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Abstract
We prove that the number of irreducible real characters in a nilpotent block of a finite
group is locally determined. We further conjecture that the Frobenius–Schur indicators of
those characters can be computed for p = 2 in terms of the extended defect group. We
derive this from a more general conjecture on the Frobenius–Schur indicator of projective
indecomposable characters of 2-blocks with one simple module. This extends results of
Murray on 2-blocks with cyclic and dihedral defect groups.
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1 Introduction

An important task in representation theory is to determine global invariants of a finite group
G by means of local subgroups. Dade’s conjecture, for instance, predicts the number of
irreducible characters χ ∈ Irr(G) such that the p-part χ(1)p is a given power of a prime p
(see [23, Conjecture 9.25]). Since Gow’s work [7], there has been an increasing interest in
counting real (i.e. real-valued) characters and more generally characters with a given field of
values.

The quaternion group Q8 testifies that a real irreducible character χ is not always afforded
by a representation over the real numbers. The precise behavior is encoded by the Frobenius–
Schur indicator (F-S indicator, for short)

ε(χ) := 1

|G|
∑

g∈G

χ(g2) =
⎧
⎨

⎩

0 if χ �= χ,

1 if χ is realized by a real representation,
−1 if χ is real, but not realized by a real representation.

(1)
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A new interpretation of the F-S indicator in terms of superalgebras has been given recently
in [13]. The case of the dihedral group D8 shows that ε(χ) is not determined by the character
table of G. The computation of F-S indicators can be a surprisingly difficult task, which
has not been fully completed for the simple groups of Lie type, for instance (see [25]).
Problem 14 on Brauer’s famous list [2] asks for a group-theoretical interpretation of the
number of χ ∈ Irr(G) with ε(χ) = 1.

To obtain deeper insights, we fix a prime p and assume that χ lies in a p-block B of G
with defect group D. By complex conjugation we obtain another block B of G. If B �= B,
then clearly ε(χ) = 0 for all χ ∈ Irr(B). Hence, we assume that B is real, i.e. B = B. John
Murray [18, 19] has computed the F-S indicators when D is a cyclic 2-group or a dihedral
2-group (including the Klein four-group). His results depend on the fusion system of B, on
Erdmann’s classification of tame blocks and on the structure of the so-called extended defect
group E of B (see Definition 7 below). For p > 2 and D cyclic, he obtained in [20] partial
information on the F-S indicators in terms of the Brauer tree of B.

The starting point of my investigation is the well-known fact that 2-blocks with cyclic
defect groups are nilpotent. Assume that B is nilpotent and real. If B is the principal block,
then G = Op′(G)D and Irr(B) = Irr(G/Op′(G)) = Irr(D). In this case the F-S indicators
of B are determined by D alone. Thus, suppose that B is non-principal. By Broué–Puig [4],
there exists a height-preserving bijection Irr(D) → Irr(B), λ �→ λ ∗ χ0, where χ0 ∈ Irr(B)

is a fixed character of height 0 (see also [16, Definition 8.10.2]). However, this bijection does
not in general preserve F-S indicators. For instance, the dihedral group D24 has a nilpotent
2-block with defect group C4 and a nilpotent 3-block with defect group C3, although every
character of D24 is real. Our main theorem asserts that the number of real characters in a
nilpotent block is nevertheless locally determined. To state it, we introduce the extended
inertial group

NG(D, bD)∗ := {
g ∈ NG(D) : bg

D ∈ {bD, bD}} ,

where bD is a Brauer correspondent of B in DCG(D).

Theorem A Let B be a real, nilpotent p-block of a finite group G with defect group D. Let
bD be a Brauer correspondent of B in DCG(D). Then the number of real characters in
Irr(B) of height h coincides with the number of characters λ ∈ Irr(D) of degree ph such
that λt = λ, where

NG(D, bD)∗/DCG(D) = 〈t DCG(D)〉.
If p > 2, then all real characters in Irr(B) have the same F-S indicator.

In contrast to arbitrary blocks, Theorem A implies that nilpotent real blocks have at least
one real character (cf. [20, p. 92] and [8, Theorem 5.3]). If bD = bD , then B and D have
the same number of real characters, because NG(D, bD) = DCG(D). This recovers a result
of Murray [18, Lemma 2.2]. As another consequence, we will derive in Proposition 5 a real
version of Eaton’s conjecture [5] for nilpotent blocks as put forward by Héthelyi–Horváth–
Szabó [12].

The F-S indicators of real characters in nilpotent blocks seem to lie somewhat deeper. We
still conjecture that they are locally determined by a defect pair (see Definition 6) for p = 2
as follows.

