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Abstract
This paper gives an overview of our work on a scattering theory of one-forms and functions
in a system of quasicircles on Riemann surfaces. It is rooted in an “overfare” process which
takes a harmonic function on one side of the system of quasicircles to a harmonic function
on the other side, with the same boundary values in a certain intrinsic non-tangential sense.
This is bounded with respect to Dirichlet energy. If extra cohomological data is specified,
one can apply this process to harmonic one-forms, and the resulting “scattering matrix” in
terms of the holomorphic and anti-holomorphic components of the one-form is unitary. We
describe applications to approximation theory, global analysis of singular integral operators
on Riemann surfaces, and a new extension of the classical period map to surfaces of genus
g with n boundary curves.

Keywords Overfare operator · Scattering · Bordered surfaces · Schiffer operators ·
Quasicircles · Period mapping · Kähler potential · Generalized polarizations · Generalized
Grunsky inequalities · Fredholm index · Conformally nontangential limits · Conformal
Sobolev spaces
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1 Introduction

Our goal is to give a survey of our recent work [24] on a scattering theory of one-forms
on Riemann surfaces and highlight some of its applications. These include applications to
global analysis (e.g. new index theorems on Riemann surfaces relating conformal and topo-
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Fig. 1 The Riemann surface with
a system of curves

logical invariants on a surface), approximation theory on Riemann surfaces (for functions
and one-forms), boundary values of holomorphic one forms and Grunsky operators on Rie-
mann surfaces, a formula log det

(
J̇∗J̇

)
for the Kähler potential of the Weil–Petersson class

universal Teichmüller spaces in terms of a Cauchy-type operator J̇, and algebraic geometry
(polarizations of surfaces with boundary and period matrices). Underlying the analytic for-
mulation is a new conformally invariant approach to Sobolev spaces of harmonic functions
on Riemann surfaces, which leads to a new characterization of H−1/2 spaces on the boundary
in terms of equivalence classes of harmonic one-forms.

We now describe the process more precisely. The scattering takes place in a system of
curves which separate the Riemann surface into at least two connected components. Let R
be a compact surface divided by a complex � of simple closed curves into surfaces �1 and
�2, see Fig. 1.

The number of curves is arbitrary, and we allow either �1 or �2 to be disconnected, but
not both. Now given a harmonic function h1 on �1, it has boundary values on �, which in
turn uniquely determine a harmonic function h2 on �2 with the same boundary values. We
call h2 the “overfare” of h1 and write h2 = O1,2h1.

For harmonic one-forms, there is a similar overfare procedure. Briefly, one finds an
anti-derivative of a form α1 on �1, applies the overfare O1,2 to the anti-derivative, and
differentiates the result to obtain a form α2 on �2. However, α1 need not be exact and thus
might have no primitive, and furthermore one must also specify the cohomological proper-
ties of the form α2. We deal with this by specifying a harmonic one-form ζ on R such that
α1 − ζ is exact on �1, and let α2 be such that α2 − ζ is exact on �2. Thus the extra coho-
mological data required to specify the overfare of harmonic one-forms is identified with the
finite-dimensional vector space of harmonic one-forms onR. In general, neither an overfared
function nor a one-form is harmonic on the union.

In our earlier work, we referred to overfare as “harmonic reflection” or “transmission”. But
these terms are in usewith differentmeanings, some ofwhich appear in related topics (e.g. the
“transmission coefficient” in scattering theory). So we were led to coin a different name. We
settled on “overfare”, derived from Old English “oferferian”, which is somewhat suggestive
of the concept to modern English speakers. Furthermore, it has cognates in modern related
languages (e.g. Plattdüütsch “overföhren”, Swedish “överföra”,German “überführen”)which
are also suggestive of “pushing through” or “travelling over”.

In analogywith potential-well scattering on the real line, we can regard the aforementioned
α2 as the form obtained from α1 through scattering. In this scattering process, the curves
themselves play the role of the potential well.We assume only that the curves are quasicircles,
which generically are non-rectifiable curves arising in quasiconformal Teichmüller theory.
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To illustrate the idea and clarify the analogies, we describe the scattering process in the
case of the Riemann sphere. Choose a quasicircle � separating 0 and ∞, and let �1 and �2

be the components of the complement of � in the sphere. We consider harmonic one-forms
related by overfare across �. As in two-dimensional conformal field theory, we think of the
radial direction as time on a logarithmic scale, so that the origin corresponds to time −∞
and the point at infinity corresponds to time ∞.

We can think of the overfared form as solving Laplace’s equation with a potential. Free
solutions are the harmonic forms, which are harmonic on the domains �1 and �2, but not
across the quasicircle “seam”. The source has support on the quasicircle itself, that is, the
seam is in some sense a thin potential well.

We identify the incoming and outgoing solutions with the harmonic forms α1+β1 (on�1)
and α2 + β2 (on �2); that is, the free solutions at t = −∞ ∼ z = 0 and t = ∞ ∼ z = ∞,
respectively.We identify the positive and negativemodes of the solutionwith the holomorphic
and anti-holomorphic parts of the solution respectively. Thus the solution to the scattering
problem is αk + βk on �k . As in the case of scattering on the real line, we can identify a
scattering matrix, which in our case relates the positive and negative modes, and is unitary.
Finally, we observe that in the higher genus case, we must add the extra cohomological data
to this scattering matrix.

This analogy suggests many interesting questions and conjectures in complex geometry
and Teichmüller theory, especially in association with solutions to the Beltrami equation. But
elaborating on this would place too many demands on a short survey. For now we content
ourselves with some tantalizing hints and concrete theorems.

Wewould alsomention that the scattering theory that is developed here is different than the
scattering theory of P. Lax andR. Phillips [10] which deals with the spectral decomposition of
the hyperbolic Laplacian �H in L2(H/�) where � is a Fuchsian group, using the scattering
theory of the automorphic wave equation ∂2t u = �Hu.

In the process of overfaring harmonic functions, there are two analytic problems to be
resolved. The first is to define the boundary values in preparation for overfare, and the second
is to show the existence and continuous dependence of the overfare. The first problem is in
a certain sense independent of the boundary regularity, while the second problem is more
delicate and sensitive to the regularity of the curve.

In defining the boundary values, the nature of the approach to the boundary could be
defined either extrinsically in terms of the geometry of the ambient space containing the
curve, or in terms of the intrinsic geometry of the region on which the function is defined.
For example, since harmonic functions with L2 derivatives are in the Sobolev space H1 for
a wide class of curves, one could consider the Sobolev trace to the boundary; in this case,
one would need to take into account the regularity of the boundary for this to be defined.
The possibility of dealing with boundaries that may not be rectifiable would add additional
difficulties. In this context, there are the seminal papers of C. Kenig and D. Jerison on the
boundary behavior of harmonic functions in nontangentially accessible (NTA) domains in
R

n , see e.g. [6, 7]. Given a bounded open subset 	 in Rn , one defines nontangential balls as
those balls for which diameter and distance to the boundary ∂	 of	 are of the same order of
magnitude. An NTA domain is a domain	 such that any point p ∈ ∂	 can be approached in
some “suitable” way by a chain of nontangential balls lying in 	, and also by nontangential
balls lying in the complement of 	. The corresponding regular chains are then used in order
to define nontangential notions similar to the one used in the classical case. Now as was
shown by P. Jones [8] for a domain in the plane 	, one has that 	 in NTA if and only if 	 is
a quasidisk.
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914 W. Staubach and E. Schippers

