
https://doi.org/10.1007/s10013-022-00593-0

ORIGINAL ARTICLE

On Unique Continuation for Non-local Dispersive
Models

Felipe Linares1 ·Gustavo Ponce2

Received: 9 March 2022 / Accepted: 13 July 2022 /
© The Author(s) 2022

Abstract
We consider unique continuation properties of solutions to a family of evolution equa-
tions. Our interest is mainly on nonlinear non-local models. This class contains the
Benjamin–Ono, the Intermediate Long Wave, the Camassa–Holm, the dispersion general-
ized Benjamin–Ono and non-local Schrödinger equations as well as their generalizations.
We shall review, discuss, expand, and comment on several results. In addition, we shall state
some open questions concerning these results and their techniques.
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1 Introduction

This survey article is concerned with unique continuation properties (UCP) of solutions
to some time evolution equations. We are interested in two types of UCP: local ones and
asymptotic at infinity.

For local ones we mean the following: if u1, u2 are solutions of the equation which agree
in an open set Ω (in the space-time space), then u1, u2 agree in their domain of definition.

Roughly, asymptotic at infinity implies: if u1, u2 are solutions of the equation such that
at two different times t1, t2

‖|u1(·, tj ) − u2(·, tj )‖| < ∞, j = 1, 2, (1.1)

then u1, u2 are equal in their domain of definition. Here ‖| · ‖| may represent a weighted
norm or an asymptotic behavior at infinity.
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For the linear equation one can fix u2 ≡ 0. In the nonlinear case, a weaker version of
these UCP is obtained by assuming that u2 ≡ 0 is the second solution. In this case, for
the nonlinear equation and u2 ≡ 0, the asymptotic at infinity UCP can be rephrased in the
question: what is the strongest possible decay at two different times of a nontrivial solution?

The “norm” in (1.1) may depend on the time tj , j = 1, 2 and as we will see in some
cases one needs three times to achieve the desired result.

The local UCP can be considered in solutions of the associated initial value problem
(IVP), initial boundary value problem and mixed problems. In this work, we shall restrict
ourselves to the IVP and to the initial periodic boundary value problem (IPBVP). Also, the
asymptotic at infinity UCP will be only considered here in solutions of the associated IVP.

It is clear that these UCP should be examined in non-hyperbolic equations. Even in this
class, non-hyperbolic models, these UCP may fail. For example, it was proved in [106] that
the (generalized Korteweg-de Vries) equation

∂tu + ∂3
x (u2) + ∂x(u

2) = 0, t, x ∈ R, (1.2)

possesses traveling waves solution u(x, t) = φc(x − ct) with c > 0, called compacton, of
the form

φc(ξ) =
{

4c cos2(ξ/4)
3 , |ξ | ≤ 2π,

0, |ξ | > 2π .

We observe that φc(x−ct) is a classical solution of (1.2) with compact support. Thus, taking
u1(x, t) = φc(x − ct) and u2(x, t) = φc(x − ct + 4π) one gets a counterexample for our
UCP’s above.

Also, in [5] it was proved that the porous medium equation

∂tu = ∂2
x (u1+m), t > 0, x ∈ R, m > 0,

possesses non-negative compact support (generalized) solutions.
Although our main interest here are non-local nonlinear dispersive problems, we shall

first review the known UCP results for the Korteweg-de Vries equation. This will allow us to
illustrate the difference with the non-local case. Next, we shall consider the Benjamin–Ono
equation (Section 3), the Intermediate Long Wave equation (Section 4), the Camassa–Holm
equation (Section 4) and related models, the dispersion generalized Benjamin–Ono equation
(Section 5), and the general non-local Schrödinger equation (Section 6).

We observe that the Korteweg-de Vries equation as well as the equations in Sections 2–4 are
completely integrable models, and the models in Sections 3–6 are non-local ones. Except
for those in Section 6, all the models are one dimensional.

As we shall see below the local UCP results for these nonlocal models are based in
stationary arguments. Some of them are classic ones other have been proven recently and
are interesting in their own right.

2 The Korteweg-de Vries Equation

In this section we shall study the UCP on solutions to the Korteweg-de Vries (KdV) equa-
tion. The KdV equation was first derived as a model of propagation of waves on shallow
water surfaces [82]. The KdV equation was the first equation to be solvable by means of the
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inverse scattering transform [49]. As it was already mentioned we shall use it to illustrate
the difference with the non-local case. Thus, we shall examine the associated IVP, i.e.{

∂tu + ∂3
xu + u∂xu = 0, t, x ∈ R,

u(x, 0) = u0(x),
(2.1)

and that for its k-generalized form (k-gKdV)

∂tu + ∂3
xu + uk∂xu = 0, t, x ∈ R, k ∈ Z

+, (2.2)

for which only the cases k = 1, 2 are completely integrable.
The IVP and IPBVP (as well as other mixed problems) associated to the k-gKdV (2.2)

have been extensively analyzed. In particular, their local and global well-posedness, the
asymptotic behavior of their solutions, the stability of their special solutions (traveling
waves and breathers) among other related topics have attracted great amount of attention,
see [79, 90, 115] and the references therein. In particular, we recall that the equation (2.2)
has traveling wave solutions u(x, t) = φk(x − t) of the form

φk(x) = ck sech2/k

(
kx

2

)
(2.3)

which belongs to the Schwartz class S(R).
Concerning the local UCP for solution of (2.2) we observe: if u is a solution of the k-

gKdV (2.2) in the domain (x, t) ∈ R × [0, T ] such that u(x, t) = 0 for all (x, t) ∈ Ω open
set in R × [0, T ] with [a, b] × [t1, t2] ⊂ Ω , a < b and 0 < t1 < t2 < T , then the functions

v1(x, t) =
{

u(x, t), (x, t) ∈ (−∞, a) × (t1, t2),

0, (x, t) ∈ [a, ∞) × (t1, t2),
(2.4)

and

v2(x, t) =
{

0, (x, t) ∈ (−∞, b) × (t1, t2),

u(x, t), (x, t) ∈ [b, ∞) × (t1, t2),
(2.5)

are also solutions of the k-gKdV equation in the domain R × (t1, t2). Similar result applies
to the case of the difference u1 − u2 of two solutions u1, u2 of the k-gKdV equation.

Thus, in the k-gKdV (and in any local model) the local and asymptotic at infinity UCP are
related. This is not the case when one considers a non-local model for which the argument
in (2.4)–(2.5) does not apply.

In the same regard, as we will see below, in a non-local model the hypothesis in the local
UCP can be replaced by the weaker one:

if u1, u2 are solutions of the non-local equation such that exist a time t1 and an open set
I in the space variable, such that{

(i) u1(x, t1) = u2(x, t1), x ∈ I,

(ii) ∂tu1(x, t1) = ∂tu2(x, t1), x ∈ I,
(2.6)

then u1 ≡ u2.
This reflects the stationary character of the arguments used in their proofs.
One has that for the KdV equation (or any local model) the condition (i) in (2.6) com-

bined with the equation implies that in (ii). In fact, under the hypothesis (2.6) the local UCP
fails for the KdV (or any local model) by just taken t1 = 0 and appropriate initial data
u1(x, 0) and u2(x, 0).

Concerning the local UCP for the KdV equation we have the following result obtained
in [111].
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Theorem 2.1 ([111]) If u1, u2 are “solutions” of the k-gKdV equation in R × [0, T ] such
that u1 = u2 in an open set Ω ⊂ R × [0, T ], then u1 ≡ u2 in R × [0, T ].

Remark 2.2 (1) Although the precise definition is not relevant for our discussion here, the
type of solutions considered in [111] is quite general.

(2) The proof of Theorem 2.1 in [111] is a consequence of a general Carleman estimate
deduced there. It applies to a very general class of solutions to local time evolution
equation. The local character of the equation is essential in the argument of the proof.

