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Abstract
In this paper we consider the semi-discretization in space of a first order scalar transport
equation. For the space discretization we use standard continuous finite elements with a
stabilization consisting of a penalty on the jump of the gradient over element faces. We
recall some global error estimates for smooth and rough solutions and then prove a new local
error estimate for the transient linear transport equation. In particular we show that for the
stabilized method the effect of non-smooth features in the solution decay exponentially from
the space time zone where the solution is rough so that smooth features will be transported

unperturbed. Locally the L2-norm error converges with the expected order O(hk+ 1
2 ), if the

exact solution is locally smooth. We then illustrate the results numerically. In particular
we show the good local accuracy in the smooth zone of the stabilized method and that
the standard Galerkin fails to approximate a solution that is smooth at the final time if
underresolved features have been present in the solution at some time during the evolution.

Keywords Continuous Galerkin · Stability · Scalar hyperbolic transport equations ·
Initial-boundary value problem · Stabilized methods

Mathematics Subject Classification (2010) 65M12 · 65M20 · 65M15

1 Introduction

The discretization of transport problems has traditionally been dominated by discontinuous
Galerkin methods or finite volume methods, typically of low order, since the continuous
Galerkin method is known to have robustness problems for first order partial differential
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equations (see [23, Chapter 5]), or convection–diffusion equations in the convection dom-
inated regime. In certain situations the use of high order continuous Galerkin methods is
appealing, for instance in the case of convection–diffusion equations, in particular where the
diffusion is nonlinear, or more complex situations such as large eddy simulation of turbulent
flows, where the pressure-velocity coupling can be decoupled using a pressure projection
method and the convective part handled explicitly. In such situations, if continuous finite
element spaces are used, one must resort to a stabilized method to avoid a reduction of
accuracy due to spurious oscillations. There is a very wide literature on stabilized methods
and for an overview of the topic see for example [24]. In the high order case, the Spectral
Vanishing Velocity method has been a popular choice [34–36], but other methods have also
been designed to work for high order, see the discussion in [17]. In this work we will focus
on the continuous interior penalty (CIP) stabilization, that was shown to allow for close
to hp-optimal error estimates in the high Peclet regime in [10]. Recently [37] this method
was applied to under resolved simulations of turbulent flows using high order polynomial
approximation and shown to perform very well in this context. Therein an eigenanalysis
was performed which showed that the CIP finite element method has similar advantageous
dispersion properties as the discontinuous Galerkin method (see also the report [19]) and in
the computations it was verified that its numerical dissipation was less important than that
of the spectral vanishing viscosity.

Ideally stability of the finite element method should match that of the continuous prob-
lem. This is typically, by and large, true for elliptic pde, but much harder to achieve in the
hyperbolic case. Indeed, this would mean satisfaction of a discrete maximum principle and
stability and error estimates in L1. Both which typically remain open questions. Herein we
will only consider the stability in the L2-norm for continuous finite element approximations
and linear symmetric stabilization of gradient penalty type applied to the transient scalar,
linear first order equation. The analysis will mainly focus on semi discretization in space on
periodic domains, but the extension to the fully discrete case and weakly imposed boundary
conditions will be sketched. The classical estimate for smooth solutions that is proven for
stabilized finite element methods is on the form

(u − uh)(·, T ) Ω ≤ C(u)hk+ 1
2 , (1.1)

where C(u) is a constant that depends on Sobolev norms of the exact solution and on equa-
tion data, h is the mesh-size and k the polynomial order. This estimate that is suboptimal

by h
1
2 is known to be sharp on general meshes [38] (see also [7] for the sharpness of the

estimate for the CIP method). The continuous Galerkin method without stabilization, how-
ever, only admits a bound of order hk . The lost factor h

1
2 is of little consequence for smooth

solutions, and high polynomial order. However for low polynomial order or rough solutions
it becomes significant. In Section 4 below, we prove this type of error estimate and some
variations in weak norm for rough solutions. This analysis uses ideas from [9, 12]. Some
remarks on the time discretization will be added in Section 4.2. In particular we will point
out the situations where the stabilization actually improves the stability of time stepping
methods.

The estimate (1.1) is a weak result, but it has become a proxy for stronger estimates
that give convergence also of the material derivative (see [13, 27] and Theorem 2 below)
and importantly, local estimates, using weighted norms, well known in the stationary case
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[14, 28, 32, 33]. In the context of time dependent problems such a weighted estimate takes
the form

(u − uh)(·, T ) Ω ≤ Chk+ 1
2

T

0
Dk+1u 2

Ω dt

1
2

, (1.2)

where Dm is a multi-index differential operator of order m and the is a weight function
that is aligned with the characteristics and decays exponentially away from some zone of
interest. This means that if = 1 in some zone where the solution is smooth the influence
of locally large derivatives and underresolution at some distance d from this zone will be
damped with a factor e−d/

√
h. We prove such an estimate in Section 5 for the space semi-

discretized stabilized formulation. To the best of my knowledge there are no previous such
estimates for continuous finite element methods using symmetric stabilization. For earlier
works on Streamline Upwind Petrov–Galerkin methods (SUPG) in this direction see [20,
44]. The approach in [44] relies strongly on the space time finite element discretisation and
an additional artificial viscosity term and in [20] the authors consider the SUPG method
together with a first order backward differentiation in time, on a form that can not easily be
extended to higher order time-discretizations. In neither case can the arguments be applied
independently of the time discretization. In this paper we apply the ideas from [14] where
weighted estimates were proved for the stationary convection–diffusion equation with CIP-
stabilization and [16], where they were applied to an inverse boundary value problem subject
to a convection–diffusion equation. The result is presented in detail for the semi-discretized
case only, but the extension to standard stable time discretizations is sketched. The results
can also be extended to the case of convection–diffusion equations with Neumann con-
ditions on the outflow boundary, by straightforward addition of the diffusive terms and
following the argument of [14].

In the numerical section (Section 6) we will illustrate this localization property of the
error and show that it is not shared by the standard (unstabilized) Galerkin finite element
method. Indeed, as we shall see, without stabilization Galerkin FEM fails to approximate
even smooth solutions satisfactory in case the solution has had non-smooth features at any
time during the computation. Indeed it appears that the standard Galerkin method does not
propagate underresolved features of the solution with the right speed, making it impossible
for the method to evacuate high frequency content from the computational domain. For the
stabilized method on the other hand the weighted estimate (1.2) guarantees that smooth
components of the solution are untainted by spurious high frequency content at all times,
since perturbations are damped exponentially when crossing the characteristics.

2 Model Problem and Finite Element Discretization

We will discuss a first order hyperbolic problem in a periodic domain, Ω = [−L, L]n,
where n ≥ 1 is the space dimension. Let β ∈ C0([0, T ]; [Cm(Ω̄)]n), m ≥ 1, be a periodic
vector field satisfying ∇ · β = 0 and consider the first order hyperbolic problem

Lu := ∂tu + β · ∇u = f in (0, T ) × Ω, (2.1)

u(·, 0) = u0 in Ω . (2.2)

For smooth data β, u0 and f there exists a unique solution by the method of characteris-
tics, but the problem admits a unique solution also for more rough data [26]. The solution
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satisfies the following regularity estimate (a proof of this can be obtained after minor
modifications of [5, Lemma 2]),

u(t) Hj (Ω) ≤ Cβ f L2((0,T );Hj (Ω)) + u0 Hj (Ω) , t > 0, j ≥ 0 when m ≥ j .
(2.3)

Below we will always assume that β is smooth enough for (2.3) to hold. The constant
Cβ grows exponentially in time, with coefficient dependent on the sup-norm of β, and its
derivatives of order up to j . Below the notation β∞ = supx∈Ω̄ |β(x)| will be used. The

L2-norm over a domain X ⊂ Ω will be denoted by · X = (·, ·)
1
2
X , where (·, ·)

1
2
X is the

L2-scalar product over X, also · ∞ will denote the norm on C0(Ω̄).
Let {T }h be a family of shape regular decompositions of Ω in simplices S, T = {S},

indexed by the (uniform) mesh size h. Let F denote the set of faces of T . C will denote a
generic constant that can have different value at each appearance, but is always independent
of the mesh-parameter h. Now define the finite element space

Vh := v ∈ H 1
per (Ω) : v|S ∈ Pk(S), for all S ∈ T ,

where Pk(S) denotes the set of polynomials of degree less than or equal to k on S and
H 1

per (Ω) denotes the set of periodic functions in H 1 on Ω . We may then write a semi-
discretization in space, for t > 0 find uh(t) ∈ Vh, with uh(0) = πhu0, such that

(Luh(t), vh)Ω = F(vh), ∀vh ∈ Vh (2.4)

where F(vh) := (f, vh)Ω . Above πh denotes the L2-projection onto the finite element
space Vh. For all v ∈ L2(Ω), πhv ∈ Vh satisfies

(πhv, wh)Ω = (v,wh)Ω, ∀wh ∈ Vh.