Our approach to boundary values proceeds intrinsically, in such a way that the boundary
can be viewed as the ideal boundary of �1, which does not depend on the geometry of the
boundary in R. Equivalently, it can be regarded as an analytic Jordan curve in the double
of �1. We realize this “radial” approach by defining a kind of conformally non-tangential
boundary value (referred to as CNT boundary values), in which non-tangential cones are
defined in terms of “collar charts” taking collar neighbourhoods of the boundary to annuli.
Then, a classical theorem of A. Beurling applies to show that the boundary values exist except
on a Borel set of logarithmic capacity zero in the circle under the chart (we call this a null set).
We show that this notion of boundary value is independent of the choice of collar chart; this is
essentially because the angle of approach to the ideal boundary is a well-defined conformal
invariant. Thus the boundary values are defined along any non-tangentially approaching
curve. The independence of the boundary values on the choice of collar chart is a key tool
in the application of the cutting and sewing approach to boundary value problems which we
have developed in this and other papers [20, 21].

The paper is organised as follows. In Section 2, we review the definitions of Bergman
and Dirichlet spaces of functions and forms, collar charts, CNT boundary values, harmonic
measures and Green functions on Riemann surfaces. In Section 3, we give an exposition of
our new approach to conformally invariant Sobolev spaces on Riemann surfaces of harmonic
functions and forms, which in a sense is the ground on which our overfare paradigm stands.
Section 4 is devoted to the definitions and properties of the overfare operators. In Section 5,we
introduce the Schiffer and restriction operators that are the building-blocks of our scattering
matrix S. We also describe the scattering process and briefly discuss the unitarity of S.
Finally in Section 6, we discuss the applications of the scattering theory to approximation
theory, global analysis and complex geometry, for example index theorems and explicit
formulas for the Kähler potential of the Weil–Petersson metric on universal Teichmüller
space. Applications to period matrices are also discussed.

2 Spaces of Functions and Forms

In this paper, we will denote positive constants in the inequalities by C whose value is not
crucial to the problem at hand. The value ofC may differ from line to line, but in each instance
could be estimated if necessary. Moreover, when the values of constants in our estimates are
of no significance for our main purpose, then we use the notation a � b as a shorthand for
a ≤ Cb. If a � b and b � a then we write a ≈ b.

On any Riemann surface, define the dual of the almost complex structure, ∗ in local
coordinates z = x + iy, by

∗(a dx + b dy) = a dy − b dx .

This is independent of the choice of coordinates. It can also be computed in coordinates that
for any complex function h

2∂zh = dh + i ∗ dh.

Definition 2.1 We say a complex-valued function f on an open set U is harmonic if it is C2

on U and d ∗ d f = 0. We say that a complex one-form α is harmonic if it is C1 and satisfies
both dα = 0 and d ∗ α = 0.

Equivalently, harmonic one-forms are those which can be expressed locally as d f for
some harmonic function f . Harmonic one-forms and functions must of course be C∞.
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Denote complex conjugation of functions and forms with a bar, e.g. α. A holomorphic
one-form is one which can be written in coordinates as h(z) dz for a holomorphic function
h, while an anti-holomorphic one-form is one which can be locally written h(z) dz̄ for a
holomorphic function h.

Denote by L2(U ) the set of one-forms ω on an open set U which satisfy
∫∫

U
ω ∧ ∗ω < ∞

(observe that the integrand is positive at every point, as can be seen by writing the expression
in local coordinates). This is a Hilbert space with respect to the inner product

(ω1, ω2) =
∫∫

U
ω1 ∧ ∗ω2. (2.1)

Definition 2.2 The Bergman space of holomorphic one-forms is

A(U ) = {α ∈ L2(U ) : α holomorphic}.
The anti-holomorphic Bergman space is denoted A(U ). We will also denote

Aharm(U ) = {α ∈ L2(U ) : α harmonic}.
Observe that A(U ) and A(U ) are orthogonal with respect to the inner product (2.1). In

fact we have the direct sum decomposition

Aharm(U ) = A(U ) ⊕ A(U ).

If we restrict the inner product to α, β ∈ A(U ) then since ∗β = iβ, we have

(α, β) = i
∫∫

U
α ∧ β.

Denote the projections induced by this decomposition by

PU : Aharm(U ) → A(U ),

PU : Aharm(U ) → A(U ).

Let f : U → V be a biholomorphism. We denote the pull-back of α ∈ Aharm(V ) under f
by f ∗α. Explicitly, if α is given in local coordinatesw by a(w) dw+b(w) dw̄ andw = f (z),
then the pull-back is given by

f ∗ (
a(w) dw + b(w) dw̄

)
= a( f (z)) f ′(z) dz + b( f (z)) f ′(z) dz̄. (2.2)

The Bergman spaces are all conformally invariant, in the sense that if f : U → V is a
biholomorphism, then f ∗A(V ) = A(U ) and this preserves the inner product. The same
holds for the anti-holomorphic and harmonic spaces.

Definition 2.3 We define the spaceAe
harm(U ) as the subspace of exact elements ofAharm(U ),

and similarly for Ae(�) and Ae(�).

By a bordered surface of type (g, n) we mean a surface with g handles and n borders,
each of which is homeomorphic to the circle S1. Here the term “border” is used in the strong
sense of a complex analytic boundary of the manifold, see e.g. Ahlfors and Sario [1]. We
assume that the surface with the borders included is compact. One-forms which have zero
periods along the borders are called semi-exact.
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916 W. Staubach and E. Schippers

Definition 2.4 Let � be a bordered surface of type (g, n). We say that an L2 one-form
α ∈ Aharm(�) is semi-exact if for any simple closed curve γ isotopic to a boundary curve
∂k�, ∫

γ

α = 0.

The class of semi-exact one-forms on � is denoted Ase
harm(�). The holomorphic and anti-

holomorphic semi-exact one-forms are denoted by Ase(�) and Ase(�) respectively.

The following spaces also play significant roles in this paper.

Definition 2.5 The Dirichlet spaces of functions are defined by

Dharm(U ) = { f : U → C, f ∈ C2(U ) : d f ∈ L2(U ) and d ∗ d f = 0},
D(U ) = { f : U → C : d f ∈ A(U )}, and

D(U ) = { f : U → C : d f ∈ A(U )}.
We can define a degenerate inner product on Dharm(U ) by

( f , g)Dharm(U ) = (d f , dg)Aharm(U ),

where the right hand side is the inner product (2.1) restricted to elements of Aharm(U ). The
inner product can be used to define a seminorm on Dharm(U ), by letting

‖ f ‖2Dharm(U ) := (d f , d f )Aharm(U ).

We note that if one defines the Wirtinger operators via their local coordinate expressions

∂ f = ∂ f

∂z
dz, ∂ f = ∂ f

∂ z̄
d z̄,

then the aforementioned inner product can be written as

( f , g)Dharm(U ) = i
∫∫

U

[
∂ f ∧ ∂g − ∂ f ∧ ∂g

]
.

Although this implies that D(U ) and D(U ) are orthogonal, there is no direct sum decompo-
sition into D(U ) and D(U ). This is because in general there exist exact harmonic one-forms
whose holomorphic and anti-holomorphic parts are not exact.