Next, we consider the asymptotic at infinity UCP for the KdV equation and the k-gKdV
equation. In this regard we have:

Theorem 2.3 ([120]) If u1 ∈ C(R : H 4(R)) is a solution of the KdV equation (2.1) such
that

u1(x, t) = 0, (x, t) ∈ (b, ∞) × {t1, t2}, b ∈ R, t1, t2 ∈ (0, T )

(or in (−∞, b) × {t1, t2}), b ∈ R), then u1 ≡ 0.

Remark 2.4 (1) The proof of Theorem 2.3 is based on the inverse scattering method, using
the fact that the KdV is a completely integrable model. It cannot be applied to the
difference of any two solutions u1, u2, since it requires to have u2 ≡ 0. Moreover, it
only applies to integrable cases.

(2) Under the mixed assumption

u1(x, t) = 0, (x, t) ∈ (a, ∞) × {t1} ∪ (−∞, b) × {t2}, a, b ∈ R,

the result u1 ≡ 0 is only known for the KdV equation (k = 1 in (2.2)), in the case
t1 < t2, see Remark 2.6(2) below.

The following result was established in [114]:

Theorem 2.5 ([114]) If u1 is the solution of the IVP associated to the KdV equation (2.1)
with data u1(x, 0) = u0 ∈ L2(eδ|x|1/2

dx), δ > 0, then u1(x, t) becomes analytic in x for
each t 	= 0.

Remark 2.6 (1) The proof of Theorem 2.5 is based on the inverse scattering method.
In particular, it needs to assume that u2 ≡ 0. Similar, result is unknown for any
nonlinearities k 	= 1 of the k-gKdV equation (2.2).

(2) In [108], Theorem 2.5 was obtained for t > 0 under the decay assumption restricted
to x > 0.

(3) The fact that the decay of the data generates a gain of regularity on the solution was
previously observed and studied in [72].

The asymptotic at infinity UCP question (1.1) was answered in [36]:

Theorem 2.7 ([36]) There exists an universal constant

c0 = c0(k) > 0

such that if u1, u2 ∈ C([0, 1] : H 4(R) ∩ L2(|x|2dx)) are solutions of the k-gKdV equation
(2.2) satisfying

u1(·, 0) − u2(·, 0), u1(·, 1) − u2(·, 1) ∈ L2(ec0x
3/2
+ dx),

then u1 ≡ u2.
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Above we have used the notation: x+ = max{x; 0}.

Remark 2.8 (1) The solution of the associated linear IVP to the k-gKdV in (2.2){
∂tv + ∂3

x v = 0,

v(x, 0) = v0(x),
(2.7)

is given by the group {V (t) : t ∈ R} where

V (t)v0(x) = 1
3
√

3t
Ai

( ·
3
√

3t

)
∗ v0(x),

with

Ai(x) = c

∫ ∞

−∞
eixξ+iξ3

dξ

is the Airy function which satisfies the decay estimate

|Ai(x)| ≤ c(1 + x−)−1/4 e−cx
3/2
+ ,

which explains the exponent 3/2.
(2) The previous remark suggests that the decay of the fundamental solution of the asso-

ciated linear IVP provides the appropriate weight for the “norm” in the asymptotic at
infinity UCP, see (1.1). In general, this is not the case. For example, the fundamental
solution of the linear Schrödinger equation does not decay. In this case, the weight in
(1.1) is related to uncertainty principles for the Fourier transform. In fact, this weight
may be different at time t1 and t2, see [38].

(3) For previous results related to Theorem 2.7 see [104] and the references therein.

Theorem 2.7 is optimal as the following result shows:

Theorem 2.9 ([69]) Let a0 > 0. For any given data

u0 ∈ L2(R) ∩ L2(ea0x
3/2
+ dx),

the solution of the IVP for the KdV satisfies that for any T > 0,

sup
t∈[0,T ]

∫ ∞

−∞
ea(t)x

3/2
+ |u(x, t)|2dx ≤ C∗

with
C∗ = C∗ (

a0, ‖u0‖2, ‖ea0x
3/2
+ /2u0‖2, T

)
and

a(t) = a0

(1 + 27a2
0 t/4)1/2

.

Remark 2.10 Theorem 2.9 applies to solutions of the IVP associated to the k-gKdV
equation (2.2) as well as the difference of two solutions of the k-gKdV equation.

We observe that the decay condition in Theorem 2.7 requires only one side decay at
infinity condition. Thus, one may ask if by assuming a decay condition holding at booth
of the real line sides this can be relaxed. For example, question: if u1, u2 are appropriate
solutions of the k-gKdV equation (2.2) such that

u1(·, 0) − u2(·, 0), u1(·, 1) − u2(·, 1) ∈ L2(ea|x|dx), ∀ a > 0,

does this imply that u1 ≡ u2?
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To conclude this section we recall the so called “soliton resolution conjecture”. This
affirms, roughly speaking, that for generic initial data the corresponding solution of the
k-gKdV will eventually resolve into a radiation component that disperses like a linear
solution, plus a localized component that behaves like a soliton or multi-soliton solutions
(or breathers). Assuming it, one expects that for large time t to have at most at decay
u(x, t) ∼ eax as x ↑ ∞, since the solitons for the k-gKdV satisfy it, see (2.3). A precise
result in this direction seems to be unknown.

3 The Case of the Benjamin–Ono Equation

Next, we shall consider the Benjamin–Ono (BO) equation

∂tu − H∂2
xu + u∂xu = 0, t, x ∈ R, (3.1)

where H denotes the Hilbert transform

Hf (x) = 1

π
p.v.

(
1

x
∗ f

)
(x) = −i

(
sgn(ξ) f̂ (ξ)

)∨
(x).

The BO equation was first deduced in [8] and [100] as a model for long internal gravity
waves in deep stratified fluids. Later, it was shown to be a completely integrable system
[2]. We recall that the BO equation possesses traveling wave solutions (solitons) u(x, t) =
φ(x − t) of the form

φk(x) = 4

1 + x2
,

which is smooth but it exhibits a very mild decay in comparison with that of the k-gKdV
(2.2) described in (2.3).

The well-posedness of the IVP and the IPBVP for the BO equation and its generalized
k-form k-gBO equation, i.e.

∂tu − H∂2
xu + uk∂xu = 0, t, x ∈ R, k ∈ Z

+, (3.2)

has been broadly studied, we refer to [110] for a survey of these results.
Next, we shall introduce the following notation:

Zs,r = Hs(R) ∩ L2(|x|2rdx), s, r ∈ R,

Żs,r = Zs,r ∩ {f̂ (0) = 0}, s, r ∈ R.
(3.3)

The known asymptotic at infinity UCP for the BO equation are embedded in the
following well-posedness result in weighted spaces Zs,r :

Theorem 3.1 ([45, 46] after [66, 67]) Let u ∈ C([0, T ] : H 5(R)) be the solution of the IVP
for the BO equation (3.1) with data u0.

(1) If u0 ∈ Z5,r , r ∈ (0, 5/2), then u ∈ C([0, T ] : Z5,r ).
(2) If there exist 0 < t1 < t2 < T such that u(·, tj ) ∈ Z5,5/2, j = 1, 2, then û(0, t) = 0,

t ∈ [0, T ].
(3) If u0 ∈ Ż5,r , r ∈ [5/2, 7/2), then u ∈ C([0, T ] : Ż5,r ).
(4) If there exist t1, t2, t3 with 0 < t1 < t2 < t3 < T such that u(·, tj ) ∈ Z5,7/2,

j = 1, 2, 3, then u ≡ 0.
(5) If u0 ∈ Ż5,4 and

∫
xu0(x)dx 	= 0, then

u(·, t∗) ∈ Ż5,4, t∗ = −4
∫

xu0(x) dx

‖u0‖2
2

. (3.4)
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Remark 3.2 (1) In [66]–[67], Theorem 3.1 part (1) was proved for r = 1, 2, part (3) for
r = 3 and part (4) for r = 4.