It is well known that on locally quasi-uniform meshes the L2-projection satisfies the
approximation bound,

v − πhv Ω + h ∇(v − πhv) Ω ≤ Chk+1|v|Hk+1(Ω), ∀v ∈ Hk+1(Ω).

The formulation (2.4) defines a dynamical system that admits a unique solution for m ≥
0 using standard techniques. Taking vh = uh in (2.4) and integrating in time we see that
(2.4) satisfies the bound (2.3) with j = 0

uh(t) Ω ≤ Cβ f L2((0,T );Ω) + u0 Ω, t > 0. (2.5)

Since ∇ · β = 0 the bound holds with Cβ = T
1
2 . Actually a stronger results holds for the

L2-norm when the norm on f is weakened. Indeed one may use that
T

0
(f, uh)Ω dt + u0

2
Ω ≤ sup

t∈(0,T )

uh(t) Ω f L1((0,T );L2(Ω)) + u0 Ω

to show that
sup

t∈(0,T )

uh(t) Ω ≤ f L1((0,T );L2(Ω)) + u0 Ω .

However (2.3) does not hold for uh for j = 1. A natural question to ask is then if the solu-
tion to (2.4) gives any control of the derivatives. In case f ∈ L2((0, T ); Ω) the immediate
control offered by (2.1) is Lu ∈ L2((0, T ); Ω), that is the material derivative is bounded
in L2. For (2.4) we get the corresponding bound πhLuh ∈ L2((0, T ); Ω). Since Luh

may be discontinuous over element faces (due to the presence of derivatives in space) and
Vh ∈ C0(Ω), we see that πhLuh = Luh. It follows that not even this weakest measure of
derivatives of u is controlled by (2.4). However since we are looking for control in a discrete
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space we can use norm equivalence on discrete spaces in the form of the inverse inequality
[3, Lemma 4.5.3],

∇uh S ≤ Ch−1 uh S, ∀S ∈ T (2.6)

and observing that ∂tuh ∈ Vh, we see that

Luh Ω ≤ πhLuh Ω + Cβ∞h−1 uh Ω . (2.7)

Combining (2.7) with the bound (2.5)

Luh L2((0,T );Ω) ≤ (1 + Cβh−1) f L2((0,T );Ω) + u0 Ω .

So the constant in the control of the material derivative grows as O(h−1) under mesh refine-
ment. Hence there is no improvement compared to obtaining an H 1 estimate by combining
the L2-stability of (2.5) with (2.6).

The rationale for the addition of stabilizing terms is to improve the control of derivatives
of uh. As an example of stabilization we here propose the gradient penalty term, intro-
duced in [21] and shown to result in improved robustness and error estimates for convection
dominated flows in [15],

s(wh, vh) =
F∈F

h2
F |β|[[∇uh]], [[∇vh]]

F
(2.8)

where u, v F =
F

uv ds, [[∇vh]]|F = ∇vh|F∩∂S1 ·n1+∇vh|F∩∂S2 ·n2 for F = S̄1∩S̄2 and
n1 and n2 denote the outward pointing normals of the simplices S1 and S2 respectively. To
reduce the amount of crosswind diffusion the |β| factor may be replaced by |β · n|. Define
the stabilization semi norm by

|wh|s := s(wh,wh)
1
2 .

Also recall the following inverse inequality

|wh|s ≤ Ch− 1
2 β

1
2∞ wh Ω, ∀wh ∈ Vh (2.9)

which is a consequence of the scaled trace inequality, [3, Theorem 1.6.6],

v ∂S ≤ CS h− 1
2 v S + h

1
2 ∇v S , ∀v ∈ H 1(S) (2.10)

and (2.6).
The enhanced control of derivatives offered by this stabilization term can be expressed as

inf
vh∈Vh

h
1
2 (β · ∇uh − vh)

2
Ω ≤ Cs β∞|uh|2s + h ∇β 2∞ uh

2
Ω . (2.11)

This is an immediate consequence of the local estimate of [10, Lemma 5.3] and local
approximation of β using lowest order Raviart–Thomas functions (for details see the
discussion [13, Page 4]). In particular this implies (since ∂tuh ∈ Vh) that

Luh Ω ≤ C πhLuh Ω + C
1
2
s h− 1

2 β
1
2∞|uh|s + ∇β ∞ uh Ω . (2.12)

It follows that when the finite element method has the additional stability offered by the

operator s, the constant in the bound for Luh will grow at the rate O(h− 1
2 ) under mesh

refinement. Therefore we propose the stabilized method, find uh(t) ∈ Vh, with uh(0) =
πhu0, such that

(Luh(t), vh)Ω + γ s(uh, vh) = F(vh), ∀vh ∈ Vh (2.13)

for γ > 0. Clearly for γ = 0 we recover the standard Galerkin method.
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Remark 1 Although we only consider continuous FEM below all the results holds true
for dG methods if the standard Galerkin method (without stabilization) is replaced by the
standard dG method with central flux and the stabilized finite element method is replaced by
the standard dG method with upwind flux. There is indeed a common misconception that the
enhanced stability of the dG methods (space discretization) is due to the discontinuity of the
element. The discontinuity only allows for the improved control of the material derivative
if there is sufficent control on the solution jump. This can be introduced through upwind
fluxes, or otherwise. Indeed it is easy to see that the upwind flux formulation is obtained
from the central flux formulation by adding the following stabilization term [4]

sup(vh,wh) := 1

2
F∈F

|β · nF |[vh], [wh] F ,

where [·] simply denotes the jump of the function over the element face F . In general the
full jump needs to be penalized, but the minimal stabilization needed to make the dG method
satisfy the bound (2.12) depends on the mesh geometry and the polynomial order [6, 39].

3 Stability Estimate of the Finite Element Method

Here we will formalize the discussion of the previous section to obtain a stability estimate
that will be useful for the subsequent error analysis. First define the operator norms

F 0 := sup
vh∈Vh

|F(vh)|
vh Ω

and F h := sup
vh∈Vh

|F(vh)|
vh Ω + |vh|s . (3.1)

With these definitions the arguments discussed in the previous section may be written as
follows.

Theorem 1 Let uh solve (2.13) with γ > 0 then for all τ ∈ [0, T ]

uh(τ) 2
Ω + γ

τ

0
|uh|2s dt ≤ Cβ

τ

0
F 2

h dt + uh(0) 2
Ω

where Cβ = O(γ −1 + T ).

Proof First take vh = uh in (2.13) to obtain using the skew symmetry of the convective
operator

(Luh, uh)Ω = 1

2

d

dt
uh(t)

2
Ω

and therefore after integration in time over (0, τ )

1

2
uh(τ) 2

Ω + γ
τ

0
|uh(t)|2s dt ≤ 1

2
uh(0) 2

Ω +
τ

0
F(uh) dt

≤ 1

2
uh(0) 2

Ω +
τ

0
F h( uh(t) Ω + |uh(t)|s) dt .

Using the arithmetic-geometric inequality ab ≤ 1
2a2+ 1

2b2 it follows that F h( uh(t) Ω +
|uh(t)|s) ≤ (γ −1 + T ) F 2

h + 1
2T −1 uh(t)

2
Ω + γ 1

2 |uh(t)|2s leading to

uh(τ) 2
Ω +γ

τ

0
|uh(t)|2s dt ≤ uh(0) 2

Ω +(γ −1+T )
τ

0
F 2

h dt+
τ

0
T −1 uh(t)

2
Ω dt .
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By Gronwall’s inequality we have

uh(τ) 2
Ω ≤ exp

τ

0
T −1 dt uh(0) 2

Ω + (γ −1 + T )
τ

0
F 2

h dt

≤ C uh(0) 2
Ω + (γ −1 + T )

τ

0
F 2

h dt .