Observe that the Dirichlet spaces are conformally invariant in the same sense as the
Bergman spaces. That is, if f : U → V is a biholomorphism then

C f h = h ◦ f

satisfies
C f : D(V ) → D(U )

and this is a seminorm preserving bijection. Similar statements hold for the anti-holomorphic
and harmonic spaces.

In general, we define the Sobolev space of a bordered surface � in the following way. We
treat � as a subset of its compact double �d , so that the borders are analytic curves and in
particular smooth. By the uniformization theorem, the double has a constant curvature Rie-
mannian metric compatible with the complex structure. The Sobolev space Hs(�) consists
of restrictions of Hs(�d) to �. We can similarly define Hs(∂�) in the standard way.

We define a kind of chart on bordered surfaces near the boundary, which we call a collar
chart.
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Definition 2.6 Let � be a bordered Riemann surface of type (g, n). Let Ar ,1 denote the
annulus {z : r < |z| < 1}. A biholomorphism φ : U → Ar ,1 is called a collar chart of ∂k�

(for some fixed k) if U is an open set in � bounded by two Jordan curves ∂k� and �, such
that � is isotopic to ∂k� within the closure of U , and such that φ extends homeomorphically
to the closure. A domain U is called a collar neighbourhood of ∂k� if it is the domain of
some collar chart.

One can show that every boundary curve ∂k� has a collar chart.
Next we define a notion of non-tangential limit which in a sense is the natural notion of

non-tangential limit on the border of a Riemann surface.

Definition 2.7 Let � be a border of � with a collar chart ψ of � in �. The conformally
non-tangential limit (denoted henceforth by CNT limit) of a function h : � → C at p ∈ �

is ζ if h ◦ ψ−1 has a non-tangential limit of ζ at ψ(p).

The CNT limit has the following three basic properties [24]:

• It is independent of the choice of ψ .
• It is the same as that obtained by treating � as the abstract border of the Riemann surface

�.
• It is conformally invariant, meaning that if F : �1 → � is a conformal map, then h has
a CNT limit of ζ at p if and only if h ◦ F has a CNT limit of ζ at F−1(p).

Next, we define a potential-theoretically negligible set on the border which we call a null
set.

Definition 2.8 We say that a set I ⊂ � is null if it is a Borel set and ψ(I ) has logarithmic
capacity zero in S1.

This definition is independent of the choice ofψ , but rather interestingly, not independent
of which side of � one is at.

Using a classical theorem of Beurling and some surgery, the authors proved in [20] the
following result:

Theorem 2.9 A function h ∈ Dharm(�) has CNT boundary values (i.e. CNT limit on the
boundary) except possibly on a null set.

A suitable adaptation of the proof of [20, Theorem 3.17] also yields

Theorem 2.10 Let � be a bordered surface of type (g, n) and let Uk ⊆ � be collar neigh-
bourhoods of ∂k� for k = 1, . . . , n. Let hk ∈ Dharm(Uk) for k = 1, . . . , n. There is a function
H ∈ Dharm(�) whose CNT boundary values agree with those of hk on ∂k� up to a null set
for each k = 1, . . . , n.

We thus make the following definition.

Definition 2.11 Let � be a Riemann surface and let ∂k� be a component of the border of �

homeomorphic to S1. Given functions h j : ∂k�\I j → C, j = 1, 2, where I1 and I2 are null
sets, we say that h1 ∼ h2 if h1 and h2 are both defined on ∂k�\I for some null set I and
h1 = h2 on ∂k�\I .

In order to define conformally invariant Sobolev H1-spaces we use harmonic measure
on bordered Riemann surfaces. We can also use Green’s functions to give an equivalent
definition of these spaces. First we recall the notion of harmonic measure in the context of
bordered Riemann surfaces.
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Definition 2.12 Let � be a bordered surface of type (g, n). Let ωk , k = 1, . . . , n be the
unique harmonic function which is continuous on the closure of � and which satisfies

ωk =
{
1 on ∂k�,

0 on ∂ j�, j �= k.

The one-forms dωk are the harmonic measures.

Another basic notion which is of fundamental importance in our investigations is that of
Green’s functions.

Definition 2.13 Let � be a type (g, n) surface. For fixed z ∈ �, we define the Green’s
function of � to be a function g(w; z) such that

1. for a local coordinateφ vanishing at z the functionw �→ g(w; z)+log |φ(w)| is harmonic
in an open neighbourhood of z;

2. limw→ζ g(w; z) = 0 for any ζ ∈ ∂�.

That such a function exists, follows from [1, II.3 11H, III.1 4D], considering � to be a
subset of its double �d .

Definition 2.14 For compact surfaces R, one defines the Green’s function G (see e.g. [14])
as the unique function G (w,w0; z, q) satisfying

1. G is harmonic in w on R\{z, q};
2. for a local coordinateφ on an open setU containing z,G (w,w0; z, q)+log |φ(w)−φ(z)|

is harmonic for w ∈ U ;
3. for a local coordinateφ on an open setU containing q ,G (w,w0; z, q)−log |φ(w)−φ(q)|

is harmonic for w ∈ U ;
4. G (w0, w0; z, q) = 0 for all z, q, w0.

The existence of such a function is a standard fact about Riemann surfaces, see for example
[14]. It can be shown that G is also harmonic in z everywhere it is non-singular. Green’s
function is conformally invariant. That is, if � is of type (g, n), and f : � → �′ is
conformal, then

g�′( f (w); f (z)) = g�(w; z). (2.3)

Similarly, if R is compact and f : R → R′ is a biholomorphism, then

GR ′( f (w), f (w0); f (z); f (q)) = GR (w,w0; z, q). (2.4)

These follow from uniqueness of Green’s function; in the case of type (g, n) surfaces,
one also needs the fact that a biholomorphism extends to a homeomorphism of the boundary
curves.

Remark 2.15 The condition (4) involving the pointw0 simply determines an arbitrary additive
constant, and is not of any interest in the paper. This is because ∂wG is independent of w0,
and only such derivatives enter in the paper. So we leave w0 out of the expression for G from
here onwards.

3 Conformally Invariant Approach to Sobolev Spaces of Harmonic
Functions

As is well known, every harmonic function with L2 derivatives is in the Sobolev H1 space.
However, the L2 norm on the function itself is not conformally invariant. One could perhaps

123



A Survey of Scattering Theory on Riemann Surfaces with Applications... 919

make the L2 norm on the function conformally invariant by restricting to conformal maps
which are local isometries of the metric, but this is too restrictive. In this section, we give
simple ways to define conformally invariant norms, which are equivalent to the Sobolev norm
when restricting to harmonic functions.We also develop a new approach to the Sobolev H1/2

space on the boundary and its dual. The main new result is a description of the H−1/2 space
on the boundary in terms of equivalence classes of harmonic one forms and a natural pairing.
This makes use of the complex structure in a fundamental way and is conformally invariant.
These equivalent descriptions and norms are particularly adapted to quasiconformal surgery
of Riemann surfaces.