(2) The proof of Theorem 3.1 is based on weighted energy estimates and relies on several
inequalities for the Hilbert transform H. Among them the so called Ap condition intro-
duced in [99], i.e. w ∈ L1

loc(R) non-negative satisfies the Ap, 1 < p < ∞, condition
if

sup
Q interval

(
1

|Q|
∫

Q

wdx

)(
1

|Q|
∫

Q

w1−p′
dx

)p−1

= cp(w) < ∞, (3.5)

where 1/p + 1/p′ = 1. In particular, |x|α ∈ Ap if and only if α ∈ (−1, p − 1). It was
shown in [63] that the Hilbert transform H is bounded in Lp(wdx) if and only if w

satisfies (3.5). Moreover, it was established in [102] that in the case p = 2 the operator
norm is a multiple of c2(w) in (3.5). The proof uses these results although not in their
strongest versions.

Also, the proof of Theorem 3.1 relies on commutator estimates for the Hilbert
transform H, mainly the following: for k, m ∈ N ∪ {0}, k + m ≥ 1

‖∂k
x [H; a]∂m

x f ‖P ≤ cp,k,m‖∂k+m
x a‖∞‖f ‖p. (3.6)

The case k + m = 1 corresponds to the Calderón commutator estimate [19]. The
general case of (3.6) was deduced in [6]. For a different proof see [31].

(3) The result in Theorem 3.1 is due to the connection between the dispersive relation
(modeling by an operator with non-smooth symbol) and the nonlinearity of the BO
equation (3.1). In particular, one can see that if u0 ∈ Ż5,4 with

∫
xu0(x)dx 	= 0, then

the solution U(t)u0(x) of the associated linear IVP

∂tu − H∂2
xu = 0, u(x, 0) = u0(x),

satisfies

U(t)u0(x) = c
(
e4π2it |ξ |ξ û0(ξ)

)∨ ∈ L2(|x|7−) − L2(|x|7), ∀ t 	= 0.

However, for the same data u0 one has that the corresponding solution u(x, t) of the
BO equation (3.1) satisfies

u(·, 0), u(·, t∗) ∈ L2(|x|8dx)

and

u(·, t) ∈ L2(|x|7−) − L2(|x|7) ∀ t /∈ {0, t∗}.
(4) The value of t∗ in (3.4) can be motivated by the identity

d

dt

∫ ∞

−∞
xu(x, t)dx = 1

2
‖u(·, t)‖2

2 = 1

2
‖u0‖2

2,

(using the second conservation, i.e. the L2-norm of the real solution) which describes
the time evolution of the first momentum of the solution. Hence,∫ ∞

−∞
xu(x, t)dx =

∫ ∞

−∞
xu0(x)dx + t

2
‖u0‖2

2.

So assuming that ∫ ∞

−∞
x u0(x)dx 	= 0, (3.7)
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one looks for the times where the average of the first momentum of the solution
vanishes, i.e. for t such that∫ t

0

∫ ∞

−∞
x u(x, t ′)dxdt ′ =

∫ t

0

(∫ ∞

−∞
x u0(x)dx + t ′

2
‖u0‖2

2

)
dt ′ = 0,

which under the assumption (3.7) has a unique solution t = t∗ given by the formula in (3.4).
(5) Theorem 3.1 leaves open the question of a UCP at infinity involving only two different

times by strengthening the hypothesis on the decay. More precisely, can one find r > 4
such that if u ∈ C([−T , T ] : Żs,7/2−), s � 1, is a solution of the BO equation (3.1)
satisfying that there exist t1, t2 ∈ [−T , T ], t1 	= t2 such that u(tj ) ∈ Żs,r , j = 1, 2,
then u ≡ 0?

In [43] it was proved that this is not possible at least for r < 11/2.
(6) One sees that the UCP in Theorem 3.1 assumes that the second solution u2 ≡ 0. A

result for asymptotic at infinity UCP involving two arbitrary solutions u1, u2 of the
IVP for the BO equation remains open.

(7) The results (1)–(3) in Theorem 3.1 extend to solutions of the IVP associated to the k-
gBO equation in (3.2). However, part (4) and (5) (modified version) hold for solutions
of the IVP associated to the k-gBO equation in (3.2) when k is odd.

Next, we consider the local UCP for solutions of the IVP associated to the k-gBO
equation (3.2). In this regard we have the following result:

Theorem 3.3 ([77]) Let

u1, u2 ∈ C([0, T ] : Hs(R)) ∩ C1((0, T ) : Hs−2(R)), s > 5/2,

be strong solutions of k-gBO equation (3.2). If there exist an open interval I ⊂ R and
t1 ∈ (0, T ) such that {

u1(x, t1) = u2(x, t1), x ∈ I,

∂tu1(x, t1) = ∂tu2(x, t1), x ∈ I,

then,
u1(x, t) = u2(x, t), (x, t) ∈ R × [0, T ].

In particular, if u1(x, t) = u2(x, t), (x, t) ∈ Ω with Ω ⊂ R × [0, T ] open, then u1 ≡ u2.

Remark 3.4 (1) It is surprising that a period of more than 30 years separated the local UC
result for the k-gKdV (2.2) (Theorem 2.1) and that for the k-gBO (3.2) (Theorem 3.3).
Specially, since many results first established for the KdV equation have been studied
in the BO equation, see [90]. Maybe, this is due to the difference in their proof argu-
ments. More concretely, the classical approach in [35, 36, 68, 111], among others, is
based on Carleman estimates which cannot be extended to non-local models. For these
ones, it seems that simpler but very specific stationary arguments are needed. Some of
them have just recently been established.

(2) Theorem 3.3 extends to a pair of solutions u1, u2 of the Burgers–Hilbert (BH) equation

∂tu − Hu + uk∂xu = 0, (x, t) ∈ R × R, k ∈ Z
+,

see [10, 64].
(3) It also applies to solutions of the IPBVP associated to the k-gBO equation (3.2). In

this case the Hilbert transform is defined as

Hf (x) = 1

2π
p.v.

∫ 2π

0
f (t) cot

(
x − t

2

)
dt .
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It will be clear from the proof of Theorem 3.3 sketched below that this can be generalized
in the following form:

Theorem 3.5 Let n ∈ Z
+ and

u1 ∈ C([0, T ] : Hs(R)) ∩ C1((0, T ) : Hs−2(R)), s > (k + 1)n + 5/2,

be a strong solution of k-gBO equation (3.2). If there exist an open interval I ⊂ R and
t1 ∈ (0, T ) such that

∂tu1(x, t1) = Q(k+1)n−1(x) and u(x, t1) = Pn(x), x ∈ I,

whereQ(k+1)n−1 and Pn are polynomials with real coefficients of degree at most (k+1)n−1
and n, respectively, then

Q(k+1)n−1(x) ≡ Pn(x) ≡ u1(x, t) ≡ 0, (x, t) ∈ R × [0, T ].

Next, we shall sketch the proof of Theorem 3.3.

Proof of Theorem 3.3 We need the following consequence of Schwarz reflection principle
in complex analysis.

Proposition 3.6 Let I ⊆ R be an open interval, b ∈ (0, ∞] and
Db = {z = x + iy ∈ C : 0 < y < b}, L = {x + i0 ∈ C : x ∈ I }.

Let F : Db ∪ L → C be continuous and F |Db
analytic.

If F |L ≡ 0, then F ≡ 0.

Using Proposition 3.6 we get:

Lemma 3.7 Let f ∈ Hs(R), s > 1/2, be a real valued function. If there exists an open
interval I ⊂ R such that

f (x) = Hf (x) = 0 ∀ x ∈ I,

then f ≡ 0.

By standard approximation, the same result holds assuming that f ∈ Hs(R), s ∈ R.
Thus, defining

F(x + iy) ≡
∫

ei(x+iy)ξ
(

̂f + iH f
)

(ξ) dξ

=
∫

ei(x+iy)ξ (1 + sgn(ξ))f̂ (ξ)dξ = 2
∫

ξ≥0
ei(x+iy)ξ f̂ (ξ)dξ

one has that
F(x + i 0) = (f + iH f )(x)

is continuous and has an analytic extension F(x + iy) on y > 0. Hence, using Proposi-
tion 3.6 one proves Lemma 3.7.