We may then bound

γ
τ

0
|uh(t)|2s dt ≤ uh(0) 2

Ω + (γ −1 + T )
τ

0
F 2

h dt +
τ

0
T −1 uh(t)

2
Ω dt

≤ C uh(0) 2
Ω + (γ −1 + T )

τ

0
F 2

h dt

which concludes the proof.

For the material derivative we can prove the similar bound

Corollary 1 Let uh solve (2.13) with γ > 0 then there holds
T

0
h

1
2 Luh

2
Ω dt ≤ Cβζ(γ )2 uh(0) 2

Ω +
T

0
(h F 2

0 + (β∞+h ∇β 2∞T ) F 2
h) dt ,

where ζ(γ ) = γ
1
2 + γ − 1

2 .

Proof
T

0
h

1
2 Luh

2
Ω dt =

T

0
(Luh, hπhLuh)Ω dt +

T

0
h

1
2 (I − πh)Luh

2
Ω dt = T1 + T2.

To bound the term T1 we use the formulation (2.13) to obtain

(Luh, hπhLuh)Ω = F(hπhLuh) − γ s(uh, hπhLuh).

For the first term on the right hand side we see that using the first definition of (3.1) and the
stability of the L2-projection there holds

F(hπhLuh) ≤ F 0 hπhLuh Ω ≤ h
1
2 F 0 h

1
2 Luh Ω .

For the second term we use (2.9) and the L2-stability of the projection to get

γ s(uh, hπhLuh) ≤ γ s(uh, uh)
1
2 s(hπhLuh, hπhLuh)

1
2 ≤ Cγβ

1
2∞|uh|s h

1
2 Luh Ω .

Observe that in the last inequality a factor h
1
2 is lost due to the application of (2.9).

Collecting these bounds we see that

T1 ≤
T

0
h F 2

0 + C2γ 2β∞|uh|2s + 1

2
h

1
2 Luh

2
Ω dt .

To bound T2 we note that by the definition of the L2-projection h
1
2 (I − πh)Luh Ω ≤

h
1
2 (Luh − vh) Ω for all vh ∈ Vh and apply (2.11) and the fact that ∂tuh ∈ Vh, leading to

T2 =
T

0
inf

vh∈Vh

h
1
2 (β · ∇uh − vh)

2
Ω dt ≤ Cs

T

0
β∞|uh|2s + h ∇β 2∞ uh

2
Ω dt .

The claim follows by the bounds on T1 and T2 and the result of Theorem 1.
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Remark 2 Observe that the presence of both positive and negative powers of γ in ζ , shows
that the estimate degenerates both for vanishing stabilization and for too strong stabiliza-
tion. If γ goes to infinity the solution has to become C1 and the solution will in this case
coincide with the standard Galerkin approximation in the C1-subspace, which is unstable,
see discussion in [18].

4 Error Estimates for the Stabilized Formulation (2.13)

Using the stability estimates of Theorem 1 it is straightforward to derive the error estimate
(1.1) for smooth solutions. Below we will also use Corollary 1 to obtain an optimal order
O(hk) error estimate for the material derivative.

Then we will assume that f ∈ L2(0, T ; Ω) in (2.3) so that we only have u ∈
L2(0, T ;Ω). In this case we will show that the stabilized finite element method still
converges in a weaker norm.

Theorem 2 Let u0 ∈ Hk+1(Ω), f ∈ L2(0, T ; Hk+1(Ω)), let u be the solution of (2.1)
and uh the solution of (2.13). Then there holds, for all T > 0

(u−uh)(·, T ) Ω+γ
T

0
|uh|2s dt

1
2

≤ Cβζ(γ )hk+ 1
2 ( f L2(0,T ;Hk+1(Ω))+ u0 Hk+1(Ω))

and

T

0
L(u − uh)

2
Ω dt

1
2

≤ Cβζ(γ )2hk u H 1(0,T ;Hk+1(Ω)),

where ζ(γ ) := γ
1
2 + γ − 1

2 and Cβ depends on β∞ and ∇β ∞ and T .

Proof This result is a consequence of the stability of Theorem 1, the consistency and (2.11).
It is standard material (see [24, Section 76.4]) however for completeness we include the
short proof.

Using standard approximation estimates there holds [10, Lemma 5.6]

β
1
2∞h− 1

2 (u − πhu) Ω + |u − πhu|s ≤ Cβ
1
2∞hk+ 1

2 |u|Hk+1(Ω). (4.1)

Hence by applying a triangle inequality we only need to consider the discrete error eh =
πhu − uh. Injecting it in (2.1) and using (2.13) we see that

(Leh, vh) + γ s(eh, vh) = Fπ(vh)

with Fπ(vh) = (∂t (πhu − u), vh)Ω + (β · ∇(πhu − u), vh)Ω + γ s(πhu, vh). Applying
Theorem 1 we see that

eh(T ) 2
Ω + γ

T

0
|eh|2s dt ≤ Cβ

T

0
Fπ

2
h dt + eh(0) 2

Ω .

By the definition of uh(0), eh(0) = 0. Since ∂tπhu = πh∂tu we have using L2-
orthogonality and intergration by parts

Fπ(vh) = (u − πhu, β · ∇vh − wh)Ω + γ s(πhu, vh), ∀wh ∈ Vh.
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It now follows using the Cauchy–Schwarz inequality, (2.11) and (4.1) and recalling that
under the regularity assumptions on data u(t) ∈ H 2(Ω), that

Fπ h ≤ Cβζ(γ )hk+ 1
2 |u|Hk+1(Ω). (4.2)

The first claim then follows after an application of (2.3).
For the second inequality we apply Corollary 1 to see that, since eh(0) = 0,

T

0
h

1
2 Leh

2
Ω dt ≤ Cζ(γ )2

T

0
(h Fπ

2
0 + β∞ + h ∇β 2∞T ) Fπ

2
h dt . (4.3)

It follows that we only need to bound F in the stronger topology · 0 to conclude. Using
the Cauchy–Schwarz inequality and the inverse inequalities (2.6) and (2.9)

Fπ(vh) = (u − πhu, β · ∇vh)Ω + γ s(πhu, vh)

≤ Cβ∞ h−1(u − πhu) Ω vh Ω + Cγh− 1
2 β

1
2∞|πhu|s vh Ω .

It follows from (4.1) that

F 0 ≤ Cβ(1 + γ )hk|u|Hk+1(Ω).

Combining this bound for F 0 with the bound (4.2) in (4.3) we see that
T

0
h

1
2 Leh

2
Ω dt ≤ Cβζ(γ )4h2k+1

T

0
|u|2

Hk+1(Ω)
dt

and we conclude using the approximation bound

L(u − πhu) Ω ≤ C hk+1 ∂tu Hk+1(Ω) + β∞hk u Hk+1(Ω)

and the triangle inequality.

Remark 3 Note that the error estimate on the material derivative is optimal compared with
the approximation properties of the finite element space. In the corresponding analysis for
(2.4) only F 0 may be used for the upper bound in Theorem 1, resulting in a bound that is

suboptimal by O(h
1
2 ).

4.1 Rough Solutions: Convergence inWeak Norms

Assume now that we have f ∈ L2((0, T );Ω) in (2.13) and u0 ∈ L2(Ω). Then u ∈
L2((0, T ); Ω) is the best we can hope for, making the error estimates of Theorem 2 invalid.
However if we estimate the error in a weaker norm, we can still obtain an error bound with
convergence order, provided a stabilized method is used. For ψ ∈ H 1

per (Ω) consider the
adjoint problem

−Lϕ = 0,

ϕ(·, T ) = ψ .