We begin by defining certain boundary integrals of Dirichlet-bounded harmonic functions.
Let dωk be the harmonic measures given in Definition 2.12. For a collar neighbourhood Uk

of ∂k� and hk ∈ Dharm(Uk), the integral
∫

∂k�

hk ∗ dωk

can be defined in terms of a limit of the integral over curves γk approaching the boundary
∂k�, and this is well-defined [24, Lemmas 3.14 and 3.15]. Equivalently, we can fix a simple
closed analytic curve γk which is isotopic to ∂k�, and define

∫

∂k�

hk ∗ dωk :=
∫∫

Vk

dhk ∧ ∗dωk +
∫

γk

hk ∗ dωk,

where Vk is the region bounded by ∂k� and γk . Here ∂k� is oriented positively with respect
to � and γk has the same orientation as ∂k�. This is independent of γk . Now given hk ∈
Dharm(�) we set

Hk :=
∫

∂k�

hk ∗ dωk . (3.1)

Definition 3.1 Let � be a bordered surface of type (g, n) and let Uk ⊆ � be collar neigh-
bourhoods of ∂k� for k = 1, . . . , n. Set U = U1 ∪ · · · ∪ Un . By H1

conf (U ) we denote the
harmonic Dirichlet space Dharm(U ) endowed with the norm

‖h‖H1
conf (U ) :=

(

‖h‖2Dharm(U ) +
n∑

k=1

|Hk |2
) 1

2

for n > 1. In the case that n = 1, fix a point p ∈ � \ U1 and define instead

H1 :=
∫

∂1�

h1 ∗ dg(w, p), (3.2)

where g(w, p) is Green’s function of �.
For the Riemann surface �, assuming that � is connected, we need only one boundary

integral to obtain a norm. If n > 1, we can choose any fixed boundary curve ∂n� say, and
define the norm

‖h‖H1
conf (�) :=

(
‖h‖2Dharm(�) + |Hn |2

)1/2
,

where any of theHk could in fact be used in place ofHn . In the case that n = 1 we use (3.2)
to define H1.

We can also use Green’s function to define the norm of harmonic functions on � in the
case that n ≥ 1. Indeed as was shown in [24, Lemma 3.17], one has
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Lemma 3.2 Let � be a connected Riemann surface of type (g, n). For any fixed point p ∈ �,
the norms given by

‖h‖2Dharm(�),p = ‖h‖2Dharm(�) + |h(p)|2

= ‖h‖2Dharm(�) +
∣
∣
∣
∣limε↘0

1

π i

∫

�ε

∂wg(w; p)h(w)

∣
∣
∣
∣

2

,

where g is Green’s function of � and �ε are the level curves of Green’s function based at p,
and the H1

conf (�) norm are equivalent.

As a class of functions, the H1
conf (�) space and the Sobolev space H1 are the same. It is

also not hard to show that the norms are equivalent (see Theorem 3.19 in [24]).

Theorem 3.3 Let � be a Riemann surface of type (g, n). Then the restriction of the Sobolev
H1(�) norm to H1

conf (�) is equivalent to the H1
conf (�) norm. Similarly, for a collar neigh-

bourhood U of a boundary ∂k�, the restriction of the Sobolev norm H1(U ) to H1
conf (U ) is

equivalent to the H1
conf (U ) norm.

We now give an alternate description of the H1/2(∂k�) space and its dual on a border
∂k�.

Definition 3.4 (Boundary values of harmonic functions) Let � be a bordered Riemann sur-
face.

– H(∂k�) is the set of equivalence classes of functions in Dharm(U ) on collars U of ∂k�,
under the following equivalence relation:
For h1 ∈ Dharm(U1) and h2 ∈ Dharm(U2), with U1 and U2 collars of ∂k�, h1 ∼ h2 if the
CNT boundary values of h1 and h2 agree up to a null set.

– Ḣ(∂k�) is the set of equivalence classes of functions in Dharm(U ) on collars U of ∂k�

under the following equivalence relation:
For h1 ∈ Dharm(U1) and h2 ∈ Dharm(U2), with U1 and U2 collars of ∂k�, h1 ∼ h2 if
there is a constant c ∈ C such that h1 = h2 + c up to a null set.

H(∂k�) can be identified with H1/2(∂k�) in the following way. Given h ∈ H(∂k�),
any representative H ∈ Dharm(U ) has CNT boundary values except possibly on a null set.
This agrees with an element ĥ ∈ H1/2(∂k�) almost everywhere. It can be shown that ĥ is
independent of the representative. Conversely, any element of H1/2(∂k�) (non-uniquely)
extends to a harmonic function on a collar neighbourhood U . A similar argument identifies
Ḣ1/2(∂k�) with Ḣ(∂k�).

We therefore can endow H(∂k�) with the norm on H1/2(∂k�). It follows from Schwarz
reflection and Carathéodory’s theorem that any collar chart ψ on a collar neighbourhood
U of ∂k� extends to a conformal map of a neighbourhood of ∂k� in the double. Thus by
invariance of Sobolev spaces under diffeomorphisms, we have the equivalences

‖ f ‖H(∂k�) ≈ ‖ f ◦ ψ−1‖H1/2(S1), ‖ f ‖Ḣ(∂k�) ≈ ‖ f ◦ ψ−1‖Ḣ1/2(S1),

for any such collar chart. Recall that Ḣ1/2(S1) and H1/2(S1) denote the classical homoge-
neous and inhomogeneous Sobolev spaces on the unit circle.

Definition 3.5 (Boundary values of harmonic one-forms) Let � be a bordered Riemann
surface.
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– H′(∂k�) is the set of equivalence classes of harmonic forms in Aharm(U ) on collars U
of ∂k�, under the following equivalence relation:
For α1 ∈ Aharm(U1) and α2 ∈ Aharm(U2), with U1 and U2 collars of ∂k�, α1 ∼ α2 if
there exists collar neighbourhood U3 ⊂ U1 ∩ U2 and β ∈ Aharm(U3) such that α1 − β

and α2 − β are exact on U3 and the primitives hk of αl − β, k = 1, 2 are equivalent in
H(∂k�).

– Ḣ′(∂k�) =
{
[α] ∈ H′(∂k�); ∫

∂k�
[α] = 0

}
.

Intuitively, the equivalence relation identifies harmonic one forms which have the same
value on any vector tangent to the boundary at any point.

We define the norm in Ḣ′(S1) to be

‖[α]‖Ḣ′(S1) = ‖α‖Aharm(D),

where α ∈ Aharm(D) is the unique representative of [α] defined on D. Similarly, the norm
on H(S1) is

‖[α]‖2H(S1)
= ‖β‖2Aharm(D) + |λ|2,

where λ ∈ C and β ∈ Aharm(D) are uniquely chosen [24, Lemma 5.7] such that

β + λ

4π i

(
dz

z
− dz̄

z̄

)

is a representative of [α]. Given a collar chart ψ on a collar neighbourhood U of ∂k�, we
then define, for any [α] ∈ Ḣ′(∂k�)

‖[α]‖Ḣ′(∂k�) = ‖(ψ−1)∗[α]‖Ḣ′(S1)

and for any [α] ∈ H1/2(∂k�)

‖[α]‖H(∂k�) = ‖(ψ−1)∗[α]‖H(S1).

It can be shown that the pull-back preserves the equivalence relation, so that this is well-
defined. We will also see momentarily that different collar charts induce equivalent norms.