To conclude the proof of Theorem 3.3 we define

w(x, t) = (u1 − u2)(x, t),

which satisfies the equation

∂tw − H∂2
xw + ∂xu2w + u1∂xw = 0, (x, t) ∈ R × [0, T ].
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By the hypothesis and the equation one has that

w(x, t1) = H∂2
xw(x, t1) = 0, x ∈ I .

Thus, Lemma 3.7 yields the result.

4 The Intermediate LongWave Equation

The Intermediate Long Wave (ILW) equation can be written as

∂tu − Lδ∂
2
xu + 1

δ
∂xu + u∂xu = 0, (x, t) ∈ R

2, (4.1)

where u = u(x, t) is a real-valued function, δ > 0 and

Lδf (x) = − 1

2δ
p.v.

∫
coth

(
π(x − y)

2δ

)
f (y)dy.

Also, Lδ is a multiplier operator with symbol

σ(∂xLδ) = ∂̂xLδ = 2πξ coth(2πδξ).

The ILW equation describes long internal gravity waves in a stratified fluid with finite
depth given by the parameter δ, see [84] and [71]. Moreover, it was shown in [80, 81] that is
formally a completely integrable model as the KdV, the CH and the BO equations, see also
[70]. The ILW equation has traveling waves solutions (solitons) uδ,c(x, t) = φδ(x − ct),
c > 0 of the form

φδ(ξ) = 2a sin(aδ)

cosh(aξ) + cos(aδ)
,

where a ∈ (0, π/δ) solves the equation aδ cot(aδ) = 1 − cδ, see [71].
Regarding the IVP associated to the ILW equation (4.1) it was proven in [1] that solu-

tions of the ILW equation converge, as δ → ∞ (deep-water limit), to solutions of the IVP
associated to the BO equation with the same initial data. Also, it was established in [1] that
if uδ(x, t) denotes a solution of the ILW equation (4.1), then

vδ(x, t) = 3

δ
uδ

(
x,

3

δ
t

)
converges, as δ → 0 (shallow-water limit), to a solution of the KdV equation with the same
initial data.

With respect to well-posedness of the IVP associated to ILW equation we refer to [110]
and references therein.

We do not know any result concerning the asymptotic at infinity UCP for the ILW
equation, even in the case where the second solution u2 ≡ 0.

In [77] the local UCP results for the BO equation were extended to the ILW equation:

Theorem 4.1 ([77]) Let

u1, u2 ∈ C([0, T ] : Hs(R)) ∩ C1((0, T ) : Hs−2(R)), s > 5/2,

be strong solutions of ILW equation (4.1). If there exist an open interval I ⊂ R and t1 ∈
(0, T ) such that {

u1(x, t1) = u2(x, t1), x ∈ I,

∂tu1(x, t1) = ∂tu2(x, t1), x ∈ I,

then
u1(x, t) = u2(x, t), (x, t) ∈ R × [0, T ].
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In particular, if u1(x, t) = u2(x, t), (x, t) ∈ Ω with Ω ⊂ R × [0, T ] open, then u1 ≡ u2.

As in the case of BO equation one has the following extension of the second part of
Theorem 4.1:

Theorem 4.2 Let n ∈ Z
+ and

u1 ∈ C([0, T ] : Hs(R)) ∩ C1((0, T ) : Hs−2(R)), s > 2n + 5/2,

be a strong solutions of ILW equation (4.1). If there exist an open interval I ⊂ R and
t1 ∈ (0, T ) such that

∂tu1(x, t1) = Q2n−1(x) and u1(x, t1) = Pn(x), x ∈ I,

where Q2n−1 and Pn are polynomials with real coefficients of degree at most 2n − 1 and n

respectively, then

Q2n−1(x) ≡ Pn(x) ≡ u1(x, t) ≡ 0, (x, t) ∈ R × [0, T ].

Next, we shall sketch the proof of Theorem 4.1.

Proof of Theorem 4.1 First, we shall have the following result related to that in Proposi-
tion 3.6:

Proposition 4.3 Let f ∈ Hs(R), s > 3/2 be a real valued function. If there exists an open
set I ⊂ R such that f (x) = Lδ∂xf (x) = 0, x ∈ I , then f ≡ 0.

Define
F(x) ≡ ∂xf (x) + iLδ∂xf (x),

so

F̂ (ξ) = ̂(∂xf + iLδ∂xf )(ξ)

= F̂ (ξ) = c ξ

(
1 + e2πδξ + e−2πδξ

e2πδξ − e−2πδξ

)
f̂ (ξ)

= c ξ
e4πδξ

1 − e4πδξ
f̂ (ξ).

Thus, F̂ ∈ L1(R) with appropriate exponential decay. Therefore F(x) has an analytic
extension

F(x + iy) =
∫ ∞

−∞
e2πiξ(x+iy) F̂ (ξ) dξ

to the strip D2δ = {z = x + iy ∈ C : 0 < y < 2δ}. This completes the proof.

5 The Camassa–Holm Equation and RelatedModels

This section is mainly concerned with the Camassa–Holm (CH) equation

∂tu + 3u∂xu − ∂t ∂
2
xu = 2∂xu∂2

xu + u∂3
xu, t, x ∈ R. (5.1)

The CH equation (5.1) was first explicitly written in [44] a work on hereditary symme-
tries. Later, it was explicitly derived as a physical model for shallow water waves in [20],
where its solutions were also investigated. It has also appeared as a model in nonlinear
dispersive waves in hyper-elastic rods [30].
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The CH equation (5.1) has received extensive attention due to its remarkable properties,
among them the fact that it is a bi-Hamiltonian completely integrable model (see [20, 26,
93, 94, 101] and the references therein).

The CH equation has special traveling waves solutions (solitons) called peakons

u(x, t) = φ(x − ct) = c e−|x−ct |, c > 0. (5.2)

The multi-peakon solutions exhibit the “elastic” collision property that reflects their soliton
character.

It is convenient to rewrite the CH equation as

∂tu + u∂xu + ∂x(1 − ∂2
x )−1

(
u2 + 1

2

(
∂xu)2

)
= 0. (5.3)

The IVP as well as the IPBVP associated to the equation (5.3) has been considerably
examined.

In [88] and [105] strong local well-posedness of the IVP associated to (5.7) was
established in the classical Sobolev space Hs(R) = (1 − ∂2

x )−s/2L2(R) with s > 3/2.
However, one observes that peakon solutions, described in (5.2) (case k = 0), do not

belong to these spaces. In fact, one has that for any p ∈ [1, ∞)

φ(x) = e−|x| /∈ H 1+1/p,p(R),

where for s ∈ R and p ∈ [1, ∞)

Hs,p(R) = (1 − ∂2
x )−s/2Lp(R),

with Hs,2(R) = Hs(R), see [90]. However,

φ(x) = e−|x| ∈ W 1,∞(R),

where W 1,∞(R) denotes the space of Lipschitz functions.
In [27] it was proved that if u0 ∈ H 1(R) with u0 − ∂2

xu0 ∈ M+(R) (the set of positive
Radon measures with bounded total variation), then the IVP for the CH equation (5.3) has
a unique solution

u ∈ C([0, ∞) : H 1(R)) ∩ C1((0,∞) : L2(R))

satisfying that y(t) ≡ (1 − ∂2
x )u(·, t) ∈ M+(R) is uniformly bounded.

In [117] the existence of a H 1-global weak solution for the IVP for the CH equation (5.1)
for data u0 ∈ H 1(R) was established.