This problem admits a unique solution and by (2.3)

sup
t∈(0,T )

ϕ(t) H 1(Ω) ≤ Cβ ψ H 1(Ω). (4.4)

Let V := H 1
per (Ω) and introduce the dual norm

v V := sup
w∈V \0

v, w V ,V

w V

,
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where v, w V ,V is a space duality pairing that we can identify with the L2-scalar product
for v ∈ L2(Ω). We now proceed using duality to prove an a posteriori bound

Proposition 1 (A posteriori error bound) Let u be the solution of (2.1) with f ∈
L2(0, T ;Ω) and u0 ∈ L2(Ω) and uh the solution of (2.13), with γ ≥ 0. Then there holds,
for all T > 0 and for all ψ ∈ V ,

((u − uh)(·, T ), ψ)Ω

ψ V

≤ Cβh u0 − πhu0 Ω

+Cβ

T

0
inf

vh∈Vh

h f − β · ∇uh − vh Ω + γ h
1
2 |uh|s dt .

Proof Using the adjoint equation and integration by parts we see that for any ψ ∈ H 1
per (Ω),

((u − uh)(·, T ), ψ)Ω = ((u − uh)(·, T ), ψ)Ω +
T

0
(u − uh, −Lϕ)Ω dt

= (u0 − πhu0, ϕ(·, 0))Ω +
T

0
(L(u − uh), ϕ)Ω dt

= (u0 − πhu0, (I − πh)ϕ(·, 0))Ω

+
T

0
((L(u − uh), ϕ − πhϕ)Ω + γ s(uh, πhϕ)) dt .

Considering the terms of the right hand side we see that

(u0 − πhu0, (I − πh)ϕ(·, 0))Ω ≤ Ch u0 − πhu0 Ω ∇ϕ(·, 0) Ω,

((L(u − uh), ϕ − πhϕ)Ω ≤ Ch inf
vh∈Vh

f − Luh − vh Ω ∇ϕ Ω

= Ch inf
vh∈Vh

f − β · ∇uh − vh Ω ∇ϕ Ω

and

s(uh, πhϕ) ≤ |uh|sh 1
2 β

1
2∞ ∇ϕ Ω .

It follows that

(u0 − πhu0, (I − πh)ϕ(·, 0))Ω +
T

0
((L(u − uh), ϕ − πhϕ)Ω + γ s(uh, πhϕ)) dt

≤ C h u0 − πhu0 +
T

0
( inf
vh∈Vh

h f − β · ∇uh − vh Ω + γβ
1
2∞h

1
2 |uh|s) dt

× sup
t∈(0,T )

ϕ(t) H 1(Ω).

We end the proof by applying the stability (4.4).

Remark 4 A posteriori error estimates in negative norms for stationary first order pde was
introduced in [30] and the case of transient problems using stabilized FEM in [9]. Observe
that this a posteriori error estimate can not in general be sharp, indeed for a smooth solution,
by Theorem 2 we get O(hk+1) convergence in the dual norm. This follows by observing
that since we may take vh = ∂tuh and f = Lu,

inf
vh∈Vh

h f − β · ∇uh − vh Ω ≤ h L(u − uh) Ω
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and then applying the second bound of Theorem 2. We see that compared to the L2-estimate

we have lost another power h
1
2 . Sharp residual type a posteriori error estimates in the L2-

norm for transport equations in dimension > 1, so far to the best of my knowledge, have
only been obtained under a saturation assumption and using a stabilized finite element
method, or a dG method with upwind flux [8].

Theorem 3 (A priori error estimate for rough solutions) Let u be the solution of (2.1) with
f ∈ L2(0, T ; L2(Ω)) and u0 ∈ L2(Ω) and uh that of (2.13) with γ > 1. Then there holds

sup
t∈[0,T )

(u − uh)(·, t) V ≤ Cβ(ζ(γ ) + 1)h
1
2 f L2(0,T ;L2(Ω)) + u0 Ω ,

with ζ(γ ) = γ
1
2 + γ − 1

2 .

Proof By definition

u − uh V = sup
w∈V \0

(u − uh, w)Ω

w V

.

Applying Proposition 1 we see that, after a Cauchy–Schwarz inequality in time, for any
T > 0,

(u − uh(·, T ) V ≤ Cβh u0 − πhu0 Ω

+Cβh
1
2 T

1
2

T

0
inf

vh∈Vh

h f − β · ∇uh − vh
2
Ω + γ 2|uh|2s dt

1
2

.

Then noting that by (2.11) there holds

inf
vh∈Vh

h f − β · ∇uh − vh
2
Ω ≤ h f 2

Ω + Cs(|uh|2s + h ∇β 2∞ uh
2
Ω)

we see that all the a posteriori terms depending on uh are either on the form |uh|s or on the
form uh

2
Ω and we conclude by applying Theorem 1.

4.2 Time Discretization and StabilizedMethods

As a rule of thumb any time integrator with non-trivial imaginary stability boundary extend-
ing into the complex plane will be stable and accurate in the sense (1.1), possibly under
a CFL condition depending on β and γ . In particular any time discretization method
allowing for a time discrete version of an energy estimate of the type in Theorem 1 may
be applied and will lead to optimal error estimates similar to those above. This includes
all A-stable schemes, backward differentiation methods of first and second order, the
Crank–Nicolson method. Explicit methods with good stability properties such as explicit
strongly stable Runge–Kutta (RK) methods of order higher than, or equal to, 3 are stable
[12, 40–43]. Similar stability results are expected to hold for Adams–Bashforth (AB) meth-
ods of order 3, 4, 7, 8 under standard hyperbolic CFL, δt ≤ Co h, where δt denotes
the timestep and Co the Courant number. See for instance [31] for a discussion of
time-discretization of advection–diffusion equation, [25] for a discussion of the stability
boundaries of AB methods and [13] for numerical experiments using AB3. All these meth-
ods are energy stable regardless of whether or not stabilization is added. The second order
RK method is energy stable under hyperbolic CFL only for piecewise affine approximation
and with added stabilization of the form (2.8) [12] (for dG FEM and affine approximation
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upwind stabilization must be added [42]). In the general case (no stabilization, higher poly-
nomial approximation) the RK2 method is stable only under a slightly more strict CFL

condition, indeed one needs to assume dt ≤ Co h
4
3 , with Co fixed, but small enough. This

condition is the same for both cG and dG methods (see [12, 42]). Recently an analysis of
the second order backward differentiation formula and the Crank–Nicolson method (AB2)
with convection extrapolated to second order from previous time steps was proposed for the
discretization of (2.13) [13]. It was shown that these schemes are stable under similar condi-
tions as the RK2 scheme. Such multi step schemes are particularly appealing in the context
of IMEX methods for convection–diffusion and hence provide a one-stage alternative to the
RK2 IMEX method analysed in [11].

5 Weighted Error Estimates

In this section we will consider the slightly more technically advanced case of weighted
estimates. The idea is to show that stabilization makes information follow the characteris-
tics similarly as in the physics. This means that for solutions with a localized sharp layer,
the dependence of a local error in the smooth zone on the regularity of the exact solution
decreases exponentially with the distance to the singularity. Hence locally large gradients
in the solution can not destroy the solution globally. This is not the case for approximations
produced using cG FEM without stabilization. These results touch at the very essence of
stabilized FEM, unfortunately their proofs are quite technical and therefore these results in
my opinion have received less attention than they deserve. Here we try to give the simplest
possible exposition of these ideas, without striving for optimality of exponential decay or
generality of meshes. We let the domain be infinite (L = ∞) and let u0 have compact sup-
port. To simplify the discussion assume that β ≡ ex , where ex is the Cartesian unit vector
in the x-direction, so that β · ∇u = ∂xu. Since here β∞ = 1, below the dependence on
the speed will not be tracked. First the case of a globally smooth solution will be consid-
ered (Theorem 4). The objective is to obtain an estimate for the error in some subdomain
Ω0(t) ⊂ Ω defined as

Ω0(t) := {x ∈ Ω : |x0 + βt − x| < r0}
for some x0 ∈ Ω and some r0 > 0. The derivatives of u are assumed to be moderate in a
neighbourhood of Ω0 and we will prove that the accuracy in this subdomain is independent
of large derivatives in other parts of the domain, provided they are sufficiently far away, rel-
ative to the mesh size. This is achieved using weights so that the effect of portions of the
domain where locally the Sobolev norm is large decays exponentially with the distance to
Ω0. Then we will show how the arguments of the smooth case can be used to prove accu-
racy in Ω0 in the case where the solution is locally only L2 in the far field (Corollary 2).
The key message is that the local accuracy of the approximation depends only on the local
smoothness of the exact solution and that perturbations due to roughness in the solution is
exponentially damped, except along characteristics. Finally we will discuss how the argu-
ments can be extended to bounded domains with weakly imposed boundary condition and
time discretization.