Conjecture B Let B be a real, nilpotent, non-principal 2-block of a finite group G with defect
pair (D, E). Then there exists a height preserving bijection � : Irr(D) → Irr(B) such that

ε(�(λ)) = 1

|D|
∑

e∈E\D

λ(e2) (2)
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Real Characters in Nilpotent Blocks 423

for all λ ∈ Irr(D).

The right hand side of (2) was introduced and studied by Gow [8, Lemma 2.1] more
generally for any groups D ≤ E with |E : D| = 2. This invariant was later coined the Gow
indicator by Murray [20, (2)]. For 2-blocks of defect 0, Conjecture B confirms the known
fact that real characters of 2-defect 0 have F-S indicator 1 (see [8, Theorem 5.1]). There is no
such result for odd primes p. As amatter of fact, every real character has p-defect 0 whenever
p does not divide |G|. In Theorem 10 we prove Conjecture B for abelian defect groups D.
Then it also holds for all quasisimple groups G by work of An–Eaton [1]. Murray’s results
mentioned above, imply Conjecture B also for dihedral D.

For p > 2, the common F-S indicator in the situation of Theorem A is not locally
determined. For instance, G = Q8 � C9 = SmallGroup (72, 3) has a non-principal real
3-block with D ∼= C9 and common F-S indicator −1, while its Brauer correspondent in
NG(D) ∼= C18 has common F-S indicator 1. Nevertheless, for cyclic defect groups D we
find another way to compute this F-S indicator in Theorem 3 below.

Our second conjecture applies more generally to blocks with only one simple module.

Conjecture C Let B be a real, non-principal 2-block with defect pair (D, E) and a unique
projective indecomposable character �. Then

ε(�) = |{x ∈ E \ D : x2 = 1}|.
Here ε(�) is defined by extending (1) linearly. If ε(�) = 0, then E does not split over D
and Conjecture C holds (see Proposition 8 below). Conjecture C implies a stronger, but more
technical statement on 2-blocks with a Brauer correspondent with one simple module (see
Theorem 13 below). This allows us to prove the following.

Theorem D Conjecture C implies Conjecture B.

We remark that our proof of Theorem D does not work block-by-block. For solvable groups
we offer a purely group-theoretical version of Conjecture C at the end of Section 4.

Theorem E Conjectures B and C hold for all nilpotent 2-blocks of solvable groups.

We have checked Conjectures B and C with GAP [6] in many examples using the libraries
of small groups, perfect groups and primitive groups.

2 Theorem A and Its Consequences

Our notation follows closely Navarro’s book [22]. In particular, G0 denotes the set of p-
regular elements of a finite group G. Let B be a p-block of G with defect group D. Recall that
a B-subsection is a pair (u, b), where u ∈ D and b is a Brauer correspondent of B in CG(u).
For χ ∈ Irr(B) and ϕ ∈ IBr(b) we denote the corresponding generalized decomposition
number by du

χϕ . If u = 1, we obtain the (ordinary) decomposition number dχϕ = d1
χϕ . We

put l(b) = |IBr(b)| as usual.
Following [22, p. 114], we define a class function χ(u,b) by

χ(u,b)(us) :=
∑

ϕ∈IBr(b)

du
χϕϕ(s)

for s ∈ CG(u)0 and χ(u,b)(x) = 0 whenever x is outside the p-section of u. If R is a set of
representatives for the G-conjugacy classes of B-subsections, then χ = ∑

(u,b)∈R χ(u,b) by
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424 B. Sambale

Brauer’s second main theorem (see [22, Problem 5.3]). Now suppose that B is nilpotent and
λ ∈ Irr(D). By [16, Proposition 8.11.4], each Brauer correspondent b of B is nilpotent and
in particular l(b) = 1. Broué–Puig [4] have shown that, if χ has height 0, then

λ ∗ χ :=
∑

(u,b)∈R
λ(u)χ(u,b) ∈ Irr(B)

and (λ ∗ χ)(1) = λ(1)χ(1). Note also that du
λ∗χ,ϕ = λ(u)du

χϕ .

Proof of TheoremA Let R be a set of representatives for the G-conjugacy classes of B-
subsections (u, bu) ≤ (D, bB) (see [22, p. 219]). Since B is nilpotent, we have IBr(bu) =
{ϕu} for all (u, bu) ∈ R. Since the Brauer correspondence is compatible with complex
conjugation, (u, bu)t ≤ (D, bD)t = (D, bD), whereNG(D, bD)∗/DCG(D) = 〈t DCG(D)〉.
Thus, (u, bu)t is D-conjugate to some (u′, bu′) ∈ R.

