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Abstract
A degenerate Zakharov system arises as a model for the description of laser-plasma inter-
actions. It is a coupled system of a Schrödinger and a wave equation with a non-dispersive
direction. In this paper, a new local well-posedness result for rough initial data is established.
The proof is based on an efficient use of local smoothing and maximal function norms.
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1 Introduction

In view of numerous applications, there is strong interest in plasma dynamics and laser-
plasma interactions. Ideally, one wants to use numerical simulations to gain insight in these
processes. This requires reliable models and a thorough understanding thereof.
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In 1972, Zakharov introduced in [23] the system

in
2 2 in (1.1)

to study Langmuir waves in a non- or weakly magnetized plasma, where the physical dimen-
sion is 3. Here, denotes the complex envelope of the electric field and the ion
density fluctuation.

A different situation arises when modelling the interaction of a plasma with a laser beam.
Using the paraxial approximation (see e.g. [19, Section 4]) to describe this interaction, one
obtains the system

in
2 2 in (1.2)

where now denotes the complex amplitude of the laser beam and the real-valued elec-
tron density fluctuation. Both are functions of the variables 1 .
Since the last spatial variable plays a distinguished role (the direction of propagation of
the laser beam), we use the notation 1 1

1 and 1
1

2 . We
refer to [16] and [20] for a derivation in 3. In [16] a reduced version of (1.2) was used
to analyze self-focusing from local intensity peaks (hot spots) in laser plasmas, which is a
possible instability for inertial confinement fusion.

A more precise description of laser-plasma interaction takes into account that part of
the incident light field is backscattered by Raman- and Brillouin-type processes. The three
resulting light fields interact with the electric field of the plasma as well as with the density
fluctuation. The resulting system can be seen as a nonlinear coupling of equations of the
form (1.1) and (1.2). A reduced model system of this type was used in [17] for numerical
simulations, see also [7]. The first step in the analysis of these advanced models is the
understanding of systems (1.1) and (1.2). Finally, we note that the system (1.2) also arises
as WKB approximation for the Euler–Maxwell equations in the cold ion case for highly
oscillatory initial data, see [21].

In the present paper, we study the initial value problem associated with (1.2), i.e. we
prescribe

0 0 0 1 in . (1.3)

We prove the following local well-posedness result.

Theorem 1.1 Let 3, 2
2 , 1

2 . Then, (1.2)–(1.3) is locally well-posed if the
initial data satisfies

0 0
1

1
1
2

2
.

We define the non-isotropic Sobolev spaces as the collection of all
satisfying

2 2 2
1 2

where 1 1
1, , and 1 1 is the Fourier

multiplier. We refer to Theorem 3.2 for a more precise version of our main result.
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Without going into detail, we remark that our proof in Section 4 also implies certain
refinements in Besov spaces at the threshold regularities if 4, and in addition, one could
avoid low frequency conditions (see Section 3).

Previous Results Coupling two of the fundamental dispersive equations, the Zakharov sys-
tem (1.1) and the corresponding initial value problem have attracted a lot of attention. We
refer to [10, 20] and the references therein for the history of the problem and to [4, 9, 14]
for a few milestones in the theory. The local well-posedness theory for the Zakharov system
is now comprehensively understood, see [5] for the state of the art in dimensions 4 and
[18] for 3.

Due to the lack of dispersion in the longitudinal direction in (1.2) the system (1.2) is
sometimes called the degenerate Zakharov system. This partial lack of dispersion adds sig-
nificant difficulties to the well-posedness theory, which therefore is still in its infancy. In
[7] the question of local well-posedness of (1.2) has been posed. The periodic problem
for (1.2) is ill-posed, see [8]. A positive answer in dimension three was given in [13] for

initial values 0 0 1 in 5 3 5 3 4 3 with
1
2
1 0

1
2
2 0

5 3

and 3 1
4 3 , using local smoothing and maximal function estimates. Improving

upon the maximal function estimate, local well-posedness for initial values 0 0 1

2 3 2 3 1 3 with
1
2
1 0

1
2
2 0

2 3 and 3 1
1 3 was shown

in [1].
In view of these results, the assumptions on the initial data in Theorem 1.1 are lowered

significantly. Our approach is based on an efficient use of local smoothing and maxi-
mal function norms. More precisely, we adapt the approach devised in [3] (to solve the
Schrödinger maps problem) to the setting of the degenerate Zakharov system.

