1 log(det(Zi )).

Proof Let Kn
k be the complete k-uniform hyper-graph on n vertices. We can identify each

hyper-edge {i1, i2, . . . , ik} ⊂ [n] in Kn
k with exactly one element YJ ∈ Y , namely the one

where {i1, i2, . . . , ik} = J . Let
{
S1, . . . , S(n−1

k−1)

}
be the color classes of a hype-edge coloring

of Kn
k . Define Yi := {YJ : J ∈ Si } and set Zi := �(Yi ). Then �(Y) = ∑(n−1

k−1)
i=1 Zi since

Si ∩ S j = ∅ for i �= j and ∪i Si = J . Moreover, since each Si corresponds to disjoint
index sets in J , there exists a permutation matrix Pi for every i = 1, . . . ,

(n−1
k−1

)
such that

Pi Zi PT
i is a block-diagonal matrix with blocks YJ on the diagonal for J ∈ Si . This shows

that Zi � 0.
From this we find

log(det(Zi )) = log
(
det

(
Pi Zi P

T
i

))
=

∑

J∈Si
log(det(YJ )).

Hence,

(n−1
k−1)∑

i=1

log(det(Zi )) =
(n−1
k−1)∑

i=1

∑

J∈Si
log(det(YJ ))

=
∑

J∈J
log(det(YJ )) = − f FW(k)(Y),

completing the proof. ��
We continue to prove Lemma 2.

Proof of Lemma 2 The self-concordance of f FW(k) on int
(
S

(n,k)
+

)
follows immediately from

the self-concordance of − log det(·) on int (Sk+
)
. By assumption X = �(Y) = ∑(n−1

k−1)
i=1 Zi ∈

FWn(k). Therefore,

− log (det(X)) = − log

⎛

⎜
⎝det

⎛

⎜
⎝

1
(n−1
k−1

)
(n−1
k−1)∑

i=1

(
n − 1

k − 1

)
Zi

⎞

⎟
⎠

⎞

⎟
⎠
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≤ −
(n−1
k−1)∑

i=1

1
(n−1
k−1

) log
(
det

((
n − 1

k − 1

)
Zi

))

= −
(n−1
k−1)∑

i=1

1
(n−1
k−1

) log
((

n − 1

k − 1

)n

det (Zi )

)
,

where the inequality follows by convexity of the function− log det(·) on int(Sn+
)
. Hence, we

find

−
(
n − 1

k − 1

)
log (det (X)) ≤ −

(n−1
k−1)∑

i=1

(
n log

((
n − 1

k − 1

))
+ log (det (Zi ))

)

= −
(n−1
k−1)∑

i=1

log (det (Zi )) −
(
n − 1

k − 1

)
n log

((
n − 1

k − 1

))
,

and the claim follows. ��
The following corollary is analogous to Corollary 4.5 from [19].

Corollary 4 If

Y0 =
{

YJ =
(
n − 1

k − 1

)−1

Ik×k : J ⊂ [n], |J | = k

}

,

then

f FW(k)(Y0) =
(
n − 1

k − 1

)
f SDP(X) + n

(
n − 1

k − 1

)
log

((
n − 1

k − 1

))

= n

(
n − 1

k − 1

)
log

((
n − 1

k − 1

))
.

Proof The first statement follows when noting that each i ∈ [n] lies in exactly (n−1
k−1

)
subsets

of [n] of size k. The reason is that when fixing i , there are n − 1 elements left out of which
we want to choose k − 1 more elements to make a set of size k. For the second statement
note that

log

(

det

(
1

(n−1
k−1

) Ik×k

))

= log

((
n − 1

k − 1

)−k
)

= −k log

((
n − 1

k − 1

))
.