Given any [α] ∈ H′(∂k�) we obtain a linear functional

L [α] : H1/2(∂k�) → C

[h] �→ lim
ε↘0

∫

�ε

αh

where the curves �ε approach the boundary as ε ↘ 0. If [α] ∈ Ḣ′(∂k�) then L [α] is a
well-defined functional on Ḣ1/2(∂k�).

As was shown in [24] (Section 5), the main results are the following two theorems:

Theorem 3.6 For any [α] ∈ H′(∂k�), L [α] is a well-defined bounded linear functional.

Using the identification of H1/2(∂k�) and H(∂k�) this defines a linear functional on
H1/2(∂k�). In fact, we have (see Theorem 5.11 in [24])

Theorem 3.7 The map

H′(∂k�) → H−1/2(∂k�)

[α] �→ L [α]
is a bounded isomorphism. Similarly for Ḣ′(∂k�) and Ḣ−1/2(∂k�).
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This also shows that any pair of collar charts give rise to equivalent norms on H′(∂k�)

and Ḣ′(∂k�).
Theorem 3.7 is the promised description of H−1/2(∂k�), which is new even in the plane.

Note that the equivalence classes provide an elegant explicit realization of the distributional
derivatives of H1/2(∂k�). Let � = ∂k� be a boundary curve (which can be treated as a
regular curve in the double). In the familiar setting, given f ∈ H1/2(�), its distributional
derivative d f is indirectly defined as the extension to H1/2(�) of the linear functional

h �→ −
∫

�

f dh

for regular h. Theorem 3.7 shows that one may directly define d f to be the boundary values
of an actual harmonic one-form α in a collar neighbourhood. Thus, we may directly define
the linear functional

h �→ lim
ε↘0

∫

�ε

Hα,

where α is a harmonic extension of d f and H is a harmonic extension of h. The sacrifice is
that one replaces the direct integral with a limit, and the functions with equivalence classes.
Here we see the first glimmers of an approach to propagators for certain PDEs, replacing the
distributional calculus with principal value integrals.

As an application, we showed that the possible boundary values of L2 one-forms on
a Riemann surface of type (g, n) can be identified with the Sobolev space H−1/2(∂�).
Intuitively, by boundary values of a one form, we mean the restriction of the one-form to
vectors tangent to the boundary.

Now denote the equivalence relation inH′(∂k�) by [·]k . By definition, any β ∈ Aharm(�)

induces boundary values [β]k inH′(∂k�) for k = 1, . . . , n. The converse is also true, and as
was demonstrated in [24, Theorem 5.18], is used to prove the well-posedness of the Dirichlet
problem for L2 one-forms with CNT data.

Theorem 3.8 Let � be a Riemann surface of type (g, n). Given any [αk] ∈ H′(∂k�), k =
1, . . . , n, there is a β ∈ Aharm(�), such that [β] = [αk] on each boundary curve. The form
β is uniquely determined by its cohomology class and constants

∫

∂k�

∗β = ρk (3.3)

for k = 1, . . . , n − 1.

The cohomology class of β is of course determined by periods around non-trivial closed
curves; it is easy to see that the period around a curve isotopic to the boundary is determined
by [αk]. This determines β up to an arbitrary exact form with zero boundary values; that is,
up to a harmonic form dω where ω is constant on the boundary curves. The condition (3.3)
removes the remaining ambiguity.

Thus we have completely characterized the analytic class of the possible boundary values
of L2 harmonic one-forms. By Theorem 3.7, the possible boundary values of L2 harmonic
one-forms can be identified with H−1/2(∂�).

4 The Overfare of Harmonic Functions and Harmonic Forms

The authors demonstrated existence and boundedness of overfare in the sphere in [19], and
on Riemann surfaces with one boundary curve in [20]. Now let � be a collection of curves

123



A Survey of Scattering Theory on Riemann Surfaces with Applications... 923

separating a Riemann surfaceR into two components�1 and�2, and consider the following
question. Given h1 ∈ Dharm(�1), is there an h2 ∈ Dharm(�2)with the same boundary values
up to a negligible set? We call this the overfare of h1 to h2.

For the Dirichlet space, the negligible sets are null sets. However, a null set with respect
to �1 need not be null with respect to �2. Thus we must restrict to curves for which this is
true, which are the so-called quasicircles.

Definition 4.1 We say that a simple closed curve in the Riemann sphere C̄ is a quasicircle if
it is the image of S1 under a quasiconformal map of the plane.

A simple closed curve � in a Riemann surface R is a quasicircle if there is an open set U
containing � and a biholomorphism φ : U → A where A is an annulus in C, such that φ(�)

is a quasicircle.

Having the definition of quasicircles at hand, we consider the following situation. Let
R be a compact Riemann surface, and let �1, . . . , �m be a collection of quasicircles in R.
Denote � = �1 ∪ · · · ∪ �m . We say that � separates R into �1 and �2 if

1. there are doubly-connected neighbourhoodsUk of �k for k = 1, . . . , n such thatUk ∩U j

is empty for all j �= k;
2. one of the two connected components of Uk\�k is in �1, while the other is in �2;
3. R\� = �1 ∪ �2;
4. R\� consists of finitely many connected components;
5. �1 and �2 are disjoint.

It turns out that one can identify ∂�1 and ∂�2 pointwise with �.

Proposition 4.2 Let R be a compact Riemann surface and � = �1∪· · ·∪�m be a collection
of quasicircles separating R into �1 and �2. Then �1 and �2 are each a finite union of
bordered surfaces. For k = 1, 2, the inclusion map of �k into R extends continuously to the
border ∂k�, and this extension is a homeomorphism onto �.

As mentioned above, it is not directly obvious that a null set in ∂�1 is null in ∂�2, even
though they are the same set. However, as a consequence of Theorem 2.8 in [24], this is
indeed the case for quasicircles. It was shown in [24, Theorem 3.41] that:

Theorem 4.3 The set I ⊂ � is null with respect to �1 if and only if it is null with respect to
�2. Given any h1 ∈ Dharm(�1), there is a unique h2 ∈ Dharm(�2) whose boundary values
agree with those of h1 except possibly on a null set.

This paves the way for the definition of overfare.

Definition 4.4 With the assumption of Theorem 4.3, we define the overfare operator O1,2

by

O1,2 : Dharm(�1) → Dharm(�2)

h1 �→ h2.

Of course one can switch the roles of �1 and �2, and one obviously has that

O2,1O1,2 = Id.

The overfare operator is conformally invariant. That is, if f : R → R′ is a biholomor-
phism and we set f (�k) = �′

k for k = 1, 2 then it follows immediately from conformal
invariance of CNT limits that

O1,2C f = C f O1′,2′ .
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Definition 4.5 In the case that� is a finite union of connectedRiemann surfaces�1, . . . , �N ,
we define the Dirichlet seminorm on these components by

‖h‖Dharm(�) :=
N∑

k=1

∥
∥h|�k

∥
∥Dharm(�k )

and similarly for the holomorphic and anti-holomorphic Dirichlet spaces, Bergman spaces,
etc.

It was shown in [24, Theorem 3.44] that for quasicircles, the overfare exists and is a
bounded map with respect to the Dirichlet seminorms, when the originating surface is con-
nected:

Theorem 4.6 Assume that �1 is connected. The overfare operator

O1,2 : Dharm(�1) →: Dharm(�2)

is bounded with respect to the Dirichlet semi-norm.