Organisation of the Paper In Section 2 we introduce notation and provide linear estimates.
In Section 3 we prove the main result under the hypothesis that two nonlinear estimates hold,
which we then prove in Section 4. In an appendix, we complement our results by showing
that it is impossible to prove the nonlinear estimates in Fourier restriction norms only.

2 Preliminaries

Notation Throughout the paper, we use the following notations. means that there
exists 0 such that . Also, means and . Let

and let , , denote the Fourier transform of in time, 1, and ,
respectively. By we denote the Fourier transform of in time and space. Let
, be dyadic numbers, i.e. there exist 1 1 0 such that 2 1 and 2 1 . Let

0 2 2 be an even, non-negative function which satisfies 1 for 1.
Letting 1 2 1 , 1 , the equality 1
holds. Here we used 2N0 for simplicity. We also use the abbreviations

2N0 , 2N0 , etc. throughout the paper.

Let e 2 and e
1 e 0 with the induced Euclidean measure. For

, 1 , define

e
e

e

1

.
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We define 1 1 supp . Let 0 and

2 2 1 supp 1 .

Let 0 be non-negative and symmetric, such that 0 if 4 1 1

or 4 and 1 if 2 1 1 2, and we set . Then,

1

1

1 0 for all 1 1
1 and 2 . (2.1)

We define 1 and e
1 e . Since both and e have

kernels in 1 1 , they are bounded operators on each of the spaces e .
Let 3, 0, and 2 4 . For 1 and 2 , we define the

norms

2 1
2

2

1

1

2
e

1
2

1

1

e 2
e

if 4 and

2 4 log 1 1
2

2

1

2
e

1
2

2

1

e 2
e

in the case 3. To estimate the nonlinear terms, we introduce

inf
1 2

1 1

1
2

1

1

2 1 2
e

.

Here 1 satisfies 1 1 1 1 1 and e1 e 1 denote the standard basis of
1. For 1 we modify the above definition as follows:

1 2 1

1

1

2
e 1 1

.

For 0 and , 0, we define the normed spaces and as

2

2 2 2
2

1
2

2

2 2
2

2
2

1
2

.

762 S. Herr et al.



For 2 , we define the norms for the nonlinear terms as

2 2 2
2

1
2

2 2
1 2

2

2

1
2

.

Linear Estimates In this subsection we collect the estimates for the flow of the linear
Schrödinger equation which we employ in the following. Besides the classical Strichartz
estimates, we crucially rely on local smoothing and maximal function estimates. The local
smoothing estimates follow from (4.18) in [12]. The maximal function estimates for 4
are stated in (4.6) in [12]. We refer to [11] (see (3.28) in the proof of Lemma 3.3) for the
maximal function estimates for 3. See also Lemma 3.2 in [3].

Lemma 2.1 For all 2 1 , 1 and e 2, we have:

(a) (Local smoothing estimate).

e 2
e

1
2 2 1 .

(b) (Maximal function estimate).

2
e

2
2 2 4

and

2
e

1 log
1
2 2 3.

(c) (Strichartz estimate).

1 2 .

Note that Lemma 2.1 implies

(2.2)

for all .
In order to prove the local well-posedness theory via a fixed point argument, we also

need estimates for the inhomogeneous terms in our function spaces. In the case 4,
these are provided by Proposition 3.8 in [3], as one sees by checking the definitions of the
involved norms. We provide a proof here to include the case 3.

Lemma 2.2 We have

0

for all 0 1.
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Proof It is straightforward to prove Lemma 2.2 in the case 1. Thus, we assume 1.
We need to show

0
1

(2.3)

0

1
2

1

1

1 2
e
. (2.4)

The former estimate (2.3) is a consequence of the Christ–Kiselev lemma. See [6]
and Lemma B.3 in [22]. Alternatively, and spaces were employed to show (2.3),
see the proof of Lemma 7.3 in [3]. For the latter estimate (2.4), we follow the proof of
Lemma 7.4 in [3], see also [15]. Because of (2.1), we have

1

1

e

1

1

1 e . (2.5)

Hence, without loss of generality, it suffices to show

e1
0

1
2 1 2

e1
.