If p > 2, there exists a unique p-rational character χ0 ∈ Irr(B) of height 0, which must
be real by uniqueness (see [4, Remark after Theorem 1.2]). If p = 2, there is a 2-rational
real character χ0 ∈ Irr(B) of height 0 by [8, Theorem 5.1]. Then du

χ0,ϕu
= du

χ0,ϕu
∈ Z and

χ
(u,bu)
0 = χ

(u,bu)
0 = χ

(u,bu)t

0 = χ
(u′,bu′ )
0 .

Now let λ ∈ Irr(D). Then

λ ∗ χ0 =
∑

(u,bu)∈R
λ(u)χ

(u,bu)
0 =

∑

(u,bu)∈R
λ(u)χ

(u′,bu′ )
0 .

Since the class functionsχ
(u,b)
0 have disjoint support, they are linearly independent. There-

fore, λ ∗ χ0 is real if and only if λ(ut ) = λ(u′) = λ(u) for all (u, bu) ∈ R. Since every
conjugacy class of D is represented by some u with (u, bu) ∈ R, we conclude that λ ∗ χ0 is
real if and only λt = λ. Moreover, if λ(1) = ph , then λ ∗ χ0 has height h. This proves the
first claim.

To prove the second claim, let p > 2 and IBr(B) = {ϕ}. Then the decomposition numbers
dλ∗χ0,ϕ = λ(1) are powers of p; in particular they are odd. A theorem of Thompson and
Willems (see [26, Theorem 2.8]) states that all real characters χ with dχ,ϕ odd have the same
F-S indicator. So in our situation all real characters in Irr(B) have the same F-S indicator. �

Since the automorphism group of a p-group is “almost always” a p-group (see [11]), the
following consequence is of interest.

Corollary 1 Let B be a real, nilpotent p-block with defect group D such that p and |Aut(D)|
are odd. Then B has a unique real character.

Proof The hypothesis on Aut(D) implies that NG(D, bD)∗ = DCG(D). Hence by Theo-
rem A, the number of real characters in Irr(B) is the number of real characters in D. Since
p > 2, the trivial character is the only real character of D. �

The next lemma is a consequence of Brauer’s second main theorem and the fact that
|{g ∈ G : g2 = x}| = |{g ∈ CG(x) : g2 = x}| is locally determined for g, x ∈ G.

Lemma 2 (Brauer) For every p-block B of G and every B-subsection (u, b) with ϕ ∈ IBr(b)

we have ∑

χ∈Irr(B)

ε(χ)du
χϕ =

∑

ψ∈Irr(b)

ε(ψ)du
ψϕ =

∑

ψ∈Irr(b)

ε(ψ)
ψ(u)

ψ(1)
dψϕ.
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Real Characters in Nilpotent Blocks 425

If l(b) = 1, then
∑

χ∈Irr(B)

ε(χ)du
χϕ = 1

ϕ(1)

∑

ψ∈Irr(b)

ε(ψ)ψ(u).

Proof The first equality is [3, Theorem 4A]. The second follows from u ∈ Z(CG(u)). If
l(b) = 1, then ψ(1) = dψϕϕ(1) for ψ ∈ Irr(b) and the last claim follows. �

Recall that a canonical character of B is a character θ ∈ Irr(DCG(D)) lying in a Brauer
correspondent of B such that D ≤ Ker(θ) (see [22, Theorem 9.12]). We define the extended
stabilizer

NG(D)∗θ := {
g ∈ NG(D) : θ g ∈ {θ, θ}} .

The following results adds some detail to the nilpotent case of [20, Theorem 1].

Theorem 3 Let B be a real, nilpotent p-block with cyclic defect group D = 〈u〉 and p > 2.
Let θ ∈ Irr(CG(D)) be a canonical character of B and set T := NG(D)∗θ . Then one of the
following holds:

1) θ �= θ . All characters in Irr(B) are real with F-S indicator ε(θT ).
2) θ = θ . The unique non-exceptional character χ0 ∈ Irr(B) is the only real character in

Irr(B) and ε(χ0) = sgn(χ0(u))ε(θ), where sgn(χ0(u)) is the sign of χ0(u).

Proof LetbD be aBrauer correspondent of B inCG(D) containing θ . ThenT = NG(D, bD)∗.
If θ �= θ , then T inverts the elements of D since p > 2. Thus, Theorem A implies that all
characters in Irr(B) are real. By [20, Theorem 1(v)], the common F-S indicator is the Gow
indicator of θ with respect to T . This is easily seen to be ε(θT ) (see [20, after (2)]).