Note also that the overfare map is bounded with respect to H1
conf in the general case, if

we assume that the quasicircle is more regular, see i.e. [24, Theorem 3.43].
In the plane, the authors showed in [19] that the existence of a bounded overfare char-

acterizes quasicircles. Also recall from the introduction of this paper that in the plane the
aforementioned NTA domains are exactly quasidisks, see [8] and [6, Theorem 2.7].

Now we proceed to the overfare of exact one forms. The boundary values of a harmonic
one-form do not uniquely specify the one-form, because they do not specify the cohomology
class. However, the overfareO1,2 defined above for functions, can be used to uniquely define
the overfare of exact one-forms from connected surfaces to arbitrary ones.

Definition 4.7 Assume that �1 is connected. The exact overfare Oe
1,2 is defined by

Oe
1,2 : Ae

harm(�1) → Ae
harm(�2)

α �→ dO1,2d−1α,

where d is the exterior differentiation.

We specify the cohomological data as follows:

Definition 4.8 Assume that �1 is connected. Let ζ ∈ Aharm(R) be a one-form such that
α − ζ is exact on �1. We seek a one-form with the same boundary values as α and in the
cohomology class of ζ on �2. This form is

Oe
1,2

(
α − ζ |�1

) + ζ |�2
.

We call ζ def a catalyzing form, and forms which are related by overfare via ζ compatible.

Now if
α2 = Oe

1,2

(
α1 − ζ |�1

) + ζ |�2

then [α1]k = [α2]k for all k = 1, . . . , n (that is, they have the same boundary values as
forms).

Furthermore, if �1 is connected, then given α1, the conditions that αk have the same
boundary values and that αk − ζ |�k

are exact for k = 1, 2, uniquely determine α2 [24,
Corollary 8.4]. In the general case, further conditions are necessary to specify α2.
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5 Schiffer Comparison Operators, Scattering Processes and Scattering
Matrices

First, we define the Schiffer operators. To that end, we need to define certain bi-differentials,
which will be the integral kernels of the Schiffer operators.

Definition 5.1 For a compact Riemann surfaceR with Green’s function G (w,w0; z, q), the
Schiffer kernel is defined by

LR (z, w) = 1

π i
∂z∂wG (w,w0; z, q),

and the Bergman kernel is given by

KR (z, w) = − 1

π i
∂z∂wG (w,w0; z, q).

The kernel functions satisfy the following:

(1) LR and KR are independent of q and w0.
(2) KR is holomorphic in z for fixed w, and anti-holomorphic in w for fixed z.
(3) LR is holomorphic in w and z, except for a pole of order two when w = z.
(4) LR (z, w) = LR (w, z).
(5) KR (w, z) = −KR (z, w).

From the conformal invariance of Green’s function (given by (2.3), (2.4)), it follows that
the kernels above are conformally invariant.

Definition 5.2 For k = 1, 2 define the restriction operators

Rk : A(R) → A(�k)

α �→ α|�k

and

R0
k : A(�1 ∪ �2) → A(�k)

α �→ α|�k
.

In a similar way, we also define the restriction operator

Rh
k : Aharm(R) → Aharm(�k). (5.1)

It is obvious that these are bounded operators.
Having the Bergman and Schiffer kernels and the restriction operators at hand, we can

now define the Schiffer operators as follows.

Definition 5.3 For k = 1, 2,we define the Schiffer comparison operators (afterMaxSchiffer)
by

Tk : A(�k) → A(�1 ∪ �2)

α �→
∫∫

�k

LR (·, w) ∧ α(w)

and

Sk : A(�k) → A(R)

α �→
∫∫

�k

KR (·, w) ∧ α(w).
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The integral defining Tk is interpreted as a principal value integral whenever z ∈ �k . Also,
we define for j, k ∈ {1, 2}

T j,k = R0
kT j : A(� j ) → A(�k).

Theorem 5.4 ([24, Theorem 4.4]) Tk , T j,k , and Sk are bounded for all j, k = 1, 2.

For any operatorM, we define the complex conjugate operator by

Mα = Mα.

So for example
T1,2 : A(�1) → A(�2)

and similarly for Rk , etc.
The restriction operator is conformally invariant by conformal invariance of Bergman

space of one-forms. By the conformal invariance of the kernel functions defined above, the
operators T and S are also conformally invariant.

Example 5.5 LetR = C, �1 is a simply-connected domain in the plane, �2 its complement
in C.

g(w,∞; z, q) = log
|w − z|
|w − q| .

Then

T1,k h(w) dw = − 1

π

∫∫

�1

h(w)

(w − z)2
d Aw, z ∈ �k

and since the Bergman kernel is zero in this case, S1 = 0.

Historically, the operators defined above arose in geometric function theory in the context
of conformal maps, Plemelj–Sokhotski jump formula, Grunsky inequalities, and Fredholm
eigenvalues (e.g. S. Bergman and M. Schiffer [2]; Schiffer [15, 17]). When the outer domain
is not the sphere, they were introduced by Schiffer [15, 17]. Schiffer and D. Spencer [16]
adapted the operators to the setting of Riemann surfaces.

Given the operators above we proceed to the definition of the scattering matrix. The
scattering operator, acts on the holomorphic parts of the compatible forms together with the
anti-holomorphic part of the catalyzing form, and produces the anti-holomorphic parts of the
compatible forms and the holomorphic part of the catalyzing form. The anti-holomorphic
parts can be thought of as left moving waves, while the holomorphic parts can be thought of
as right moving waves. We can explicitly give the scattering matrix S in terms of the Schiffer
operators.

Given μ2 = α2 + β2 ∈ Aharm(�2), let ζ = ξ + η ∈ Aharm(R) be a catalyzing form. Let
μ1 = α1 + β1 ∈ Aharm(�1) be the overfare of μ2 with respect to this catalyzing form (see
the end of Section 4 for the definitions of catalyzing and compatible forms). Then one has

Theorem 5.6 ([24, Theorem 8.7]) Assume �2 is connected, and the genus of R is non-zero,
we have ⎛

⎝
β1
β2
ξ

⎞

⎠ = S
⎛

⎝
α1

α2

η

⎞

⎠ ,

where

S :=
⎛

⎝
−T1,1 −T2,1 R1

−T1,2 −T2,2 R2

S1 S2 0

⎞

⎠
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is the scattering matrix and it is unitary.

The two main steps of the proof are as follows. The first step is to show that the scattering
matrix has the form above, for which one uses the jump formula for quasicircles in con-
junction with Stokes formula and a cohomological analysis of the so-called Cauchy–Royden
operator (see Definition 4.7 in [24]). This amounts to overcoming an analytic and a geometric
hindrance. The analytic hindrance is to establish that the Plemelj–Sokhotski jump formula
extends to quasicircles for the Cauchy–Royden operator. This has been established by the
authors in a series of papers; for references see [23, 24]. The geometric hindrance is to analyze
the effect of the Cauchy–Royden operator on cohomology and the harmonic measures.

The second main step is to establish unitarity of the matrix. This follows from a collection
of adjoint identities established by the authors using the functional analysis of the integral
operators. One of these identities has roots in a norm identity of Bergman and Schiffer and
later work of Schiffer, though interestingly they never discuss the adjoint.