We define the fundamental solution of the Schrödinger equation in 1 as

0 4
1

2

2

4 .

Then, the inhomogeneous term can be expressed as

0

1
0

0

2
0 1 1 1 1

1 1

where

1
2

0 1 1 1

1 0 .

Since the latter term can be handled by Lemma 2.1 and the dual estimate of the local
smoothing estimate, it suffices to prove

e1 1

1
2 1 2 .

To see this, we invoke Lemma 7.5 in [3] which implies that there exist functions 0 and
such that

e1 1 2 40 e11 1 1 e1 0

0 2
1

2 2
1
2 1 2
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where 2 40 e1 is defined in the obvious way. The Sobolev embeddings in time and
space yield the necessary bound for . To bound the first summand in the previous
decomposition, we write as in [3] for any 1 1

e 2 40 e11 1 1

1

e 2 40 e11 1 1 1 e .

Consequently, the desired bound for the first summand follows from the linear estimates in
Lemma 2.1.

As above, we point out that Lemma 2.2 yields

0
(2.6)

for all 0 1 and .

3 Local Well-Posedness of the Degenerate Zakharov System

For the purpose of this paper it is more convenient to work with the first order reformulation
of the degenerate Zakharov system (1.2). Setting 1 , system (1.2) is
equivalent to

in
2 in . (3.1)

The initial condition (1.3) transforms into

0 0 0 (3.2)

where 0 0
1

1. Note that 0 belongs to
1
2 if and only if

0
1

1
1
2

2. Moreover, the term can be treated in the same way as
in our analysis so that we drop the real part in (3.1) for simplicity. We remark that one can

use a modified transformation involving 1
1
2 to avoid any low frequency conditions

by following the argument in [2], we omit the details.
Besides the estimates from Section 2, the crucial ingredients in the proof of the local

well-posedness theorem are the following estimates for the nonlinear terms appearing on
the right-hand side of (3.1).

Proposition 3.1 Let 3, 2
2 , and 1

2 . Then we have

1
2 1

2
(3.3)

1 2 1
2

1
2 1 2 (3.4)

for all 0.

We postpone the proof of Proposition 3.1 to Section 4 and first show how it implies the
local well-posedness of the degenerate Zakharov system.
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Theorem 3.2 Let 3, 2
2 , and 1

2 . Then, for every initial data 0 0
1
2 there is a time 0 and a unique solution

1
2

1
2

of the degenerate Zakharov system (3.1)–(3.2).

Proof We define a mapping by the right-hand side of the integral equation corresponding
to (3.1) (after dropping the real part), i.e.

0 0

0 0
2 .

The estimates (2.2) and (2.6), the energy estimate for the half-wave equation, and the nonlin-
ear estimates from Proposition 3.1 now allow us to perform a standard fixed point argument
in the Banach space

1
2

1
2

which yields the assertion of the theorem.

4 Nonlinear Estimates

We now provide the proof of the nonlinear estimates in Proposition 3.1.

Proof of Proposition 3.1 Here we only consider 4. The case 3 can be handled in a
similar way. We consider (3.3) first. By Minkowski’s inequality, we get that

2 2 2
2

1
2

2 2
2

2

1
2

where denotes the convolution in the variable . Hence, it suffices to show the estimate

1 2
1
2

1
2

2

2
2

min 1 1 2 2 (4.1)

for all 1 1 and 2
2
2

2 , where min min 1 2 .
We consider the three cases 1 2, 2 1, and 1 2. In the

first case, using Bernstein’s and Hölder’s inequality, we find that

1 2 1 2 1

1
2

3
2 1 2 (4.2)

1
2

3
2 1 2 2

1
2

3
2 1 1 2 2

where

1 1 1 1

1
1

2

1 1

1

2

2

1 1
.
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In the last estimate we also used that 1 1 1
which follows by interpolat-

ing between 2 and 1 . The second case 2 1 can be treated in a similar
way, employing Hölder’s inequality first and then Bernstein’s inequality on 2.