Now assume that θ = θ . Here Theorem A implies that the unique p-rational character
χ0 ∈ Irr(B) is the only real character. In particular, χ0 must be the unique non-exceptional
character. Note that (u, bD) is a B-subsection and IBr(bD) = {ϕ}. Since χ0 is p-rational,
du
χ0ϕ

= ±1. Since all Brauer correspondents of B in CG(u) are conjugate under NG(D), the
generalized decomposition numbers are Galois conjugate, in particular du

χ0ϕ
does not depend

on the choice of bD . Hence,

χ0(u) = |NG(D) : NG(D)θ |du
χ0ϕ

ϕ(1)

and du
χ0ϕ

= sgn(χ0(u)). Moreover, θ is the unique non-exceptional character of bD and
θ(u) = θ(1). By Lemma 2, we obtain

ε(χ0) = sgn(χ0(u))
∑

χ∈Irr(B)

ε(χ)du
χϕ

= sgn(χ0(u))

ϕ(1)

∑

ψ∈Irr(bD)

ε(ψ)ψ(u) = sgn(χ0(u))ε(θ).

�
If B is a nilpotent block with canonical character θ �= θ , the common F-S indicator of the

real characters in Irr(B) is not always ε(θT ) as in Theorem 3 . A counterexample is given
by a certain 3-block of G = SmallGroup(288, 924) with defect group D ∼= C3 × C3.

We now restrict ourselves to 2-blocks. Héthelyi–Horváth–Szabó [12] introduced four
conjectures, which are real versions of Brauer’s conjecture, Olsson’s conjecture and Eaton’s
conjecture. We only state the strongest of them, which implies the remaining three. Let
D(0) := D and D(k+1) := [D(k), D(k)] for k ≥ 0 be the members of the derived series of D.
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426 B. Sambale

Conjecture 4 (Héthelyi–Horváth–Szabó) Let B be a 2-block with defect group D. For every
h ≥ 0, the number of real characters in Irr(B) of height ≤ h is bounded by the number of
elements of D/D(h+1) which are real in NG(D)/D(h+1).

A conjugacy class K of G is called real if K = K −1 := {x−1 : x ∈ K }. A conjugacy
class K of a normal subgroup N � G is called real under G if there exists g ∈ G such that
K g = K −1.

Proposition 5 Let B be a nilpotent 2-block with defect group D and Brauer correspondent
bD in DCG(D). Then the number of real characters in Irr(B) of height ≤ h is bounded by
the number of conjugacy classes of D/D(h+1) which are real under NG(D, bD)∗/D(h+1).
In particular, Conjecture 4 holds for B.

Proof We may assume that B is real. As in the proof of Theorem A, we fix some 2-rational
real character χ0 ∈ Irr(B) of height 0. Now λ ∗ χ0 has height ≤ h if and only if λ(1) ≤ ph

for λ ∈ Irr(B). By [14, Theorem 5.12], the characters of degree ≤ ph in Irr(D) lie in
Irr(D/D(h+1)). By Theorem A, λ ∗ χ0 is real if and only if λt = λ. By Brauer’s permutation
lemma (see [23, Theorem 2.3]), the number of those characters λ coincides with the number
of conjugacy classes K of D/D(h+1) such that K t = K −1. Now Conjecture 4 follows from
NG(D, bD)∗ ≤ NG(D). �

3 Extended Defect Groups

We continue to assume that p = 2. As usual we choose a complete discrete valuation ring
O such that F := O/J (O) is an algebraically closed field of characteristic 2. Let Cl(G) be
the set of conjugacy classes of G. For K ∈ Cl(G) let K + := ∑

x∈K x ∈ Z(FG) be the class
sum of K . We fix a 2-block B of FG with block idempotent 1B = ∑

K∈Cl(G) aK K +, where
aK ∈ F . The central character of B is defined by

λB : Z(FG) → F, K + �→
( |K |χ(g)

χ(1)

)∗
,

where g ∈ K ,χ ∈ Irr(B) and ∗ denotes the canonical reductionO → F (see [22, Chapter 2]).
Since λB(1B) = 1, there exists K ∈ Cl(G) such that aK �= 0 �= λB(K +). We call K a

defect class of B. By [22, Corollary 3.8], K consists of elements of odd order. According to
[22, Corollary 4.5], a Sylow 2-subgroup D of CG(x), where x ∈ K , is a defect group of B.
For x ∈ K let

CG(x)∗ := {g ∈ G : gxg−1 = x±1} ≤ G

be the extended centralizer of x .

Proposition 6 (Gow, Murray) Every real 2-block B has a real defect class K . Let x ∈ K .
Choose a Sylow 2-subgroup E of CG(x)∗ and put D := E ∩CG(x). Then the G-conjugacy
class of the pair (D, E) does not depend on the choice of K or x .