The result follows when noting that k
(n
k

) = n
(n−1
k−1

)
. ��

4 Further Properties of the Barrier Functions

To prove convergence of our algorithm we need two essential ingredients. First, we need to
prove that the predictor step reduces the current objective value sufficiently, and secondly,
we must prove that the corrector step converges to a point close to the central path. Moreover,
we have to show that our criterion to decide which subroutine to call is valid. The issue here
is that we compute the Newton decrement of f FW(k) at Y0, but we need to be able to assert
that the Newton decrement of f SDP at X� is small enough.
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The next result we present will allow us to lower bound the progress made by the corrector
step. For this we need to be able to compare the barrier functions for Sn+ and S

(n,k)
+ . We

assume we have a given feasible solution X� such that 〈A(�)
0 , I 〉 = v. Define the vector

b(v) := (v, b1, . . . , bm)T . For further reference, consider

min
{
f SDP(X) : 〈A(�)

i , X〉 = b(v)i ∀i = 0, 1, . . . ,m, X ∈ S
n+
}

, (13)

which we would like to compare to

min
{
f FW(k)(Y) : Y ∈ L�

� (v) ∩ S
(n,k)
+

}
. (14)

Suppose Y∗ is an approximate solution to (14). Defining

X�+1 = X1/2
� �(Y∗)X1/2

� ,

we find that X� ∈ FSDP for all �. In other words, the points X� we obtain via this procedure
are all feasible for the original SDP (1). The following lemma allows us to lower bound the
decrease achieved by one corrector step in terms of an element in S(n,k)

+ .

Lemma 5 Let Y∗ be a feasible solution to (14) and Y0 as in (10). Furthermore, let X�+1 =
X1/2

� �(Y∗)X1/2
� for X� a feasible solution. Then

(
n − 1

k − 1

) (
f SDP(X�) − f SDP(X�+1)

) ≥ f FW(k)(Y0) − f FW(k)(Y∗).

Proof The proof follows immediately when noting that
(
n − 1

k − 1

) (
f SDP(X�) − f SDP(X�+1))

)

=
(
n − 1

k − 1

)(
f SDP(X�) − f SDP(X1/2

� �(Y∗)X1/2
�

)

= n

(
n − 1

k − 1

)
log

((
n − 1

k − 1

))

︸ ︷︷ ︸
= f FW(k)(Y0) by Cor. 4

− f SDP(�(Y∗)) − n

(
n − 1

k − 1

)
log

(
n − 1

k − 1

)
.

︸ ︷︷ ︸
≥− f FW(k)(Y∗) by Lemma 2

��

4.1 Relation of the Newton Decrements

In this subsection we will prove that we can upper bound the Newton decrement of f SDP at
the identity in terms of the Newton decrement of f FW(k) at Y0. We now define the following
operator

�† : Sn → S
(n,k)

via
(
�†(X)

)
J =

(
1

(n−1
k−1

) I + 1
(n−2
k−2

) (eeT − I )

)

◦ X J ,J for J ⊂ [n], |J | = k,

where ◦ denotes the Hadamard product. See Fig. 2 for a visualization of the surjection from
S

(n,k)
+ to FWn(k).
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Fig. 2 Visualization the surjection from S
(n,k)
+ to FWn(k)

This operator satisfies

�(�†(X)) = X for all X ∈ S
n .

An inner product on S
(n,k) is given by

〈X ,Y〉(n,k) :=
∑

J∈J
〈X J , YJ 〉,

(
X = (X J ) ∈ S

(n,k), Y = (YJ ) ∈ S
(n,k)

)
.

It is straightforward to verify the following relation between the norms induced by this inner
product, and the Frobenius norm on Sn .

Lemma 6 For any X ∈ S
n we have

‖�†(X)‖(n,k) ≤ ‖X‖.
Suppose now X� is a feasible solution to (4) such that 〈A0, X�〉 = v. We define the two

subspaces

L�
� =

{
Y ∈ S

(n,k) : (A(�) ◦ �)(Y) = b
}

and
L� =

{
X ∈ S

n : A(�)(X) = b
}

.

We may also add an equality for the objective, in which case we will refer to the following
operator

A(�)
0 (X) =

(
〈A(�)

0 , X〉, 〈A(�)
1 , X〉, . . . , 〈A(�)

m , X〉
)

∈ R
m+1.
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The respective subspaces will be denoted as follows

L�
� (v) =

{
Y ∈ S

(n,k) : (A(�)
0 ◦ �)(Y) = b(v)

}
(15)

and
L�(v) =

{
X ∈ S

n : A(�)
0 (X) = b(v)

}
, (16)

where b(v) := (v, b1, . . . , bm)T .
When we consider the subspaces defined via the operator with respect to the initial data

matrices, we omit the subscript �, e.g.,

L� =
{
Y ∈ S

(n,k) : 〈Ai , �(Y)〉 = bi , ∀i ∈ [m]
}

.