In [24] and [25] (see also [88]) conditions on the data u0 ∈ H 3(R) were derived to guar-
antee that the corresponding local solution u ∈ C([0, T ] : H 3(R)) of the IVP associated to
the CH equation (5.3) blows up in finite time, i.e.

lim
t↑T

‖∂xu(·, t)‖∞ = ∞,

which corresponds to the breaking of waves.
Formally, one has that H 1-solutions of the CH equation (5.3) satisfy the conservation law

E(u)(t) =
∫ ∞

−∞
(
u2 + (∂xu)2)(x, t) dx = E(u0),

so that the H 1-norm of the solutions constructed in [92] (see Theorem 5.5 below) remains
invariant within the existence interval.

In [15] and [16] the existence and uniqueness, respectively, of a H 1 global solution for
the CH equation (5.1) was established.

For other well-posedness results we refer to [54, 55] and the references therein.
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Concerning asymptotic at infinity UCP for solutions of the CH equation, we recall two
theorems obtained in [59]:

Theorem 5.1 ([59]) Assume that for some T > 0 and s > 3/2,

u ∈ C([0, T ] : Hs(R)) ∩ C1((0, T ) : Hs−1(R))

is a strong solution of the IVP associated to the CH equation (5.3). If for some α ∈ (1/2, 1),
u0(x) = u(x, 0) satisfies

|u0(x)| = o(e−x) and |∂xu0(x)| = O(e−αx) as x ↑ ∞, (5.4)

and there exists t1 ∈ (0, T ] such that
|u(x, t1)| = o(e−x) as x ↑ ∞, (5.5)

then u ≡ 0.

Remark 5.2 (1) The conclusion of Theorem 5.1 still holds with the decay in (5.4)–(5.5)
assumed for x ↓ −∞.

(2) Roughly, Theorem 5.1 affirms that a no non-trivial solution of the CH equation can
decay faster at two times than peakon (soliton) solution (5.2). This is not the case of
the k-gKdV equation, k-gBO equation and the dgBO equation (Section 6). In view of
the soliton resolution conjecture this should be the case for very large values of the
time t , see the comments at the end of the Section 2.

The next result shows that Theorem 5.1 is optimal:

Theorem 5.3 ([59]) Assume that for some T > 0 and s > 3/2,

u ∈ C([0, T ] : Hs(R)) ∩ C1((0, T ) : Hs−1(R))

is a strong solution of the IVP associated to the CH equation (5.3). If for some θ ∈ (0, 1),
u0(x) = u(x, 0) satisfies

|u0(x)|, |∂xu0(x)| = O(e−θx) as x ↑ ∞,

then
|u(x, t)|, |∂xu(x, t)| = O(e−θx) as x ↑ ∞,

uniformly in the time interval [0, T ].
Remark 5.4 (1) We observe the UCP in Theorem 5.1 is restricted to the case where u2 ≡

0. A result of this kind for two arbitrary solutions u1, u2 of the CH equation (5.3) is
unknown.

(2) In [92], Theorems 5.1 and 5.3 were extended to the solutions of the CH equation (5.3)
obtained in the following class which contains the peakons solutions (5.2):

Theorem 5.5 ([92]) Given u0 ∈ H 1(R) ∩ W 1,∞(R) ≡ X there exist T = T (‖u0‖X) > 0
and a unique solution u = u(x, t) of the IVP associated to the CH equation (5.3) such that

u ∈ C([−T , T ] : H 1(R)) ∩ L∞([−T , T ] : W 1,∞(R)),

with
sup

[−T ,T ]
‖u(t)‖X = sup

[−T ,T ]
(‖u(t)‖1,2 + ‖u(t)‖1,∞) ≤ 2C‖u0‖X,

for some universal constant C > 0.
Moreover, given R > 0, the map u0 �→ u, taking the data to the solution, is continuous

from the ball {u0 ∈ X : ‖u0‖X ≤ R} into C([−T (R), T (R)] : H 1(R)).
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The periodic version of this theorem was previously established in [32].
The CH equation (5.3) is a member of the b-family of equations:

∂tu + u∂xu + ∂x(1 − ∂2
x )−1

(
b

2
u2 + 3 − b

2
(∂xu)2

)
= 0, b ∈ [0, 3]. (5.6)

For b = 2 one gets the CH equation and for b = 3 one obtains the Degasperis–Procesi (DP)
equation [33], the only bi-hamiltonian and integrable models in this family, see [33, 39].

Remark 5.6 The results in Theorem 5.1 and Theorem 5.3 extend directly to all the members
in the b-family, see [58]. The same applies to Theorem 5.5, and its periodic version in [32].

Concerning the local UCP for solutions of the IVP for the CH equation (5.3), in fact for
all b-equations in (5.6), we have:

Theorem 5.7 ([91]) Let u = u(x, t) be the solution of the IVP for an equation in (5.6)
provided by Theorem 5.5 (see Remark 5.6). If there exist an open interval I ⊂ R and a time
t1 ∈ [0, T ] such that

u(x, t1) = ∂tu(x, t1) = 0, x ∈ I,

then u ≡ 0.
In particular, if there exists an open set Ω ⊂ R × [0, T ] such that

u(x, t) = 0 (x, t) ∈ Ω,

then u ≡ 0.

The result in Theorem 5.7 extends to solution of the IPBVP:

Theorem 5.8 ([91]) Let u = u(x, t) be the local solution of the IPBVP for an equation in
(5.6) found in [32] (see Remark 5.6(ii)). If there exist an open interval I ⊂ S and a time
t1 ∈ [0, T ] such that

u(x, t1) = ∂tu(x, t1) = 0, x ∈ I,

then u ≡ 0.
In particular, if there exists an open set Ω ⊂ R × [0, T ] such that

u(x, t) = 0 (x, t) ∈ Ω,

then u ≡ 0.

Remark 5.9 (1) Others UCP for the IPBVP for the b-equations in (5.6) have been obtained
in [14] and [13].

(2) From the above results, one has that for the CH equation (5.3) (and for all the members
in the b-family (5.6)) both local and asymptotic at infinity UCP’s are known only in the
case where the solution u2 ≡ 0. Therefore, the UCP result for two arbitrary solutions
u1, u2 remains open.

Next, we shall sketch the proof of Theorem 5.7 and remark that the proof for Theorem 5.8
is similar, see [91].

Proof of Theorem 5.7 We observe that formally

(1 − ∂2
x )−1h(x) = 1

2

(
e−|·| ∗ h

)
(x), h ∈ L2(R).
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Thus, from the hypothesis(
b

2
u2 + 3 − b

2
(∂xu)2

)
(x, t1) = 0, x ∈ I, b ∈ [0, 3],

and from the equation

∂x(1 − ∂2
x )−1

(
b

2
u2 + 3 − b

2
(∂xu)2

)
(x, t1) = 0, x ∈ I .

Thus, defining

F(x) ≡ ∂x(1 − ∂2
x )−1

(
b

2
u2 + 3 − b

2
(∂xu)2

)
(x, t∗)

= −1

2
sgn(·)e−|·| ∗

(
b

2
u2 + 3 − b

2
(∂xu)2

)
(x, t∗)

and

f (x) ≡
(

b

2
u2 + 3 − b

2
(∂xu)2

)
(x, t∗) ≥ 0

one has that
F ∈ L1(R) ∩ Cb(R), f ∈ L1(R) ∩ L∞(R)

and
F(x) = f (x) = 0, x ∈ [α, β].

Since for y /∈ [α, β] it follows that

−sgn(β − y)e−|β−y| > −sgn(α − y)e−|α−y|,

with
f (y) ≥ 0, y ∈ R,

and

F(β) = −1

2

∫ ∞

−∞
sgn(β − y)e−|β−y|f (y)

≥ −1

2

∫ ∞

−∞
sgn(α − y)e−|α−y|f (y) = F(α),

with

F(β) = F(α) if and only if f =
(

b

2
u2 + 3 − b

2
(∂xu)2

)
≡ 0,

which yields the desired result.