Proof For the principal block (which is always real since it contains the trivial character),
K = {1} is a real defect class and E = D is a Sylow 2-subgroup of G. Hence, the uniqueness
follows from Sylow’s theorem. Now suppose that B is non-principal. The existence of K
was first shown in [8, Theorem 5.5]. Let L be another real defect class of B and choose
y ∈ L . By [9, Corollary 2.2], we may assume after conjugation that E is also a Sylow 2-
subgroup of CG(y)∗. Let Dx := E ∩ CG(x) and Dy := E ∩ CG(y). We may assume that
|E : Dx | = 2 = |E : Dy | (cf. the remark after the proof).
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Real Characters in Nilpotent Blocks 427

Wenow introduce somenotation in order to apply [17, Proposition 14]. Let
 = 〈σ 〉 ∼= C2.
We consider FG as an F[G × 
]-module, where G acts by conjugation and gσ = g−1 for
g ∈ G (observe that these actions indeed commute). For H ≤ G × 
 let

TrG×

H : (FG)H → (FG)G×
, α �→

∑

x∈R
αx

be the relative trace with respect to H , where R denotes a set of representatives of the
right cosets of H in G × 
. By [17, Proposition 14], we have 1B ∈ TrG×


Ex
(FG), where

Ex := Dx 〈exσ 〉 for some ex ∈ E \ Dx . By the same result we also obtain that Dy〈eyσ 〉 with
ey ∈ E \ Dy is G-conjugate to Ex . This implies that Dy is conjugate to Dx inside NG(E).
In particular, (Dx , E) and (Dy, E) are G-conjugate as desired. �
Definition 7 In the situation of Proposition 6 we call E an extended defect group and (D, E)

a defect pair of B.

We stress that real 2-blocks can have non-real defect classes and non-real blocks can have
real defect classes (see [10, Theorem 3.5]).

It is easy to show that non-principal real 2-blocks cannot have maximal defect (see [22,
Problem 3.8]). In particular, the trivial class cannot be a defect class and consequently,
|E : D| = 2 in those cases. For non-real blocks we define the extended defect group by
E := D for convenience. Every given pair of 2-groups D ≤ E with |E : D| = 2 occurs
as a defect pair of a real (nilpotent) block. To see this, let Q ∼= C3 and G = Q � E with
CE (Q) = D. Then G has a unique non-principal block with defect pair (D, E).

We recall from [14, p. 49] that
∑

χ∈Irr(G)

ε(χ)χ(g) = |{x ∈ G : x2 = g}| (3)

for all g ∈ G. The following proposition provides some interesting properties of defect pairs.

Proposition 8 (Gow, Murray) Let B be a real 2-block with defect pair (D, E). Let bD be a
Brauer correspondent of B in DCG(D). Then the following holds:

(i) NG(D, bD)∗ = NG(D, bD)E . In particular, bD is real if and only if E = DCE (D).
(ii) For u ∈ D, we have

∑
χ∈Irr(B) ε(χ)χ(u) ≥ 0 with strict inequality if and only if u is

G-conjugate to e2 for some e ∈ E \ D. In particular, E splits over D if and only if∑
χ∈Irr(B) ε(χ)χ(1) > 0.

(iii) E/D′ splits over D/D′ if and only if all height zero characters in Irr(B) have non-
negative F-S indicator.

Proof (i) See [19, Lemma 1.8] and [18, Theorem 1.4].
(ii) See [19, Lemma 1.3].
(iii) See [8, Theorem 5.6]. �

The next proposition extends [18, Lemma 1.3].

Corollary 9 Suppose that B is a 2-block with defect pair (D, E) where D is abelian. Then
E splits over D if and only if all characters in Irr(B) have non-negative F-S indicator.

Proof If B is non-real, then E = D splits over D and all characters in Irr(B) have F-S
indicator 0. Hence, let B = B. By Kessar–Malle [15], all characters in Irr(B) have height 0.
Hence, the claim follows from Proposition 8 (iii). �
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428 B. Sambale

Theorem 10 Let B be a real, nilpotent 2-block with defect pair (D, E), where D is abelian.
If E splits over D, then all real characters in Irr(B) have F-S indicator 1. Otherwise exactly
half of the real characters have F-S indicator 1. In either case, Conjecture B holds for B.