The following lemma corresponds to Lemma A.2 in [19], and allows us to bound the
Newton decrement of f SDP|L in terms of f FW(k)

|L .

Lemma 7 Assume Y0 ∈ L� and I ∈ L. At Y0 one has

�
(
f FW(k)
|L�

, Y0

)
≥

�
((n−1

k−1

)
f SDP|L , I

)

√(n−1
k−1

) =
√(

n − 1

k − 1

)
�

(
f SDP|L , I

)
.

Proof Following (9) we have

�
(
f FW(k)
|L�

, Y
)

≥ 〈d, nFW(Y)〉(n,k),Y
‖d‖(n,k),Y

for all d ∈ L \ {0}.

Choosing d = �†(nSDPL (X)) ∈ L leads to

�
(
f FW(k)
|L�

,Y
)

≥ 〈�†(nSDPL (X)), nFW(Y)〉(n,k),Y
‖�†(nSDPL (X))‖(n,k),Y

,

and evaluating the expression at Y0 we find

�
(
f FW(k)
|L�

,Y0

)
≥ 〈�†(nSDPL (X)), nFW(Y0)〉(n,k),Y0

‖�†(nSDPL (X))‖(n,k),Y0

= 〈�†(nSDPL (X)),−gFW(Y0)〉(n,k)
(n−1
k−1

)‖�†(nSDPL (X))‖(n,k)

≥ 〈�†(nSDPL (X)), (I , I , . . . , I )〉(n,k)

‖nSDPL (X)‖

= tr(nSDPL (X))

‖nSDPL (X)‖ ,

where the second inequality follows from Lemma 6. Setting X = I and noting

tr(nSDPL (I )) = 〈I , nSDPL (I )〉 = 1
(n−1
k−1

) 〈gSDP(I ),−nSDPL (I )〉

= 1
(n−1
k−1

)
(

�

((
n − 1

k − 1

)
f SDP|L , I

))2

,
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we conclude

�
(
f FW(k)
|L�

,Y0

)
≥ 1

(n−1
k−1

)
�

((n−1
k−1

)
f SDP|L , I

)2

‖nSDPL (I )‖ =
�

((n−1
k−1

)
f SDP|L , I

)

√(n−1
k−1

) ,

because

‖nSDPL (I )‖ =
�

((n−1
k−1

)
f SDP|L , I

)

√(n−1
k−1

) =
√(

n − 1

k − 1

)
�

(
f SDP|L , I

)
.

��

5 Complexity Analysis

Webegin the complexity analysis with the following lemma, which helps us to checkwhether
the current point is close enough to the central path of the SDP.

Lemma 8 Let X� be a feasible iterate for the SDP (13) and let the objective value at X� be v,
i.e., 〈A0, X�〉 = v. Define the two subspaces L�

� (v), L� as in (15), (11) respectively. Then, if

�

(
f FW(k)
|L�

� (v)
, Y0

)
≤ 1

14
,

one has

�
(
f SDPηv |L�

, I
)

≤ 1

9
,

where
f SDPηv

(X) = ηv〈A0, X〉 − log det(X),

and ηv is the value of the central path parameter that corresponds to the objective value v.

Proof By Lemma 7 we know that

1

14
≥ �

(
f FW(k)
|L�

� (v)
, Y0

)
≥ �

(
f SDP|L�(v), I

)
.

Let now z(v) be the point on the central path of the rescaled SDP with objective value v and
let the corresponding parameter be ηv . By Theorem 2.2.5 from [18] we have

‖z(v) − I‖I ≤ �
(
f SDP|L�(v), I

)
+

3�
(
f SDP|L�(v), I

)2

(
1 − �

(
f SDP|L�(v), I

))3 ≤ 1

11
.

Let X+ be the point returned by taking a Newton step at X = I with respect to the function
f SDPηv

restricted to L�. By Theorem 2.2.3 in [18] we have

‖z(v) − I‖2I
1 − ‖z(v) − I‖I ≥ ‖X+ − z(v)‖I

and hence

�
(
f SDPηv |L�

, I
)

= ‖X+ − I‖I ≤ ‖X+ − z(v)‖I + ‖z(v) − I‖I
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≤ ‖z(v) − I‖2I
1 − ‖z(v) − I‖I + ‖z(v) − I‖I ≤ 1

9
.