It remains the case 1 2. If 1, we again argue as in (4.2). If 1,
Hölder’s inequality yields

1 2
1
2

1

1

1 2 1 2
e

1
2

1

1

1 2
e

2 2

1
2

1
2

2
2

1 1 1 2 2

which completes the proof of (4.1).
Next we prove (3.4). We compute that

1 2 1
2

2 2 1
1 2 1 2

2

2

1
2

.

Therefore, it is enough to show

1 2 2

1
2

max

2
2

min 1 1 2 2
(4.3)

for all 1 1 and 2 2 , where max max 1 2 and min
min 1 2 . Without loss of generality, we may assume 2 1. In the case 1 1, we
easily obtain (4.3) from Hölder’s inequality, Bernstein’s inequality and interpolation.

We can thus assume 1 1 in the following. Recall from (2.5) that we have

1

1

1
1 e

1

1

1 1 e 1.

Since 1 2 1 2 1 1 e is bounded on 2
e for all e e 2, Hölder’s

inequality allows us to estimate

1 2 2

1

1
1 e

1

1

1 1 e 1 2

2

1

1
1 e 1 2

e
2 2

e

1
2

1

2
2

2 1 1 2 2

which completes the proof of (4.3).

The above proof shows that, if 4, in the case 2
2 and 1

2 one obtains similar
estimates in the 1-based Besov norms.

Appendix A: Examples Involving Fourier Restriction Norms

In this section, we prove that it is impossible to solve the problem by using Fourier restric-
tion norms only. To that end, we define the additional frequency and modulation projections
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, , and as

2

.

For the parameters and 1 we define the Fourier restriction spaces
1 and 1 as the collection of tempered distributions such that

the following norms are finite:

2
2N

2N 2

2
2N

2N 2

.

The precise statement we prove in this section is the following:

Proposition A.1

(1) Suppose that there exists 0 such that

1 1 1 1 1 1
2 2 2

holds for all square-integrable , with compact Fourier support. Then, either 1
1 2 or 1 1 1 2 holds.

(2) Suppose that there exists 0 such that

2
1
2 2 1 2

2
1 1

holds for all square-integrable with compact Fourier support. Then, either 1 1 2
or 1 1 1 2 1 holds.

Proof For 0 and 1, we define the ball 1 . Let
1, 1, 0 0 2 . We use 1

2 2 .
Firstly, we show (1). We define the functions , 2 1 as

1 0
2 1 2

1

where denotes the characteristic function of the set . It is easily seen that for all 1,
2 , 1, 2 1 , it holds that

1 1 1 1
2 2 2

1.

Thus, it suffices to show that if 1 , we have

lim 1
2 1

. (A.1)
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We observe that if 1 2 then 1 0 1
1. Therefore,

for 1 , we get

1
2 1

2

1 2 2

1
2 1

2
1 2

1
1

1
2

1 2 2

1
2

1 0 1
1
2

1 2

1
1

1
2

1 2 2

1
2

1
2

1
1

log
1
1

which implies (A.1). Here, the third estimate holds because the measure of the set
1 2 is comparable to if 1 2 2 .
Secondly, we prove (2). Let 1 1 . We define the functions 2 1 as

1 0 log
1
1 2 1

2

1 2 2

1
1

.

It is straightforward to check 1
2 1

1. Our goal is to show that for all 2, 2 it

holds that

lim 2
1
2 2 1 2

. (A.2)

To see this, we note that if 1 2 , then

1 0 1

holds. We compute that

2
1
2 2 1 2

log
1
1

1 2 2

1
1 0 1

2
1 2

log
1
1

1 2 2

1

2
1 2

log
1 1

1 .

This completes the proof of (A.2).
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2253–2281 (2009)

23. Zakharov, V.E.: Collapse of Langmuir waves. Sov. Phys. JETP 35, 908–914 (1972)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

770 S. Herr et al.

http://creativecommonshorg/licenses/by/4.0/
http://arxiv.org/abs/1912.05820

	LWP of a System Describing Laser-Plasma Intercations
	Abstract
	Introduction
	Previous Results
	Organisation of the Paper


	Preliminaries
	Notation
	Linear Estimates


	Local Well-Posedness of the Degenerate Zakharov System
	Nonlinear Estimates
	Appendix A Examples Involving Fourier Restriction Norms
	References