Proof If E splits over D, then all real characters in Irr(B) have F-S indicator 1 by Corollary 9.
Otherwise we have

∑
χ∈Irr(B) ε(χ) = 0 by Proposition 8(ii), because all characters in Irr(B)

have the same degree. Hence, exactly half of the real characters have F-S indicator 1. Using
Theorem A we can determine the number of characters for each F-S indicator. For the last
claim, we may therefore replace B by the unique non-principal block of G = Q � E , where
Q ∼= C3 and CE (Q) = D (mentioned above). In this case Conjecture B follows fromGow [8,
Lemma 2.2] or Theorem E. �
Example 11 Let B be a real block with defect group D ∼= C4 ×C2. Then B is nilpotent since
Aut(D) is a 2-group and D is abelian. Moreover |Irr(B)| = 8. The F-S indicators depend
not only on E , but also on the way D embeds into E . The following cases can occur (here
M16 denotes the modular group and [16, 3] refers to the small group library):

F-S indicators E
+ + + + + + ++ D8 × C2

+ + + + − − −− Q8 × C2, C4 � C4 with �(D) = E ′
+ + + + 0 0 0 0 D, D × C2, D8 ∗ C4, [16, 3]
+ + − − 0 0 0 0 C2

4 , C8 × C2, M16, C4 � C4 with �(D) �= E ′

The F-S indicator ε(�) appearing in Conjecture C has an interesting interpretation as
follows. Let  := {g ∈ G : g2 = 1}. The conjugation action of G on  turns F into an
FG-module, called the involution module.

Lemma 12 (Murray) Let B be a real 2-block and ϕ ∈ IBr(B). Then ε(�ϕ) is the multiplicity
of ϕ as a constituent of the Brauer character of F.

Proof See [18, Lemma 2.6]. �
Next we develop a local version of Conjecture C. Let B be a real 2-block with defect

pair (D, E) and B-subsection (u, b). If E = DCE (u), then b is real and (CD(u),CE (u))

is a defect pair of b by [19, Lemma 2.6] applied to the subpair (〈u〉, b). Conversely, if b is
real, we may assume that (CD(u),CE (u)) is a defect pair of b by [19, Theorem 2.7]. If b is
non-real, we may assume that (CD(u),CD(u)) = (CD(u),CE (u)) is a defect pair of b.

Theorem 13 Let B be 2-block of a finite group G with defect pair (D, E). Suppose that
Conjecture C holds for all Brauer correspondents of B in sections of G. Let (u, b) be a
B-subsection with defect pair (CD(u),CE (u)) such that IBr(b) = {ϕ}. Then

∑

χ∈Irr(B)

ε(χ)du
χϕ =

{ |{x ∈ D : x2 = u}| if B is the principal block,

|{x ∈ E \ D : x2 = u}| otherwise.

Proof If B is not real, then B is non-principal and E = D. It follows that ε(χ) = 0 for all
χ ∈ Irr(B) and

|{x ∈ E \ D : x2 = u}| = 0.

Hence, we may assume that B is real. By Lemma 2, we have
∑

χ∈Irr(B)

ε(χ)du
χϕ =

∑

ψ∈Irr(b)

ε(ψ)du
ψϕ = 1

ϕ(1)

∑

ψ∈Irr(b)

ε(ψ)ψ(u). (4)
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Suppose that B is the principal block. Then b is the principal block of CG(u) by Brauer’s
third main theorem (see [22, Theorem 6.7]). The hypothesis l(b) = 1 implies that ϕ = 1CG (u)

and CG(u) has a normal 2-complement N (see [22, Corollary 6.13]). It follows that Irr(b) =
Irr(CG(u)/N ) = Irr(CD(u)) and

∑

ψ∈Irr(b)

ε(ψ)du
ψϕ =

∑

λ∈Irr(CD(u))

ε(λ)λ(u) = |{x ∈ CD(u) : x2 = u}|

by (3). Since every x ∈ D with x2 = u lies in CD(u), we are done in this case.
Now let B be a non-principal real 2-block. If b is not real, then (4) shows that∑
χ∈Irr(B) ε(χ)du

χϕ = 0. On the other hand, we have CE (u) = CD(u) ≤ D and

|{x ∈ E \ D : x2 = u}| = 0. Hence, we may assume that b is real. Since every x ∈ E
with x2 = u lies in CE (u), we may assume that u ∈ Z(G) by (4).

Then χ(u) = du
χϕϕ(1) for all χ ∈ Irr(B). If u2 /∈ Ker(χ), then χ(u) /∈ R and ε(χ) = 0.