��
The Newton decrement of the rescaled SDP being smaller than 1/9 means we can safely

perform the next predictor step. If the current point is too far away from the central path and
one were to perform the predictor step the direction may not be approximately tangential to
the central path. Hence, once the Newton decrement of the factor width program is small
enough, so is the one of the SDP and we can perform the next predictor step, knowing the
direction will be approximately tangential to the central path. After each predictor step we
may have to take several corrector steps, to get back close to the central path.

Corrector Step

We will now find an upper bound on the number of corrector steps needed to get close to
the central path. We know from Lemma 5 that a decrease in the barrier for the factor width
cone will lead to a decrease in the barrier function for our original SDP, meaning we made
progress towards its central path. The following lemma asserts that if we are too far away
from the central path we can attain at least a constant reduction in the barrier of the factor
width cone and therefore obtain a constant reduction in the SDP barrier as well.

Lemma 9 Let X� be a feasible iterate for the SDP (13) and let the objective value at X� be
v. Define the subspace L�

� (v) as in (15). If

�

(
f FW(k)
|L�

� (v)
,Y0

)
>

1

14
,

then

f FW(k)
|L�

� (v)
(Y0) − f FW(k)

|L�
� (v)

(Y∗) ≥ 1

2688
.

Proof If �

(
f FW(k)
|L�

� (v)
,Y0

)
> 1

14 the corrector step will employ a line search to find Y∗, i.e.

the point in L�
� (v) that minimizes f FW(k). Let nL�

� (v)(Y0) be the Newton step taken from

Y0 and let t = 1
8‖n

L�
�

(v)
(Y0)‖(n,k),Y0

, where the norm in the denominator is the local norm at

Y0 induced by 〈·, ·〉(n,k). Then, for

Ỹ = Y0 + t nL�
� (v)(Y0)

we find by Theorem 2.2.2 in [18]

f FW(k)(Ỹ) ≤ f FW(k)(Y0) − 1

14

1

8
+ 1

2

(
1

8

)2

+ (1/8)3

3(1 − 1/8)

≤ f FW(k)(Y0) − 1

2688
.

��
Note that this implies together with Lemma 5 that

1

2688
≤ f FW(k)(Y0) − f FW(k)(Ỹ) ≤ f FW(k)(Y0) − f FW(k)(Y∗)

≤
(
n − 1

k − 1

) (
f SDP(X�) − f SDP(X�+1)

)
.
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Knowing each line search reduces the distance to the targeted point on the central path at
least by a constant amount will allow us to bound the number of line searches we need to get
close enough if we have an upper bound on the distance of the result of the predictor step
and the corresponding point on the central path of the SDP.

Lemma 10 Let X1 be close to a point z(v1) on the central path of the SDP in the sense that

�
(
f SDPL�(v1)

, X1

)
≤ 1

9 . Furthermore, let X2 be the result of the predictor step and z(v2) be

the point on the central path with the same objective value as X2. Then

f SDP(X2) − f SDP(z(v2)) ≤ n

(
log

1

1 − σ

)
+ 1

154
.

Proof A proof of this statement for generic self-concordant barriers may be found on page
54 of [18]. We have used that the barrier parameter for the barrier of the psd cone is given
by ϑ f SDP = n. ��
Lemma 11 Let v2 be the objective value of the result X2 of the predictor step. The maximum
number K of line searches needed to find a point XK+2 which is close enough to z(v2) in

the sense that �
(
f SDP|L�(v2)

, XK+2

)
≤ 1

9 is

K =
⌈
2688

(
n − 1

k − 1

)(
n log

(
1

1 − σ

)
+ 1

154

)⌉
,

where z(v2) is the point on the central path with objective value v2.