Let ϕ ∈ Ck+1(Ω) be a smooth positive function defined using polar/spherical coor-
dinates, depending only on r(x) = |x0 − x|, with ϕ (r) ≤ 0, ϕ(r) = 1, r ≤ r0,
ϕ(r) ∼ exp(−(r − r0)/σ ), r > r0, with σ = K

√
h, K > 1, and for some C > 0,

|∂l
rϕ(r)| ≤ Cσ−lϕ(r), l ≥ 1.
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Fig. 1 Example of the radial cross section of ϕ ∈ C1(Ω) with r0 = 1 and σ = 5

Remark 5 For the case k = 1 we only require ϕ ∈ C1(Ω). An example of such a function
with r0 = 1 and σ = 5 is given in Fig. 1 for illustration.

Define (x, t) = ϕ(r(x − βt)) then, since follows the characteristics L = 0, and

|Dl | ≤ Cσ−l , l ≥ 1 (5.1)

where the derivatives are taken with respect to space or time. The objective is to prove
stability and error estimates in the weighted norm

v := v Ω .

The same notation will be used occasionally below with different weight functions. The
rationale for the design of the weight function is that for all v ∈ L∞(0, T ; L2(Ω)) with
Lv ∈ L2(0, T ;Ω), by partial integration in space and time,

T

0
(∂t v, 2v)Ω = v(·, T ) 2 − v(·, 0) 2 −

T

0
(v, ∂t

2v + 2∂tv)Ω dt

and

(β · ∇v, 2v)Ω = −(v, (β · ∇ 2)v + 2β · ∇v)Ω,

there holds
T

0
(Lv, 2v)Ω dt = v(·, T ) 2 − v(·, 0) 2

−
T

0
(v, (L 2)

=0

v)Ω + (v, 2Lv)Ω dt .

Hence
T

0
(Lv, 2v)Ω dt = 1

2
v(·, T ) 2 − 1

2
v(·, 0) 2 (5.2)
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and therefore the following stability is satisfied by the continuous equation, (2.1), ∀σ > 0,

1

2
u(·, T ) 2 ≤ 1

2
u(·, 0) 2 +

T

0
f u dt

from which we conclude

sup
t∈(0,T )

u(·, t) ≤ u(·, 0) + 2
T

0
f dt .

This relation expresses that the solution is transported along the characteristics. The influ-
ence across characteristics will be damped exponentially as exp(−d/σ). However in the
continuous case, since the bound holds for all σ > 0 the cut-off is sharp.

The aim is to make the error analysis for the solution of (2.13) reproduce this type of
localization. For the purposes of analysis we introduce the weighted stabilization operator

s (vh,wh) =
F∈F F

h2
F

2[[∇vh]][[∇wh]] ds, with semi-norm |w|s, := s (w,w)
1
2

and note that s(vh,
2wh) = s (vh,wh). Also recall the following weighted versions of

(2.11) from [14, Lemma 3.1, equation (3.1) and (3.2)], here β0|S ∈ R
n is some piecewise

constant per element,

h
1
2 (β0 · ∇vh − πhβ0 · ∇vh)

2 ≤ Cws ||β0|vh|2s, (5.3)

and

h
1
2 (β · ∇( 2vh) − πh(β · ∇( 2vh)))

2
−1 ≤ Cws |vh|2s, + CβK−2 vh

2 . (5.4)

The second bound differs from the bound in [14], since there the derivative of vh appears in
the second term of the right hand side. The proof however is similar. For completeness we
detail it in Appendix. We will need to use approximation in the weighted norm and therefore
collect some results on the L2-projection in the following lemmas. The first one is taken
from [2] and we refer to this reference for the proof. The following two are variations on
results from [14] and for completeness we give the proofs in Appendix. We note that all the
above inequalities hold both for the weight and −1, since by the construction of the
weight,

|∇ −1| = | −2∇ | ≤ C −2σ−1 = Cσ−1 −1.

It follows that (5.1) is satisfied also for −1.

Lemma 1 (Stability L2-projection) Let πh denote the L2-projection onto Vh. Then, if φ is
a function satisfying

|∇φ(x)| ≤ νh−1|φ(x)|,
for some ν > 0, sufficiently small then there holds

πhv φ ≤ C v φ, (5.5)

∇πhv φ ≤ C ∇v φ (5.6)

and
∇πhv φ ≤ Ch−1 v φ, ∀v ∈ H 1(Ω). (5.7)

Proof The estimates (5.5)–(5.7) are taken verbatim from [2, bounds (1.7)–(1.9)] (see also
[22, Appendix]).
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The above stability estimates allows us to prove bounds on the L2-error in the weighted
norm.

Lemma 2 (Weighted approximation) Let πh denote the L2-projection onto Vh. Then for

h
1
2 /K sufficiently small and Iδ = [t − δt, t + δt]∩ [0, T ] with δt ∈ R

+, δt ∼ h, there holds

max
(x,t)∈S×Iδ

(x, t) v S ≤ 2 min
t∈Iδ

v (·, t) S, ∀v ∈ L2(S), (5.8)

(v − πhv) + h ∇(v − πhv) ≤ Chk+1 Dk+1v , ∀v ∈ Hk+1(Ω) (5.9)

and
|v − πhv|s, ≤ Chk+ 1

2 Dk+1v , ∀v ∈ Hk+1(Ω). (5.10)

For the analysis we also need the following interpolation estimates on weighted discrete
functions.

Lemma 3 (Super approximation) Let vh ∈ Vh. Assume that h
1
2 /K is sufficiently small.

Then there holds
2vh − πh(

2vh) −1 + h ∇( 2vh − πh(
2vh)) −1 ≤ Ch

1
2 K−1 vh (5.11)

and

S∈T
−1∇( 2vh − πh(

2vh))
2
∂S

1
2

≤ Ch−1K−1 vh . (5.12)

We will now derive a weighted stability estimate for the finite element formulation (2.13).
First use similar arguments as for (5.2) to obtain for any vh ∈ C1(0, T ;Vh),

T

0
(Lvh,

2vh)Ω dt = 1

2
vh(·, T ) 2 − 1

2
vh(·, 0) 2

and, since ∈ C1(Ω) we see that

s(vh,
2vh) = |vh|2s, .

Therefore,

vh(·, T ) 2 +2γ
T

0
|vh|2s, dt = 2

T

0
((Lvh,

2vh)Ω +γ s(vh,
2vh)) dt+ vh(·, 0) 2 .

(5.13)
However, since 2vh ∈ Vh the equality can not be used directly for the finite element

formulation. We need to show that stability similar to (5.13) can be obtained by testing by
some interpolant of 2vh.

Proposition 2 (Weighted stability) Let γ > 0, K > 1. Assume that h
1
2 /K is sufficiently

small. For all vh ∈ C1(0, T ;Vh) there holds

vh(·, T ) 2 + γ
T

0
|vh|2s, dt ≤ C/K2

T

0
vh

2 dt

+2
T

0
((Lvh,wh)Ω + γ s(vh,wh)) dt + vh(·, 0) 2 ,

where wh = πh
2vh and the constant C ∼ γ + γ −1.
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Proof Starting from the equality (5.13) we add and subtract the finite element formulation
tested with some function wh,

vh(·, T ) 2 + 2γ
T

0
|vh|2s, dt = 2

T

0
((Lvh,

2vh − wh)Ω + γ s(vh,
2vh − wh)) dt

+2
T

0
((Lvh, wh)Ω + γ s(vh,wh)) dt + vh(·, 0) 2 .

We choose wh = πh(
2vh) to obtain, for an arbitrary yh ∈ Vh

(Lvh,
2vh − πh(

2vh))Ω = (β · ∇vh − yh,
2vh − πh(

2vh))Ω

≤ inf
yh∈Vh

h
1
2 (β · ∇vh−yh) h− 1

2 ( 2vh−πh(
2vh)) −1 .

Considering the stabilization term we see that

s(vh,
2vh − πh(

2vh)) ≤ |vh|s, hβ
1
2∞

F∈F
−1[[∇( 2vh − πh(

2vh))]] 2
F

1
2

.