Remark 5.10 One can ask if the result in Theorem 5.7 still hold under the assumption

u(x, t) = k0, (x, t) ∈ Ω,

with k0 ∈ R− {0} and Ω ∈ R× [0, T ] open set, or for some t1 ∈ (0, T ) and for some open
interval I ⊂ R

∂tu(x, t1) = 0 and u(x, t1) = k0, x ∈ I

(see Theorem 3.5).
In the case b = 0 in (5.6) the previous proof provides the result. However, for other

values of the parameter b ∈ (0, 3], in particular for the CH and DP equations, the result is
unknown.
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Finally, we consider the generalized form of the CH (gCH) equation

∂tu + 3u∂xu − ∂t ∂
2
xu + 2k∂xu = 2∂xu∂2

xu + u∂3
xu, t, x, k ∈ R. (5.7)

or its formally equivalent form

∂tu + u∂xu + ∂x(1 − ∂2
x )−1

(
u2 + 1

2
(∂xu)2 + 2ku

)
= 0.

In [86] a systematic study on the existence and properties of traveling wave solutions
for the gCH was provided. The definition in [86] for traveling waves solutions of the gCH
equation is equivalent to the following one:

Definition 5.11 A function φ(x − ct) is a traveling wave solution of the gCH equation if

(i) φ ∈ H 1
loc(R) and

(ii) φ satisfies, in the weak sense, the equation

− cφx + φφx + (1 − ∂2
x )−1

(
φ2 + (φx)

2

2
+ 2kφ

)
= 0. (5.8)

Remark 5.12 (1) One sees that if φ(x) is a traveling wave solution of (5.7), then −φ(−x)

is red also a traveling wave solution of (5.7) with −k instead of k.
(2) Similarly, if u(x, t) is a solution of the gCH equation (5.7), then

v(x, t) = u(x − αt, t) + α,

solves the same equation with k − α instead of k.

Following [86] and restricting to the setting c > 0 and ‖φ‖∞ > m, with

lim|x|→∞ φ(x) = m, (5.9)

one has: peakons exist if and only if k = m. In this case c = ‖φ‖∞.
The cuspons with decay, i.e. φ is a weak solution of (5.8), smooth on R − {a}, having a

cusp at a ∈ R

lim
x↑a

φx(x) = − lim
x↓a

φx(x) = ∞,

increasing in (−∞, a), decreasing in (a,∞), and satisfying (5.9), exist if k < −m. In this
case c = ‖φ‖∞.

The stumpons with decay, i.e. φ is a continuous weak solution of (5.8) such that there
exist a, b, d ∈ R with a < b, d > 0, such that

lim
x↑a

φx(x) = − lim
x↓b

φx(x) = ∞, with φ(x) = d, x ∈ [a, b],

increasing in (−∞, a), decreasing in (a,∞), satisfying (5.9), (inserting the interval [a, b]
at the cusp of a cuspon).

Remark 5.13 (1) The argument given above for the proof of Theorem 5.7 shows that if
m > 0 a (positive) stumpon with decay can only exists if k ≤ 0. Similarly, if m < 0
then one needs to have k ≥ 0, see Remark 5.12. In the case, m = 0 one needs k 	= 0.

From the existence result of stumpons in [86] this case provides a counter-example
of the question stated in Remark 5.10 for the gCH equation in (5.7) with k 	= 0. Thus,
this question for the CH equation in (5.3) remains open.
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(2) Similarly, by taking m = 0 and two stumpon solutions with common maximum real-
ized at intervals I1 and I2, |I1∩I2| > 0, one gets a negative answer to the local UCP for
two arbitrary (weak) solutions of the gCH with k 	= 0, see Remarks 5.9(2) and 5.12.

6 The Dispersion Generalized Benjamin–Ono Equation

Next, we shall consider the dispersion generalized Benjamin–Ono (dgBO) equation

∂tu − ∂xD
α
x u + u∂xu = 0, t, x ∈ R, α ∈ [−1, 2], (6.1)

where

Dα
x = (−∂2

x )α/2.

One has that in (6.1) α = 2 corresponds to the KdV equation, α = 1 to the BO equation,
α = 0 to the inviscid Burgers’ equation (after a change of frame), and α = −1 to the so
called Hilbert–Burgers equation. Also, we recall that only in the cases α ∈ {1, 2} the model
is completely integrable.

For the global and local well posedness of the IVP associated to the dgBO (6.1) we refer
to [23, 56, 60, 61, 74, 75, 89, 95–98, 109, 116] and the references therein.

For α ∈ [1, 2] the dgBO equation possess traveling waves solutions

u(x, t) = φα(x − t).

In the case α ∈ (1, 2) the existence (up to symmetry of the equation) of the traveling wave
was established in [3, 118], and the uniqueness in [42]. In the case α = 1, the BO equation,
the uniqueness was previously obtained in [4]. However, no explicit formula is known for
φα , when α ∈ (1, 2). In [74], the following upper bound for the decay of the traveling wave
was deduced

φα(x) ≤ cα

(1 + x2)(1+α)/2
, α ∈ [1, 2). (6.2)

Roughly speaking, the mild decay for α ∈ [1, 2) is due to the non-smoothness of the
symbol modeling the dispersive relation in (6.1) σα(ξ) = ξ |ξ |α .

Concerning the asymptotic at infinity UCP we have the following result (see the notation
in (3.3)):

Theorem 6.1 ([47]) Let α ∈ (1, 2). Let u ∈ C([0, T ] : Hs(R)) be the solution of the IVP
associated to the dgBO equation (6.1) with data u0.

(1) If s ≥ α(r + 1), r ∈ [3/2 + α, 5/2 + α) and u0 ∈ Żs,r , then u ∈ C([0, T ] : Żs,r ).
(2) If u ∈ C([0, T ] : Ż9,(5/2+α)−) is solution of the IVP associated to the dgBO equation

(6.1) and there exist t1, t2, t3 with

0 < t1 < t2 < t3 < T

such that u(·, tj ) ∈ Z9,5/2+α , j = 1, 2, 3, then u ≡ 0.
(3) There exist u ∈ C([0, T ] : Ż9,(5/2+α)−) non-trivial solution of the IVP associated to

the dgBO equation (6.1) and t1, t2 with 0 < t1 < t2 < T such that u(·, tj ) ∈ Z9,5/2+α ,
j = 1, 2.

Remark 6.2 (1) Roughly speaking, we observe that Theorem 6.1 with α = 1 corresponds
to Theorem 3.1, and that the gain in decay due to the stronger dispersion, i.e. α ∈ (1, 2)

is consistent with the result in (6.2) obtained in [74].

787On Unique Continuation...



(2) In [103] it was considered the case −1 ≤ α ≤ 1, α 	= 0, in (6.1) and extensions of the
results in [45–47] were obtained.

The next result regards local UCP for solutions of (6.1).

Theorem 6.3 ([78]) Let u1, u2 ∈ C([0, T ] : Hs(R)) ∩ C1((0, T ) : Hs−α−1(R)), s >

α + 3/2 be strong solutions of the dgBO equation (6.1) with α ∈ (−1, 2) − {0, 1}.
If there exist an open interval I ⊂ R and t1 ∈ (0, T ) such that{

u1(x, t1) = u2(x, t1), x ∈ I,

∂tu1(x, t1) = ∂tu2(x, t1), x ∈ I,

then
u1(x, t) = u2(x, t), (x, t) ∈ R × [0, T ].

In particular, if u1(x, t) = u2(x, t) for (x, t) ∈ Ω ⊂ R × [0, T ] an open set, then
u1 ≡ u2.

Remark 6.4 The condition on s in Theorem 6.3 is not optimal.