Proof We know that the distance between the result of the predictor phase and the targeted

point on the central path is at most n
(
log 1

1−σ

)
+ 1

154 by Lemma 10. Moreover, using

Lemmas 9 and 5 we find that in each corrector step we reduce this distance by at least
1

2688(n−1
k−1)

, unless the SDP Newton decrement at I is already small enough to perform the

next predictor step. If after rescaling the Newton decrement of the factor width program
satisfies

�

(
f FW(k)
|L�

� (v)
,Y0

)
>

1

14
,

thereby implying by Lemma 8 that I is not close to the central path of the SDPwe can perform
another corrector step yielding at least a constant decrease of 1

2688(n−1
k−1)

of the distance to the

central path, and rescale again. This process can be continued until we do not get such a
constant decrease anymore at which point we know we must be close enough to the central
path, in the sense of Lemma 8. This is because if the decrease is not greater than 1

2688(n−1
k−1)

we know that the Newton decrement cannot satisfy

�

(
f FW(k)
|L�

� (v)
,Y0

)
>

1

14
,

from which follows by Lemma 8 that

�
(
f SDPL�(v), I

)
≤ 1

9
.

This implies we are close enough to the central path to perform the next predictor step. Hence,
after at most

K =
⌈
2688

(
n − 1

k − 1

)(
n log

(
1

1 − σ

)
+ 1

154

)⌉
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corrector steps we are close enough to the central path so that we can perform the next
predictor step.

Predictor Step

We will make use of the analysis of the short step interior point method discussed in
Section 2.4.2 in [18]. We will show that each predictor step reduces the objective value by
an amount at least as large as the objective decrease by the short-step interior point method.
This will allow us to conclude the maximum number of predictor steps needed to obtain an ε

optimal solution of the given SDP. Note that the decrease in objective value obtained by our
predictor method is as follows. Let X be the point from where the predictor method starts
and −(A0)X := −H(X)A0 be the direction. Then for σ ≥ 1

4 and s∗ as in (12) we find

〈A0, X − s∗σ (A0)X 〉 = 〈(A0)X , X〉 − s∗σ 〈A0, (A0)X 〉
≤ 〈A0, X〉 − 1

4
‖(A0)X‖X .

This implies the decrease is at least as large the one obtained in one iteration of the short-step
method, as discussed in [18, §2.4.2]. Renegar’s analysis shows that short-step method leads
to an ε optimal solution in at most

K = 10
√

ϑ f log(ϑ f /(ε η0))

steps, where η0 is such that our starting point X0 is close to zη0 . By an ε optimal solution we
mean a feasible solution X such that

v∗
SDP ≤ 〈A0, X〉 ≤ v∗

SDP + ε.

Predictor and Corrector Steps Combined

Combining the complexity analysis of predictor and corrector steps we arrive at the following
theorem.

Theorem 12 Let X0 be a feasible solution of the SDP (1) and assume it is close to some point

zη0 on the corresponding central path in the sense that �
(
f SDP|L(v)

, X0

)
< 1/14, where L is

as in (16) for v = 〈A0, X0〉. Algorithm 1 converges to an ε optimal solution in at most

K =
⌈
2688

(
n − 1

k − 1

)(
n log

(
1

1 − σ

)
+ 1

154

)⌉
10

√
n log(n/(ε η0))

= O

((
n − 1

k − 1

)
n3/2 log

(
1

1 − σ

)
log

(
n

εη0

))

steps.

The assumption of a starting point “close to the central path” may be satisfied by the self-
dual embedding strategy [11]. Alternatively, one may first solve an auxiliary SDP problem,
as in [18, Section 2.4.2], by using the algorithm we have presented. The solution of this
auxiliary problem then yields a point close to the central path of the original SDP problem.
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6 Discussion and Future Prospects

We finish with a brief discussion on various topics surrounding Algorithm 1.

Replacing the Predictor Step

In their paper [19], the authors propose to perform a fixed number of decrease steps, where
a decrease step consists of solving (6) and rescaling with respect to the optimal solution.
In our algorithm we considered a different method to decrease the objective value, i.e., the
predictor method, where we use the traditional SDP affine scaling direction.

Tractability of FactorWidth Cones

Some recent ideas regarding factor width cones that could influence future research in this
area are:

– the idea to optimize over the dual cone of FWn(k) by utilizing clique trees [24].
– a variation on the factor width cone involving fewer blocks [25].

In addition, it would be very helpful to know a computable self-concordant barrier functional
for the cone FWn(k), as well as its complexity parameter.
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