(5.14)
Using the arithmetic-geometric inequality ab ≤ (2 )−1a2 + ( 2−1)b2, to split the terms in
the right hand side, with = 2 in (5.14), we obtain

vh(·, T ) 2 + 7

4
γ

T

0
|vh|2s, dt ≤ −1γ −1h−1

T

0
( 2vh − πh(

2vh))
2

−1

T1

dt

+γ h2β∞
T

0 F∈F
−1[[∇( 2vh−πh(

2vh))]] 2
F

T2

dt

+ γ
T

0
inf

yh∈Vh

h
1
2 (β · ∇vh − yh)

2

T3

dt

+2
T

0
((Lvh,wh)Ω + γ s(vh,wh)) dt + vh(·, 0) 2 .

We need to bound the contributions T1, T2 and T3 in terms of the quantities of the left
hand side and vh . Using (5.11) immediately yields

T1 = ( 2vh − πh(
2vh))

2
−1 ≤ CK−2h vh

2 .

By distribution of the integrals over the faces on simplices, splitting the jumps on the
contributions from the two sides and applying (5.12) there holds

T2 ≤ C

S∈T
−1∇( 2vh − πh(

2vh))
2
∂S ≤ C/K2h−2 vh

2 .

Finally for the term T3 apply the weighted stabilization bound (5.3), with β0 ≡ ex , where
ex is the Cartesian unit vector in the x-direction

T3 = inf
yh∈Vh

h
1
2 (β · ∇vh − yh)

2 ≤ Cws |vh|2s, .
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Collecting the bounds for T1-T3 and choosing = (2Cws)
−1 we see that

vh(·, T ) 2 + γ
T

0
|vh|2s, dt ≤ (γ −1 + γ )C/K2

T

0
vh

2 dt

+2
T

0
((Lvh,wh)Ω + γ s(vh,wh)) dt + vh(·, 0) 2 .

Theorem 4 Assume that the hypothesis of Proposition 2 are satisfied. Let u ∈ L∞(0, T ;
Hk+1(Ω)) be the solution of (2.1) and uh the solution of (2.13). Then for all T > 0 there
holds

(u − uh)(·, T ) ≤ CKhk+ 1
2 h Dk+1u(·, T ) 2 + (γ + γ −1)

T

0
Dk+1u 2 dt

1
2

.

The constantCK grows exponentially in time with coefficient proportional to (γ+γ −1)K−2.

First note that we may split the error as u − uh = u − πhu

=−η

+ πhu − uh

=eh

and by (5.9),

(u − πhu)(·, T ) ≤ Chk+1 Dk+1u(·, T ) .

By the triangle inequality we only need to prove the bound on eh(·, T ) .
Using the stability of Proposition 2 we see that, since eh(·, 0) = 0,

eh(·, T ) 2 + γ
T

0
|eh|2s, dt ≤ C/K2

T

0
eh

2 dt

+2
T

0
((Leh,wh)Ω + γ s(eh, wh)) dt

with wh = πh(
2eh). Now observe that the following consistency property holds

T

0
(L(eh − η), vh)Ω − γ s(uh, vh) dt = 0, ∀vh ∈ Vh

and hence
T

0
((Leh,wh)Ω + γ s(eh, wh)) dt =

T

0
((Lη,wh)Ω + γ s(πhuh,wh)) dt .

This leads to a perturbation equation on the form

eh(·, T ) 2 + γ
T

0
|eh|2s, dt ≤ CK−2

T

0
eh

2 dt

+2
T

0
((Lη,wh)Ω + γ s(πhuh,wh)) dt . (5.15)

Considering the first term of the second integral in the right hand side we have using that
time derivation and the L2-projection commute and the L2-orthogonality of η

(Lη,wh)Ω = −(η, β · ∇wh − yh)Ω ≤ h− 1
2 η h

1
2 inf

yh∈Vh

β · ∇wh − yh −1

≤ h−1γ −1C η 2 + 1

4
γ |eh|2s, + Cγ/K2 eh

2 .
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Here we used the inequality ab ≤ 4−1a2 + b2 and that by the triangle inequality followed
by the bounds (5.11), and (5.4) there holds

h
1
2 inf

yh∈Vh

β · ∇wh − yh −1 ≤ h
1
2 β · ∇πh(

2eh) − β · ∇( 2eh) −1

+h
1
2 inf

yh∈Vh

β · ∇( 2eh) − yh −1

≤ h
1
2 β∞ ∇(πh(

2eh) − 2eh) −1

+(Cws |eh|2s, + CβK−2 eh
2 )

1
2

≤ CK−1 eh + Cws |eh|s, .

For the last term in the right hand side of (5.15) we have

s(πhuh,wh) = s(πhuh, πh(
2eh) − 2eh) + s(πhuh,

2eh)

≤ C|πhuh|2s, + 1

4
|eh|2s,

+h2β2∞
F∈F

−1[[∇( 2eh − πh(
2eh))]] 2

F .

Applying the bound (5.12) to each term of the jump separately in the last term in the right
hand side and collecting the estimates it follows that

(Lη, wh)Ω+γ s(πhuh,wh) ≤ C(γ |πhuh|2s, +h−1γ −1 η 2 )+1

2
γ |eh|2s, +γC/K2 eh

2 .

Applying this bound in (5.15) we have

eh(·, T ) 2 + 1

2
γ

T

0
|eh|2s, dt ≤ C(γ + γ −1)/K2

T

0
eh

2 dt

+C
T

0
γ |πhuh|2s, +h−1γ −1 η 2 dt . (5.16)

Since the solution is assumed regular, u(·, t) ∈ H
3
2 + (Ω), > 0 we have |πhuh|2s, =

|η|2s, . Applying Lemma 2 yields

T

0
γ |η|2s, + h−1γ −1 η 2 dt ≤ Ch2k+1(γ + γ −1)

T

0
Dk+1u 2 dt .

The claim now follows by an application of Gronwall’s inequality.

5.1 Discussion of Estimates for Rough Solutions

Consider the following subsets of Ω , Ω0(t) := {x ∈ Ω : (x, t) = 1} and Ωp(t) := {x ∈
Ω : (x, t) ≤ hp, p > 0}. Then denoting d = dist(Ω0,Ωp) it follows by the construction
of that

d ∼ Kp
√

h| log(h)|,
and the following bound holds

(u − uh)(·, T ) Ω0 ≤ Chk+ 1
2 max

t∈[0,T ] Dk+1u L2(Ω\Ωp) + hp max
t∈[0,T ] Dk+1u L2(Ωp) .
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It follows that Dk+1u can be large, O(h−p), in Ωp without destroying the solution in Ω0.
To apply the argument to u0 that is only piecewise in Hk+1 one can use the weighted L2-
stability in the error analysis above and still obtain estimates. We present a sketch of this
result in a corollary.

Corollary 2 Assume that the hypothesis of Proposition 2 are satisfied. Let p = k + 1.
Assume that u ∈ L∞(0, T ; L2(Ω)), with u|Ω\Ωp ∈ Hk+1(Ω \ Ωp), for all t ∈ [0, T ] is the
solution of (2.1) and uh the solution of (2.13). Then there holds (omitting for simplicity the
dependence on γ ).

(u − uh)(·, T ) Ω0 ≤ CKhk+ 1
2 max

t∈[0,T ] u Hk+1(Ω\Ωp) + max
t∈[0,T ] u L2(Ωp) .