Thus, it suffices to sum over χ with du
χϕ = ±dχϕ . Let Z := 〈u〉 ≤ Z(G) and G := G/Z . Let

B̂ be the unique (real) block of G dominated by B. By [19, Lemma 1.7], (D, E) is a defect
pair for B̂. Then, using [14, Lemma 4.7] and Conjecture C for B and B̂, we obtain

∑

χ∈Irr(B)

ε(χ)du
χϕ =

∑

χ∈Irr(B)

ε(χ)(dχϕ + du
χϕ) −

∑

χ∈Irr(B)

ε(χ)dχϕ

= 2
∑

χ∈Irr(B̂)

ε(χ)dχϕ −
∑

χ∈Irr(B)

ε(χ)dχϕ

= 2|{x ∈ E \ D : x2 = 1}| − |{x ∈ E \ D : x2 = 1}|
=

∑

λ∈Irr(E)

ε(λ)(λ(1) + λ(u)) −
∑

λ∈Irr(D)

ε(λ)(λ(1) + λ(u))

−
∑

λ∈Irr(E)

ε(λ)λ(1) +
∑

λ∈Irr(D)

ε(λ)λ(1)

=
∑

λ∈Irr(E)

ε(λ)λ(u) −
∑

λ∈Irr(D)

ε(λ)λ(u) = |{x ∈ E \ D : x2 = u}|.

�

4 Theorems D and E

The following result implies Theorem D.

Theorem 14 Suppose thatB is a real, nilpotent, non-principal 2-block fulfilling the statement
of Theorem 13. Then Conjecture B holds for B.

Proof Let (D, E) be defect pair of B. By Gow [8, Theorem 5.1], there exists a 2-rational
character χ0 ∈ Irr(B) of height 0 and ε(χ0) = 1. Let

� : Irr(D) → Irr(B), λ �→ λ ∗ χ0

be the Broué–Puig bijection. Let (u1, b1), . . . , (uk, bk) be representatives for the conjugacy
classes of B-subsections. Since B is nilpotent, wemay assume that u1, . . . , uk ∈ D represent
the conjugacy classes of D. Let IBr(bi ) = {ϕi } for i = 1, . . . , k. Since χ0 is 2-rational, we
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have σi := du
χ0,ϕi

∈ {±1} for i = 1, . . . , k. Hence, the generalized decomposition matrix of
B has the form

Q = (λ(ui )σi : λ ∈ Irr(D), i = 1, . . . , k)

(see [16, Section 8.10]). Let v := (ε(�(λ)) : λ ∈ Irr(D)) and w := (w1, . . . , wk) where
wi := |{x ∈ E \ D : x2 = ui }|. Then Theorem 13 reads as vQ = w.

Let di := |CD(ui )| and d = (d1, . . . , dk). Then the second orthogonality relation yields
QtQ = diag(d), where Qt denotes the transpose of Q. It follows that Q−1 = diag(d)−1Q

t

and
v = wdiag(d)−1Q

t = wdiag(d)−1Qt,

because v = v. Since wi = |{x ∈ E \ D : x2 = uy
i }| for every y ∈ D, we obtain∑k

i=1 wi |D : CD(ui )| = |E \ D| = |D|. In particular,

1 = ε(χ0) =
k∑

i=1

wiσi

|CD(ui )| ≤
k∑

i=1

wi |σi |
|CD(ui )| = 1.

Therefore, σi = 1 or wi = 0 for each i . This means that the signs σi have no impact on
the solution of the linear system x Q = w. Hence, we may assume that Q = (λ(ui )) is just
the character table of D. Since Q has full rank, v is the only solution of x Q = w. Setting
μ(λ) := 1

|D|
∑

e∈E\D λ(e2), it suffices to show that (μ(λ) : λ ∈ Irr(D)) is another solution
of x Q = w. Indeed,

∑

λ∈Irr(D)

λ(ui )

|D|
∑

e∈E\D

λ(e2) = 1

|D|
∑

e∈E\D

∑

λ∈Irr(D)

λ(ui )λ(e2)

= 1

|D|
∑

e∈E\D
e2=u−1

i

|D : CD(ui )||CD(ui )| = wi

for i = 1, . . . , k. �
Theorem E Conjectures B and C hold for all nilpotent 2-blocks of solvable groups.

Proof Let B be a real, nilpotent, non-principal 2-block of a solvable group G with defect
pair (D, E). We first prove Conjecture C for B. Since all sections of G are solvable and all
blocks dominated by B-subsections are nilpotent, ConjectureC holds for those blocks aswell.
Hence, the hypothesis of Theorem 13 is fulfilled for B. Now by Theorem 14, Conjecture B
holds for B.