In the genus zero case the scattering matrix takes the following simpler form:

Theorem 5.7 ([24, Theorem 8.8]) Assuming �2 is connected, and R is the sphere we have
(

β1
β2

)
=

(−T1,1 −T2,1

−T1,2 −T2,2

) (
α1

α2

)

and the matrix is unitary.

6 Applications

6.1 Index Theorems

An application of the tools described in this survey and developed in [24] determines how
the Fredholm indices of the Schiffer comparison operators relate to the topological invariants
of the Riemann surfaces. In this connection we have

Theorem 6.1 ([24, Theorems 7.20 and 7.22]) If �1, �2 are connected, and of genus g1 and
g2, then index(T1,2) = g1 − g2.

If �2, is connected and of genus g, and �1 consists of n disjoint simply connected regions,
then index(T1,2) = 1 − n + g.

In the proof of this theorem, Stokes’ theorem relates the integral operator to integrals over
the rough boundaries. A central role is played by the non-trivial fact that the homogeneous
Sobolev spaces of boundary values attained on either side of the quasicircles agree. That
allows one to derive identities for various Schiffer operators and their effect on cohomology,
which ultimately makes the computations of the kernels and cokernels possible.

6.2 Approximation Theory for Functions and One-forms

Assume thatR is a compact surface of genus g, �1 = 	1 ∪ · · · ∪ 	n where 	k are simply-
connected regions bordered by quasicircles whose closures are disjoint, and�2 is connected.
We call this a capped surface.

We define the operator

� : A(�1) ⊕ A(R) → Ase(�2)

(γ , τ ) �→ −T1,2γ + R2τ.
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We then have

Theorem 6.2 � is a bounded isomorphism.

Now let fk : D → 	k be conformal maps for k = 1, . . . , n and set pk = fk(0) for
k = 1, . . . , n. Recalling the definition of pullback (2.2), define

( f −1)∗ = (( f −1
1 )∗, . . . , ( f −1

n )∗) :
n⊕

1

A(D) → A(�1).

In [18], the first author andM. Shirazi used this theorem to derive approximation theorems
for L2 holomorphic one-forms on �2. Since pull-back is a bounded isometry, we have that

( f −1)∗T1,2 :
n⊕

1

A(D) → Ase(�2)

is an isomorphism onto its image. The “Faber-Tietz forms” are defined by

αm
k = ( f −1)∗T1,2

(
0, 0, . . . , mzm−1dz̄, . . . , 0

)
,

where the non-zero entry appears in the kth place. It can be shown that αm
k are holomorphic

in R\{pk} with a pole of order m + 1 at pm and no other poles.
The nomenclature is in honour of both G. Faber, who invented the Faber series for holo-

morphic functions in domains in the plane, and H. Tietz who generalized Faber series to
Riemann surfaces. Using Theorem 6.2 it can be shown that

Theorem 6.3 [18] Let R, �1, and �2 be as above. Let {τ1, . . . , τg} be a basis for the space
of holomorphic one-forms on R. Every semi-exact holomorphic one-form β on �2 has a
unique Faber–Tietz series

β =
g∑

k=1

akτk +
∞∑

m=1

m∑

k=1

bk
mαm

k .

This series converges in A(�2), and converges uniformly on compact subsets of �2.

Faber–Tietz series for general forms on A(�2) and for L2 holomorphic functions on �2

were also obtained. In the latter case, certain orthogonality conditions related to the Mittag–
Leffler problem on compact surfaces come into play.

In the special case whereR is the Riemann sphere and �2 is a simply-connected domain
in R containing the point at ∞, one obtains the classical Faber series. The approximability
of L2 one-forms by Faber series in the planar setting is due to Y. Shen [25] and A. Çavuş [3]
(identifying one-forms h(z)dz with their coefficients h(z) in theBergman space of functions).
Theorem 6.2 is a generalization to Riemann surfaces of one direction of a theorem of V. V.
Napalkov and R. S. Yulmukhametov [12]. For references and a survey of the relation between
these various theorems in the sphere see [23].

6.3 Boundary Values and the Grunsky Operator

The classicalGrunsky operator arose as amatrix associated to locally one-to-one holomorphic
functions defined in a neighbourhood of zero. A classical inequality on thematrix coefficients
is equivalent to extendability of the function to a conformal map of the disk. It has various
formulations. One of these formulations, due to Bergman and Schiffer [2], is as an integral
operator on Bergman space. This is appropriate when the map is assumed to be conformal
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and its image sufficiently regular. The matrix inequality can be written as a norm inequality,
and in general, analytic conditions on the operator or its norm correspond to properties of
the conformal map.

Using overfare, one obtains the following interpretation of the Grunsky operator, for the
case of conformal maps onto domains bounded by quasicircles. The Grunsky operator is
defined to be

Gr f := − f ∗T1,1( f −1)∗.

It can be shown that this agrees with the integral operator formulation of Bergman and
Schiffer. See Section 9.5 in [24] for details. We also have the following [23]:

Theorem 6.4 Let f : D → C be a conformal map onto a quasidisk �1 in the sphere. Let �2

be the complement of its closure. Then

PD f ∗Oe
2,1T1,2( f −1)∗ = Id,

PD f ∗Oe
2,1T1,2( f −1)∗ = Gr f .

Thus f ∗Oe
2,1A(�2) is the graph of the Grunsky operator.

These identities are modifications of classical identities. In the classical identities the
overfare does not appear. The bounded overfare result makes it possible to see that the graph
of the Grunsky operator is the pull-back to the disk of the boundary values of holomorphic
one-forms on �2. One can also easily formulate this result in terms of the boundary values
of functions; indeed, since all domains are topologically trivial, all one-forms are exact.

Another interesting fact is that the Grunsky operator generalizes to Riemann surfaces.
However, onemust then take into account cohomology, since aswas pointed out, the boundary
values of a one-form do not determine the one-form. Similarly, when working with functions
or equivalently exact one-forms, one must add conditions to ensure this exactness. In [26],
Shirazi generalized the Grunsky operator for functions to capped surfaces, and showed again
that its graph is the boundary values of holomorphic functions on �2.

One may also generalize the Grunsky operator to semi-exact forms on capped surfaces.
The formulation necessarily involves the cohomology classes of �2. We use the notation for
capped surfaces from the previous section.

By the Hodge theorem, the cohomology classes of semi-exact forms can be identified with
restrictions to �2 of elements of Aharm(R). So we modify the Grunsky operator to include
this data. To this end, we define the map

ϒ : A(�1) ⊕ A(R) → A(�1) ⊕ A(R)

(γ , τ ) �→ (−T1,1γ + R1τ,S1γ )

and set

� := ( f ∗, Id)ϒ (( f −1)∗, Id) :
n⊕

A(D) ⊕ A(R) →
n⊕

A(D) ⊕ A(R).

Now if we let β ∈ Ase(�2), then there is a unique σ ∈ Ase(�2), and furthermore a unique
harmonic form

Oe(β − R2σ) + R1σ

on �1, compatible with β with respect to the catalyzing form σ . We then define

Oaug : Ase
harm(�2) → Aharm(�1) ⊕ Aharm(R)

β �→ (Oe(β − R2σ) + R1σ, σ ),
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where σ is the unique element ofAharm(R) such that β −Rh
2σ is exact, andRh is as in (5.1).