Proof The proof follows that of Theorem 4 closely. We only need to substitute the L2-
projection for an interpolant with more local properties before applying approximation. Let
the domain Ωp,ih(t) be defined by the union of all the elements that intersect Ωp(T ) and
an integer i layers of nearest neighbours. The norm over Ωp,ih(t) will be denoted · Ωp,ih

.
Let Ch denote the Clément interpolant defined using local projections. It is well known
[23, Lemma 1.127] that if for a given S ∈ T , S denotes the set of simplices sharing at
least one vertex with S and for a face F , F denotes the set of simplices sharing at least
one vertex with F , then

v − Chv Hm(S) ≤ Chl−m v Hl( S), v − Chv Hm(F) ≤ Chl−m− 1
2 v Hl( F ),

0 ≤ m ≤ l ≤ k + 1. (5.17)

It is then straightforward to use the approximation properties of Ch in Ω \ Ωp,1h and the
local stability of Ch in Ωp,1h to show the estimates

(u − Chu)(·, t) ≤ C hk+1 Dk+1u(·, t) Ω\Ωp + hp u(·, t) Ωp,2h

≤ Chk+1 u(·, t) Hk+1(Ω\Ωp) + u(·, t) Ωp (5.18)

and

|Chu(·, t)|s, ≤ C hk+ 1
2 Dk+1u(·, t) Ω\Ωp + h− 1

2 +p u(·, t) Ωp,2h

≤ Chk+ 1
2 u(·, t) Hk+1(Ω\Ωp) + u(·, t) Ωp . (5.19)

For the second inequality we divide |Chu(·, t)|s, into the sum over faces in Ω \Ωp,1h and
Ωp,1h. The two different sets are treated differently. For faces in Ω \Ωp,1h we proceeded as

usual using that u(·, t)|Ω\Ωp ∈ H
3
2 + (Ω\Ωp) and apply the local approximation properties

on faces of Ch (second inequality of (5.17)). For faces in Ωp,1h we can not use approxima-
tion and instead apply (2.10) and (2.6). We also used that |Ωp,1h

≤ Chp by construction.
Observe that by the weighted L2-stability (5.5) we have

(u−πhu)(·, T ) ≤ πh(u−Chu)(·, T ) + (u−Chu)(·, T ) ≤ C (u−Chu)(·, T )

(5.20)
and hence as before we only need to prove the bound for eh(·, T ) . The inequality (5.16)
still holds. To conclude we observe that using (5.20)

T

0
h−1 η 2 dt ≤ C

T

0
h−1 u − Chu

2 dt . (5.21)
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By combining the inequality

|vh|s, ≤ Ch− 1
2 vh

(that is immediate by (2.10), (2.6) and (5.8)) with (5.20) we also have

T

0
|πhu|2s, dt ≤ 2

T

0
|πhu − Chu|2s, + |Chuh|2s, dt

≤ C
T

0
h−1 u − Chu

2 + |Chuh|2s, dt . (5.22)

We conclude as before after applying (5.18) and (5.19) in (5.21) and (5.22).

5.2 Time Discretization andWeakly Imposed Boundary Conditions

In practice and in the numerical section below of course we need to include boundary condi-
tions and time discretizations in the above arguments. Depending on the time-discretization
this can be a challenging exercise, but we will here focus on the θ -scheme and the main
steps of its analysis using the ideas above in the case of the backward Euler scheme (θ = 1).
Boundary conditions are imposed weakly using the standard upwind technique known
from discontinuous Galerkin methods. We consider a polygonal domain Ω and denote its
boundary by := ∂Ω with outward pointing normal n. We decompose into an inflow
part

− := {x ∈ : β(x) · n < 0}
and an outflow part + := ∂Ω \ −. The space Vh will here denote the standard finite
element space of continuous piecewise polynomial functions, without boundary conditions
defined on T . We are now interested in the the solution of (2.1) with the additional inflow
boundary condition

u = g on −,

where g ∈ L2(0, T ; L2
β·n( −)) with L2

β·n( −) := {v : − → R : |β ·n| 1
2 v L2( −) < ∞}.

We will assume that the g, − and + are such that the exact solution is smooth enough
for our purposes. The timestep δt := T/N for some N ∈ N

+ will be assumed to satisfy
δt ≤ Ch for some C > 0, and the discrete solution uh := {un

h}Nn=0 collects the finite
element approximations on the discrete time levels tn = nδt . The so-called θ -scheme takes
the form: find un

h ∈ Vh such that for n = 1, 2, 3 . . . N ,

(Ln
θuh, vh)Ω+ |β · n|unθ

h , vh −+s u
nθ

h , vh = (f nθ , vh)Ω+ |β · n|gnθ , vh − , ∀vh ∈ Vh,

(5.23)
where u

nθ

h := θun
h + (1 − θ)un−1

h , gnθ := g(·, tn + θδt), f nθ := f (·, tn + θδt),

Ln
θuh := δt−1 un

h − un−1
h + β · ∇u

nθ

h , θ ∈ [1/2, 1]

and u0
h = πhu0. Compared to the time continuous analysis we have two additional points to

study

1. the time discrete character of the equation,
2. the boundary penalty term.
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We recall that the theta scheme includes the well-known backward Euler scheme (θ = 1)
and the Crank–Nicolson scheme (θ = 1/2). A complete analysis of the θ scheme is beyond
the scope of the present paper. To give some insight in the validity of the above arguments
in the fully discrete case we will show the modifications necessary to prove Proposition 2
in the time discrete case with weakly imposed boundary conditions, for θ = 1. Theorem 4
then follows using the arguments above and standard truncation error analysis. We will then
show numerically that also the Crank–Nicolson scheme enjoys the local accuracy property.
For further evidence of the local accuracy property we refer to [12, Section 5.2 and Fig. 1]
for examples using explicit Runge–Kutta methods and [13, Section 6] for examples using
explicit extrapolated multistep methods. For the analysis we need the following Lemma the
proof of which is given in the Appendix.

Lemma 4 Let n(x) = (x, tn), where is a weightfunction satisfying (5.1) and vh ∈
Vh, then for δt small enough there holds

vh

tn

tn−1

∂t dt
Ω

+ vh

tn

tn−1

tn

t

∂2
t

2 ds dt

1
2

Ω

≤ CK−1δt
1
2 vh n .

The following weighted L2-stability estimate is the key ingredient of the analysis of the
fully discrete scheme.

Proposition 3 Consider the scheme (5.23) with θ = 1, then assuming δt < 1 small enough
there holds, with wn

h = πh
2vn

h ,

vN
h

2
N

+
N

n=1

vn
h − vn−1

h
2

n
+ δt

N

n=1

|β · n| 1
2 vn

h n
2 + γ |vn

h|2s, n

≤ CK v0
h

2
0
+ δt

N

n=1

(Ln
θ vh,w

n
h)Ω + |β · n|vn

h,wn
h − + γ s(vn

h,wn
h) .

The constant CK grows exponentially in time with exponential coefficient 1/K2.

Proof First we observe that using standard partial integration and ∇ · β = 0 we have

(β · ∇vh,
2vh)Ω + |β · n|vh,

2vh
−

= −(β · ∇vh,
2vh)Ω − (vh, (β · ∇ 2)vh)Ω + |β · n|vh,

2vh
+

.

As a consequence

(β ·∇vh,
2vh)Ω+ |β · n|vh,

2vh
−

= −1

2
(vh, (β ·∇ 2)vh)Ω+ 1

2
|β · n|vh,

2vh .

We also have

vn
h − vn−1

h , 2
n vn

h
Ω

= 1

2
vn
h

2
n
+ 1

2
vn
h − vn−1

h
2

n
− 1

2
vn−1
h

2
n
.
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It follows that

δt

N

n=1

((Ln
θ vh,

2
n vn

h)Ω + |β · n|vn
h, 2

n vn
h −

+ γ s(vn
h, 2

n vn
h))

= 1

2
vN
h

2
N

+ 1

2

N

n=1

vn
h − vn−1

h
2

n
− ((vn−1

h )2, 2
n − 2

n−1)Ω − 1

2
v0
h

2
0

−1

2
δt

N

n=1

((vn
h)2, β · ∇ 2

n )Ω + 1

2
δt

N

n=1

|β · n| 1
2 vn

h n
2 + 2γ s(vn

h, 2
n vn

h) .

Identifying the terms in the right hand side that do not have a sign we see that we need to
control

N

n=1

((vn−1
h )2, 2

n − 2
n−1)Ω + δt ((vn

h)2,β · ∇ 2
n )Ω).

We rewrite the first term

((vn−1
h )2, ( 2

n − 2
n−1))Ω = ((vn−1

h )2 − (vn
h)2, 2

n − 2
n−1)Ω + ((vn

h)2, ( 2
n − 2

n−1))Ω .