Let N := O2′(G) and let θ ∈ Irr(N ) such that the block {θ} is covered by B. Since
B is non-principal, θ �= 1N and therefore θ �= θ as N has odd order. Since B also lies
over θ , it follow that Gθ < G. Let b be the Fong–Reynolds correspondent of B in the
extended stabilizer G∗

θ . By [22, Theorem 9.14] and [20, p. 94], the Clifford correspondence
Irr(b) → Irr(B), ψ �→ ψG preserves decomposition numbers and F-S indicators. Thus,
we need to show that b has defect pair (D, E). Let β be the Fong–Reynolds correspondent
of B in Gθ . By [22, Theorem 10.20], β is the unique block over θ . In particular, the block
idempotents 1β = 1θ are the same (we identify θ with the block {θ}). Since b is also the
unique block of G∗

θ over θ , we have 1b = 1θ + 1θ = ∑
x∈N αx x for some αx ∈ F . Let S be

a set of representatives for the cosets G/G∗
θ . Then

1B =
∑

s∈S

(1θ + 1θ )
s =

∑

s∈S

1s
b =

∑

g∈N

(
∑

s∈S

α
gs−1

)
g.
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Hence, there exists a real defect class K of B such that α
gs−1 �= 0 for some g ∈ K and

s ∈ S. Of course we can assume that g = gs−1
. Then 1b does not vanish on g. By [22,

Theorem 9.1], the central characters λB , λb and λθ agree on N . It follows that K is also a
real defect class of b. Hence, we may assume that (D, E) is a defect pair of b.

It remains to consider G = G∗
θ and B = b. Then D is a Sylow 2-subgroup of Gθ by

[22, Theorem 10.20] and E is a Sylow 2-subgroup of G. Since |G : Gθ | = 2, it follows that
Gθ �G and N = O2′(Gθ ). By [21, Lemmas 1 and 2], β is nilpotent and Gθ is 2-nilpotent, i.e.
Gθ = N � D and G = N � E . Let �̃ := ∑

χ∈Irr(B) χ(1)χ = ϕ(1)�, where IBr(B) = {ϕ}.
We need to show that

ε(�̃) = ϕ(1)|{x ∈ E \ D : x2 = 1}|.
Note that χN = χ(1)

2θ(1) (θ + θ). By Frobenius reciprocity, it follows that �̃ = 2θ(1)θG and

�̃N = |G : N |θ(1)(θ + θ).

Since � vanishes on elements of even order, �̃ vanishes outside N . Since �̃Gθ is a sum of
non-real characters in β, we have

ε(�̃) = 1

|G|
∑

g∈Gθ

�̃(g2) + 1

|G|
∑

g∈G\Gθ

�̃(g2) = 1

|G|
∑

g∈G\Gθ

�̃(g2).

Every g ∈ G \ Gθ = N E \ N D with g2 ∈ N is N -conjugate to a unique element of the
form xy, where x ∈ E \ D is an involution and y ∈ CN (x) (Sylow’s theorem). Setting
� := {x ∈ E \ D : x2 = 1}, we obtain

ε(�̃) = θ(1)

|N |
∑

x∈�

|N : CN (x)|
∑

y∈CN (x)

(θ(y) + θ(y)) = 2θ(1)
∑

x∈�

1

|CN (x)|
∑

y∈CN (x)

θ(y).

(5)
For x ∈ � let Hx := N 〈x〉. Again by Sylow’s theorem, the N -orbit of x is the set of
involutions in Hx . From θ x = θ we see that θ Hx is an irreducible character of 2-defect 0.
By [8, Theorem 5.1], we have ε(θ Hx ) = 1. Now applying the same argument as before, it
follows that

1 = ε(θ Hx ) = 1

|N |
∑

g∈Hx \N

θ Hx (g2) = 2

|CN (x)|
∑

y∈CN (x)

θ(y).

Combined with (5), this yields ε(�̃) = 2θ(1)|�|. By Green’s theorem (see [22, Theo-
rem 8.11]), ϕN = θ + θ and ε(�̃) = ϕ(1)|�| as desired. �

For non-principal blocks B of solvable groups with l(B) = 1 it is not true in general that
Gθ is 2-nilpotent in the situation of Theorem E. For example, a (non-real) 2-block of a triple
cover of A4 × A4 has a unique simple module. Extending this group by an automorphism of
order 2, we obtain the group G = SmallGroup(864, 3988), which fulfills the assumptions
with D ∼= C4

2 , N ∼= C3 and |G : N E | = 9.
In order to prove Conjecture C for arbitrary 2-blocks of solvable groups, we may follow

the steps in the proof above until E is a Sylow 2-subgroup of G and |G : Gθ | = 2. By [24,
Theorem 2.1], one gets

ϕ(1)/θ(1) = 2
√|Gθ /N |2′ = √|G : E N |.

With some more effort, the claim then boils down to a purely group-theoretical statement:
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432 B. Sambale

Let B be a real, non-principal 2-block of a solvable group G with defect pair (D, E) and
l(B) = 1. Let N := O2′(G) and G := G/N . Let θ ∈ Irr(N ) such {θ} is covered by B. Then

|{x ∈ G \ Gθ : x2 = 1}| = |{x ∈ E \ D : x2 = 1}|√|G : E N |.
Unfortunately, I am unable to prove this.
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