As in the case of the k-gBO equation (3.2) and the ILW equation (4.1) we have as a
consequence of Theorem 6.3 and its proof:

Theorem 6.5 Let n ∈ Z
+ and

u1 ∈ C([0, T ] : Hs(R)) ∩ C1((0, T ) : Hs−2(R)), s > α + 2n + 3/2,

be a strong solution of dgBO equation (6.1). If there exist an open interval I ⊂ R and
t1 ∈ (0, T ) such that

∂tu1(x, t1) = Q2n−1(x) and u(x, t1) = Pn(x), x ∈ I,

where Q2n−1 and Pn are polynomial with real coefficients of degree at most 2n − 1 and n,
respectively, then,

Q2n−1(x) ≡ Pn(x) ≡ u1(x, t) ≡ 0, (x, t) ∈ R × [0, T ].

The main idea to prove Theorem 6.3 and Theorem 6.5 is to apply the following result
found in [51] (see results in [40, 41, 107, 119]).

Theorem 6.6 ([51]) Let a ∈ (0, 2) and f ∈ Hs(Rn), s ∈ R. If there exists a non-empty
open set Ω ⊂ R

n such that

(−�)af (x) = f (x) = 0 in D′(Ω), (6.3)

then f ≡ 0.

Remark 6.7 (1) Notice that the case n = 1 and a = 1/2 in Theorem 6.6 corresponds to
Lemma 3.7.

(2) Theorem 6.6 still holds if one replaces (6.3) by the following hypothesis: there exist
polynomials Pn, Qk of degree n, k, respectively, such that

(−�)af (x) = Pn(x) and f (x) = Qk(x), x ∈ Ω .

(3) Theorem 6.6 tells us that a fractional porous medium equation of the form

∂tu = (−�)a(u1+m), t > 0, x ∈ R
n, m > 0, a ∈ R

+ − 2Z,

cannot have compact support solutions.
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The proof of Theorem 6.6 is a consequence of the characterization of the fractional power
of the Laplacian found in [17]: If{

�v + 1−α
y

∂yv + ∂2
y v = 0, (x, y) ∈ R

n × (0, ∞),

v(x, 0) = f (x),

then for α ∈ (0, 2) there exists c > 0 such that

c(−�)af = − lim
y↓0

y1−2a∂yv = 1

2a
lim
y→0

v(x, y) − v(x, 0)

y2a
.

Once, Theorem 6.6 is available the proof of Theorem 6.3 follows the argument given in
the proof of Theorem 3.3.

Motivated by Theorem 6.6 and using an argument found in [112] the following result
was established in [78]:

Theorem 6.8 Let α1, α2 ∈ R, α1 − α2 /∈ 2Z and f ∈ Hs(Rn), s ∈ R. If there exists a
non-empty open set Θ ⊂ R

n such that

(1 − �)αj /2f (x) = 0 in D′(Θ) for j = 1, 2,

then f ≡ 0 in Hs(Rn).

7 The General Fractional Schrödinger Equation

In this section we shall consider fractional Schrödinger (GFDS) equations of the form

i∂tu + (Lm)α/2u + V u + (W ∗ F(|u|)) u + P(u, ū) = 0, (7.1)

where (x, t) ∈ R
n × R,

Lm = (−� + m2), m ≥ 0,{
α ∈ R − 2Z if m > 0,

α ∈ (−n,∞) − 2Z if m = 0,

V = V (x, t) representing the potential energy, W = W(|x|) the Hartree integrand, and
P(z, z̄) the nonlinearity with P(0, 0) = 0.

Concrete examples of the model in (7.1) arise in several different contexts, for example:

(i) when m = 0, W = P = 0, it was used in [85] to describe particles in a class of Levi
stochastic processes,

(ii) when m > 0, W = P = 0, it was derived as a generalized semi-relativistic
(Schrödinger) equation, see [87] and the references therein,

(iii) when m = 0, α = 1, V = W = 0, and P(u, ū) = ±|u|αu, α > 0, it is known as the
half-wave equation, see [7, 50] and the references therein,

(iv) when m = 1, V = P = 0, F(|z|) = |z|2 the model arises in gravitational collapse,
see [34, 48] and the references therein,

(v) when m = 0, V = W = 0 and

P(u, ū) = c0|z|2z + c1z
3 + c2z z̄ + c3z̄

3, c0 ∈ R, c1, c2, c3 ∈ C,

it was deduced in [65] in the study the long-time behavior of solutions to the water
waves equations in R

2, where (−∂2
x )1/2 modeling the dispersion relation of the

linearized gravity water waves equations for one-dimensional interfaces.
The well-posedness of the IVP associated to some equations of the type in (7.1) has

motivated several works, we refer to [12, 21, 22, 62, 83, 87] and the references therein.
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Here, in order to simplify the exposition, we will assume that the IVP associated to
(7.1) is locally well-posed in Hs(Rn) for s ≥ s∗ = s∗(α, n, V,W,F, P ).

Concerning local UCP for the IVP associated to the equation (7.1) with m > 0, we have
the following result:

Theorem 7.1 ([78])(1) Let α ∈ (−2, 2) − {0}, m > 0. Let

u1, u2 ∈ C([0, T ] : Hs(R)) ∩ C1((0, T ) : Hs−α(R)), s > s∗,

be two solutions of the IVP associated to the GFDS equation (7.1) with W ≡ 0. If there
exist an open set D ⊂ R

n and t1 ∈ [0, T ] such that{
u1(x, t1) = u2(x, t1), x ∈ D,

∂tu1(x, t1) = ∂tu2(x, t1), x ∈ D,

then

u1(x, t1) = u2(x, t1), (x, t) ∈ R
n × [0, T ].

In particular, if u1(x, t) = u2(x, t) for (x, t) ∈ Ω ⊂ R
n × [0, T ] with Ω open, then

u1 ≡ u2.
(2) For the general form of the GFDS equation (7.1), i.e. W 	= 0, the result in (1) still holds

if u2(x, t) = 0 for (x, t) ∈ R
n × [0, T ].

Next, we consider the case m = 0:

Theorem 7.2 ([78]) (1) Let α ∈ (0, 2) and m = 0. Let u1, u2 be two solutions of the IVP
associated to the equation (7.1) with W ≡ 0 such that

u1, u2 ∈ C([0, T ] : Hs(Rn)) ∩ C1([0, T ] : Hs−α(Rn)),

with s > max{α; n/2}. If there exist an open set D ⊂ R
n and t1 ∈ [0, T ] such that{

u1(x, t1) = u2(x, t1), x ∈ D,

∂tu1(x, t1) = ∂tu2(x, t1), x ∈ D,

then

u1(x, t1) = u2(x, t1), (x, t) ∈ R
n × [0, T ].

In particular, if u1(x, t) = u2(x, t) for (x, t) ∈ Ω ⊂ R
n × [0, T ] with Ω open, then

u1 ≡ u2.
(2) For the general form of the equation (7.1), i.e. W 	≡ 0, the result in (1) still holds if

one assumes that u2(x, t) = 0 for (x, t) ∈ R
n × [0, T ].

Remark 7.3 (1) In the case V ≡ W ≡ 0 the appropriate versions of Theorems 3.5, 4.2,
and 6.5 still hold for the IVP associated to the equation (7.1).

(2) The proofs of Theorems 7.1 and 7.2 are based on the results in Theorems 6.8 and 6.6,
respectively (see [78]).

Finally, we briefly discuss the asymptotic UCP for solution of the IVP associated to the
equation (7.1). This question is largely open, even in the case when the operator modeling
the dispersion Lm relation is local, i.e. α ∈ 2Z+ and m ≥ 0.

Let us consider some particular cases. First, we fix α = 2 and m = 0, so (Lm)α/2 = −�.
In this setting, for the associated linear problem with V ≡ W ≡ P ≡ 0 the asymptotic UCP
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can be re-phrased in terms of uncertainty principles for the Fourier transform. For example,
the L2 version of Hardy uncertainty principle [57] found in [29] can be stated as:

If f e|x|2/β2
, f̂ e|x|2/α2 ∈ L2(Rn) and 1/αβ ≥ 1/4 ⇒ f ≡ 0.