Setting Pn
D

:= PD ⊕ · · · ⊕ PD and making use of Theorem 6.2, the following result can
be shown:

Theorem 6.5
[
PD

n ⊕ PR

]
( f ∗, Id)Oaug�( f −1)∗ = Id,

[
PD

n ⊕ PR

]
( f ∗, Id)Oaug�( f −1)∗ = �.

Thus ( f ∗, Id)Ase(�2) is the graph of �.

Therefore, we can interpret the graph of � as the pull-back to the disks of the boundary
values of semi-exact forms under f , together with cohomological data.

6.4 Polarizations on Surfaces with Boundaries

The Grunsky operator has applications in algebraic geometry in connection to the problem
of finding a unified interpretation for the period maps of compact and non-compact Riemann
surfaces.

The classical period map of a compact Riemann surface R is an assignment of a matrix
of periods of normalized holomorphic one-forms to the Riemann surface. In one model, the
period matrix lies in the Siegel disk

{Z n × n matrices; Zt = Z , Id − Z Z > 0}.
(Amore common normalization results in the upper half-planemodel, inwhich Z has positive
definite imaginary part. These models are equivalent via a Cayley transform.) One thus
associates such a matrix to marked surfaces (and more generally, the Teichmüller space).
These periods depend holomorphically on the complex structure.

Interestingly, the period matrices generate a “polarization” (a certain Lagrangian decom-
position of a symplectic space). An equivalent picture is the following. Let 	(R) denote the
cohomology classes of one-forms onR. By the Hodge theorem, any cohomology class onR
has a harmonic representative. The complex structure on R determines the class Aharm(R),
and thus also a decomposition

	(R) = A(R) ⊕ A(R). (6.1)

This polarization is an equivalent representation of the period map.
Work of A. Kirillov and D. Yuri’ev [9], and later S. Nag and D. Sullivan [11], found an

analogue of the period map for the Teichmüller space of the disk, which is now known as
the KYNS period mapping. This maps into the bounded operators on Bergman space of one-
forms (equivalently, the Dirichlet space of functions mod constants) which are symmetric
in a certain sense and strictly bounded by one in norm. This is the so-called “infinite Siegel
disk”, whose elements determine a positive polarization in Ḣ1/2(S1).

In contrast to the finite-dimensional Teichmüller space of compact surfaces, the Teich-
müller space of the disk is a compact Banach manifold. One model of this is the set of
conformal maps f : D → �1 onto quasidisks �1 in the sphere, modulo Möbius transforma-
tions. Takhtajan and Teo [27] showed that the KYNS period mapping is explicitly given by
the Grunsky operator

f �→ Gr f .
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The following question then arises: what is the relation between the compact case and
the case of the disk, beyond an analogy? In effect, how can the results above be extended to
the higher genus non-compact case in a unifying manner? This can be accomplished using
the boundary value interpretation of the Grunsky operator, which is made possible by the
existence of bounded overfare for quasicircles (achieved in our work).

The idea is as follows. Let �2 be a surface capped by a collection of disks �1 to obtain
R. The decomposition

Ase
harm(�2) = Ase(�2) ⊕ Ase(�2)

is associated to the complex structure on �2. As we saw, every element of Ase
harm(�2) is

uniquely determined by its boundary values and by its cohomology class. Thus it is specified
uniquely by an element of Aharm(�1) with the same boundary values, and an element of
Aharm(R) with the same cohomology. This association induces a polarization of

Aharm(�1) ⊕ Aharm(R)

by

Aharm(�1) ⊕ Aharm(R) = OaugAse(�2) ⊕ OaugAse(�2)

=: W ⊕ W . (6.2)

We then have the polarization

Aharm(D)n ⊕ 	(R) = W ⊕ W,

where
W = ( f ∗, Id)W

and W is given by (6.2).
By Theorem 6.5 we have that W is the graph of �. In the case that R is the sphere and

n = 1, the cohomology of R is trivial and this reduces to the KYNS period matrix. In the
case that �2 is itself compact and �1 is empty, this reduces to the polarization (6.1). Work in
progress of the authors embeds the Teichmüller space of bordered type (g, n) into the space
of such generalized polarizations.

6.5 Kähler Potential onWeil–Petersson Universal Teichmüller Space

One can also relate the Schiffer operators to the Riemannian geometry of the Teichmüller
space. The Teichmüller space of a Riemann surface is a space of quasiconformal deforma-
tions of the complex structure, which generically is an infinite-dimensional complex Banach
manifold. A refinement of this space with more regular L2-deformations has arisen over
the last two decades, which possesses a Riemannian metric generalizing the Weil–Petersson
metric on the Teichmüller space of compact surfaces. For a survey of the development of this
“Weil-Petersson” Teichmüller space see [13, 22].

The Teichmüller space of the disk, the so-called universal Teichmüller space, can be
identified with the set of quasicircles in the sphere, modulo Möbius transformations. The
Weil–Petersson universal Teichmüller space is the subset of equivalence classes of more
regular quasicircles known as Weil–Petersson quasicircles.

The paper of G. Cui [4] pioneered the theory of the Weil–Petersson universal Teichmüller
space, establishing many of the main theorems. This was followed shortly by the L p theory
of H. Guo [5].
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The monograph of Takhtajan and Teo added an extensive study of the geometry and global
analysis of the Weil–Petersson universal Teichmüller space. For example, in [27] the Kähler
potential was given an explicit form in terms of the Grunsky operator. As a consequence of
the identities for the Schiffer operator, we derive here a new formula for this Kähler potential.

Let � be a Weil–Petersson quasicircle in the Riemann sphere, whose complement has
components �1 and �2. Then we have

Theorem 6.6 The potential for the Weil–Petersson metric on the Weil–Petersson Teichmüller
space of the disk is

log det(T∗
1,2T1,2).

Proof As was shown by Takhtajan and Teo [27], one has that log det(I − Gr f Gr f ) is a
potential for the WP metric. It was shown by the authors in [21] that

Gr f Gr f = f ∗T∗
1,2T1,2( f −1)∗

and therefore
log det(I − Gr f Gr f ) = log det(I − T∗

1,2T1,2),

which by unitarity of the first row of the scattering matrix in Theorem 5.7 is equal to

log det(T∗
1,2T1,2).

��

We may also write this in terms of the Cauchy operator on quasicircles. Let Ḋ(�) denote
the homogeneous Dirichlet space (that is, mod constants). Let �ε approach � from within
�1. For fixed q /∈ �, the Cauchy operator is defined by

J̇ : Ḋ(�1) → Ḋ(�2)

h �→ 1

2π i
lim
ε↘0

∫

�ε

h(ζ )

(
1

ζ − z
− 1

ζ − q

)
dζ, z ∈ �2,

where we discard constants. The integral is in fact independent of q modulo constants, but
the presence of q makes Möbius-invariance of the Cauchy integral more transparent [23].
We then have

Theorem 6.7 The Kähler potential of the Weil–Petersson metric on the universal Weil–
Petersson Teichmüller space is

log det
(
J̇∗J̇

)
.

Proof The theorem follows immediately from Theorem 6.6 and the fact that

d J̇ = T12d,

see e.g. [23]. ��

This can be compared with [27, Remark 3.13]. Our theorem involves the complex Cauchy
operator in place of the Neumann jump operator, and does not require the assumption that
the curve is C3.
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