This result can be reformulated in terms of the free Schrödinger group {eit� : t ∈ R} :

If f e|x|2/β2
, eiT �f e|x|2/α2 ∈ L2(Rn) and T/αβ ≥ 1/4 ⇒ f ≡ 0. (7.2)

We observe that in this case the weight at time t = 0 and t = T may be different. This is a
general fact exploited in several works, see [38] and the references therein.

In [37], the result in (7.2), except for the case T/αβ = 1/4, was enlarged for solutions
u(x, t) of the equation

∂tu = i(�u + V (x, t)u), (x, t) ∈ R
n × [0, T ], (7.3)

with the complex valued potential V = V (x, t) satisfying the decay assumption

lim
R↑∞ ‖V ‖L1([0,T ]:L∞(Rn−BR(0))) = 0. (7.4)

Moreover, in [37] an example of a complex valued potential V (x, t) verifying (7.3) for
which the corresponding solution u(x, t) 	≡ 0 holds that

u(x, 0) e|x|2/β2
, u(x, T )e|x|2/α2 ∈ L2(Rn) with T/αβ = 1/4,

was given. This affirms that the result is sharp.
A similar result for real valued potential V (x, t) is open.
The result in [37] commented above extends to the nonlinear equation

∂tu = i�u + iV (x, t)u + iP (u, u), (x, t) ∈ R
n × [0, T ], (7.5)

with the potential V satisfying (7.4), P : C2 → C being a smooth function with

P(0, 0) = ∂zP (0, 0) = ∂zP (0, 0) = 0,

and u1, u2 are regular enough solutions of the equation (7.5) such that

(u1 − u2)(x, 0)e|x|2/β2
, (u1 − u2)(x, T )e|x|2/α2 ∈ L2(Rn), T /αβ > 1/4,

then u1 ≡ u2.
However, this result may not be optimal. Consider the case of (7.5) with V ≡ 0 and non-

linearity P(z, z) = |z|α−1z and α ∈ (1,∞). Assuming u2 ≡ 0 one may ask the question:
what is the strongest possible decay at infinity of a non-trivial solution u1(x, t) of

∂tu = i(�u + |u|α−1u) (7.6)

at the time t = 0 and t = 1? The answer is unknown.
On one hand, the result commented above, for α odd or sufficiently large, shows that

if u1(x, 0)e|x|2/4, u1(x, 1)e|x|2/4 ∈ L2(Rn) then u1 ≡ 0. (7.7)

On the other hand, one has that the ground state solution

u1(x, t) = eitϕ(x)

of (7.6) where ϕ ∈ H 1(Rn) is the unique (up to symmetries) radial positive solution of the
elliptic problem

−�ϕ + ϕ = |ϕ|α−1ϕ

with ϕ having exponential decay at infinity, i.e.

ϕ(x) = O(e−a|x|) as |x| ↑ ∞, a ∈ R, (7.8)
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see [113] and [9].
We do not know a result as that in (7.7) with a weaker weight that the Gaussian e|x|2/4 at

time t = 0 and t = 1. Also, we do not know a solution of the equation (7.6) which has a
stronger decay that u1(x, t) = eitϕ(x) for t ∈ [0, 1], see (7.8).

Returning to the general equation in (7.1) one observes that for m = 0 the symbol of the
dispersive operator is non-smooth. Therefore, from the discussed results of the BO equation
one expect the strongest possible decay of the solution to be weaker than that for the case
m > 0 where the symbol is smooth. Also, the form of the Hartree integrand should play an
essential role in the strongest possible decay of the solution.

Finally, we have some comments concerning the product rule for fractional derivatives.
Theorem 6.6 tells us that the pointwise inequality involving the fractional Riesz potential
D = (−�)1/2:

|Da(fg)(x)| ≤ c
(|(f Dag)(x)| + |(gDaf )(x)|) a.e. Rn (7.9)

fails for any a ∈ (0, 2) and any constant c > 0. To see this, one takes f, g ∈ C∞
0 (Rn)

with |supp(f ) ∩ supp(g)| > 0, to have the right hand side of (7.9) vanishing in (supp(f ) ∪
supp(g))c with the left hand side of (7.9) non-vanishing in any open set of (supp(f ))c ∪
(supp(g))c.

In this regard the following pointwise estimate was established in [28]:

Theorem 7.4 ([28]) Let a ∈ (0, 2) and any f ∈ C∞
0 (Rn). Then the following inequality

holds:
Da(f 2)(x) ≤ 2f (x)Daf (x).

For a generalization of Theorem 7.4 we refer to [18].
From Theorem 6.6 and Theorem 7.4 one has: if f ∈ C∞

0 (Rn), then

Da(f 2)(x) ≤ 0 ∀x ∈ (supp(f ))c,

with Da(f 2) non-vanishing in any open subset of (supp(f ))c.
However, one has the following estimate:

Theorem 7.5 Let r ∈ [1, ∞] and p1, p2, q1, q2 ∈ (1, ∞] with
1/r = 1/p1 + 1/q1 = 1/p2 + 1/q2.

Given a > 0 there exists c = c(n, a, r, p1, p2, q1, q2) > 0 such that for all f, g ∈ S(Rn)

one has
‖Da(fg)‖r ≤ c

(‖f ‖p1‖Dag‖q1 + ‖g‖p2‖Daf ‖q2

)
. (7.10)

For the proof of Theorem 7.5 we refer to [52]. The case r = p1 = p2 = q1 = q2 = ∞
was established in [11], see also [53]. For earlier versions of this result we refer to [73] and
[76].

From (7.9) and (7.10) it seems natural to ask whether or not the following weaker
estimate than (7.10) still holds:

Given p ∈ [1, ∞] there exists c = c(n, p) > 0 such that for all f, g ∈ S(Rn)

‖Da(fg)‖p ≤ c
(‖f Dag‖p + ‖gDaf ‖p

)
.
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83. Krieger, J., Lenzmann, E., Raphaël, P.: Nondispersive solutions to the l2-critical half-wave equation.

Arch. Rational Mech. Anal. 209, 61–129 (2013)
84. Kubota, T., Ko, D.R.S., Dobbs, L.D.: Weakly-nonlinear, long internal gravity waves in stratified fluids

of finite depth. J. Hydronautics 12, 157–165 (1978)
85. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E. 66, 056108 (2002)
86. Lenells, J.: Traveling wave solutions of the Camassa–Holm equation. J. Differ. Equ. 217, 393–430

(2005)
87. Lenzmann, E.: Well-posedness for semi-relativistic Hartree equations of critical type. Math. Phys. Anal.

Geom. 10, 43–64 (2007)
88. Li, Y.A., Olver, P.J.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive

model wave equation. J. Differ. Equ. 162, 27–63 (2000)

795On Unique Continuation...



89. Linares, F., Pilod, D., Saut, J.-C.: Dispersive perturbations of Burgers and hyperbolic equations I: Local
theory. SIAM J. Math. Anal. 46, 1505–1537 (2014)

90. Linares, F., Ponce, G.: Introduction to Nonlinear Dispersive Equations, 2nd edn. Springer, New York
(2015)

91. Linares, F., Ponce, G.: Unique continuation properties for solutions to the Camassa-Holm equation and
other non-local equations. Proc. Amer. Math. Soc. 148, 1029–1048 (2020)

92. Linares, F., Ponce, G., Sideris, T.: Properties of solutions to the Camassa-Holm equation on the line
in a class containing the peakons. Advanced Studies in Pure Mathematics, Asymptotic Analysis for
Nonlinear Dispersive and Wave Equations 81, 196–245 (2019)

93. McKean, H.: Breakdown of the Camassa-Holm equation. Commun. Pure Appl. Math. 57, 416–418
(2004)

94. Molinet, L.: On well-posedness results for Camassa-Holm equation on the line: a survey. J. Nonlinear
Math. Phys. 11, 521–533 (2004)

95. Molinet, L., Pilod, D., Vento, S.: On well-posedness for some dispersive perturbations of Burgers’
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