For the first term on the right hand side we develop a2 − b2 = (a + b)(a − b) and apply
Cauchy–Schwarz inequality and the arithmetic-geometric inequality, followed by Lemma 4
and the inequality (5.8) to obtain the bound

((vn−1
h )2 − (vn

h)2, 2
n − 2

n−1)Ω = ((vn−1
h + vn

h)(vn−1
h − vn

h), 2
n − 2

n−1)Ω

= (vn−1
h + vn

h)(vn−1
h − vn

h), ( n + n−1)
tn

tn−1

∂t (·, t) dt
Ω

≥ − −1 (vn
h + vn−1

h )
tn

tn−1

∂t (·, t) dt

2

Ω

−
2
((vn

h − vn−1
h )2, 2

n + 2
n−1)Ω

≥ −CK−2 −1δt vn
h

2
n
+ vn−1

h
2

n−1
− C

2
vn
h − vn−1

h
2

n
.

Considering the remaining terms, using the relation L 2 = 0, and applying once again
Lemma 4, yields the bound

((vn
h)2, 2

n − 2
n−1)Ω + δt ((vn

h)2,β · ∇ 2
n )Ω = (vn

h)2,
tn

tn−1

∂t
2 dt − δt∂t

2
n

Ω

= (vn
h)2,

tn

tn−1

t

tn

∂tt
2 ds dt

Ω

≥ −δtC/K2 vn
h

2
n
.

Taking sufficiently small so that C /2 ≤ 1/4 it follows that

vN
h

2
N

+
N

n=1

( vn
h − vn−1

h
2

n
+ δt

N

n=1

( |β · n| 1
2 vn

h n
2 + γ |vn

h|2s, n
)

≤ C v0
h

2
0
+ δt

N

n=1

((Ln
θ vh,

2
n vn

h)Ω + |β · n|vn
h, 2

n vn
h −

+γ s(vn
h, 2

n vn
h) + CK−2 vn

h
2

n
) .
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Proceeding as before we add and subtract wn
h := πh(

2
n vn

h) in the right slot of the bilinear
forms of the right hand side

vN
h

2
N

+
N

n=1

vn
h − vn−1

h
2

n
+ δt

N

n=1

|β · n| 1
2 vn

h n
2 + γ |vn

h|2s, n

≤ C v0
h

2
0
+ δt

N

n=1

(Ln
θ vh,wh)Ω + |β · n|vn

h, wh − + s(vn
h,wh) + δtC vn

h
2

n

+δt

N

n=1

(Ln
θ vh,

2
n vn

h − wh)Ω + |β · n|vn
h, 2

n vn
h − wh

−
+γ s(vn

h, 2
n vn

h − wh) .

Only the term introduced for the weak imposition of boundary conditions differs from the
time-continuous analysis. For this term we observe that

|β · n|vn
h, 2

n vn
h − wh

−
≥ − |β · n| 1

2 vn
h n

2 − β∞
4

−1
n

2
n vn

h − πh
2
n vn

h
2

− .

For the second term on the right hand side we have the bound

−1
n

2
n vn

h − πh
2
n vn

h
2

− ≤ C/K2 vn
h

2 .

This follows by applying the trace inequality (2.10), the properties of and the inequality
(5.11). Proceeding as in the time-continuous case we then obtain the bound

vN
h

2
N

+
N

n=1

vn
h − vn−1

h
2

n
+ δt

N

n=1

|β · n| 1
2 vn

h n
2 + γ |vn

h|2s, n

≤ C v0
h

2
0
+δt

N

n=1

(Ln
θ vh,wh)Ω + |β · n|vn

h,wh − +γ s(vn
h, wh)+K−2 vn

h
2

n
.

Choosing δt sufficiently small the term δtCK−2 vN
h

2
N

in the right hand side can be
absorbed in the left hand side and we conclude by an application of the discrete Gronwall’s
inequality.

Remark 6 A consequence of the previous analysis is that the proposed method can be used
in the context of problems, where the boundary or initial data is unknown or partially known.
Assume for example that g is unknown and replaced by zero. Then, since the effect of the
erroneous boundary condition is damped exponentially for non-characteristic directions,
the solution can still be approximated with good accuracy in subsets Ω0 whose domain of
dependence is sufficiently far from the boundary. Similarly if the initial data is unknown in
some parts of the domain, the solution will still remain accurate in subdomains where the
initial data in the domain of dependence is known. This result is a time-dependent analogue
to the analysis of [16].

6 Numerical Examples

All numerical examples were produced using the package FreeFEM++ [29]. The method
(5.23) is considered with θ = 1/2, corresponding to the second order Crank–Nicolson
scheme. This choice was made to minimize the perturbation of the global energy estimate by
the time-discretization. The consistent mass matrix is used and exact quadrature is applied to
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all the forms. We first consider transport in the disc Ω := {(x, y) ∈ R
2 : x2+y2 < 1} under

the velocity field β = (y, −x). Approximations are computed on a series of unstructured
meshes. We set f = 0 and consider two different functions u0 as initial data. One is smooth

u0 = e−30((x−0.5)2+y2) (6.1)

and one is rough

ũ0 = 1, (x + 0.5)2 + y2 < 0.2,

0 otherwise.

The velocity field simply turns the disc with the initial data and one full turn is computed
so that the final solution should be equal to the initial data. Two numerical experiments are
considered where the solution is approximated for the initial data u0 and u0 + ũ0.

We report the global error in the material derivative over the space time domain, the
global L2-norm of the error at the final time, and in the case where both the rough and the
smooth initial data are combined, the error obtained in the smooth part, i.e. the L2-norm
over {(x, y) ∈ Ω : x > 0}. The discretization parameters for piecewise affine (P1 below)
approximation have been chosen as dt = 1

2h = π/nele, where nele is the number of cell
faces on the disc perimeter. For piecewise quadratic (P2 below) approximation h = 2π/nele

and dt = 1
2h

3
2 , to make the error of the time and space discretization similar. In the left panel

of Fig. 2 the smooth and rough initial data, interpolated on a very fine mesh, are presented.
In the middle panel the solution after one turn without stabilization and in the right panel
the solution after one turn with stabilization for P1, on the mesh resolution nele = 80 are
reported. We see that the sharp layers are smeared on this coarse mesh when the stabilized
method is used, but contrary to the unstabilized case the smooth part of the solution is
accurately captured.

In Fig. 3 the convergence of stabilized and unstabilized methods with P1 and P2 elements
are compared for the smooth initial data. We observe that when the solution is globally
smooth both methods perform well in the L2-norm. Nevertheless, the improvement of the
convergence rate for the stabilized method is clearly visible for both approximation spaces,
both in the L2-error and in the material derivative. The results when part of the solution
is rough (initial data from Fig. 2, left plot) are reported in Fig. 4. Note that both methods
have similar global error in the L2-norm. The stabilized method on the other hand still has
optimal convergence in the part where the solution is smooth, in accordance with the theory
of Section 5. Its material derivative is also more stable under refinement. The unstabilized
method has equally poor convergence in the smooth and in the rough part of the solution.

Fig. 2 From left to right: rough initial data on fine mesh u0 + ũ0, unstabilized solution, stabilized solution
(nele = 80, one turn)
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Fig. 3 Comparison of errors plotted against mesh size h for stabilized (full line) and unstabilized (dashed
line) methods with P1 (left) and P2 (right) approximation. Globally smooth initial data (6.1). The space time
error in material derivative has circle markers. The final time global L2-error has square markers. The dotted
reference lines have slope 1,2 from top to bottom in the left graphic and 1,2,3 from top to bottom in the right
graphic

6.1 An Example with Inflow and Outflow andWeakly Imposed Boundary Conditions

Here we consider transport in the unit square with β = (1, 0)T . We use a structured mesh
with nele cell faces on the side of the square. The initial data consists of a cylinder of

Fig. 4 Comparison of errors plotted against mesh size h for stabilized (full line) and unstabilized (dashed
line) methods with P1 (left) and P2 (right). Initial data from Fig. 2 (left plot). The space time error in material
derivative has circle markers. The final time global L2-error has square markers and the final time local L2-
error has triangle markers. The dotted reference lines have slope 1,2 from top to bottom in the left graphic
and 1,2,3 from top to bottom in the right graphic
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Fig. 5 From left to right: initial data on fine mesh, unstabilized solution, stabilized solution (nele = 80, final
time t = 1)

radius r = 0.2 centered in the middle of the square and a Gaussian centered on the left
boundary (see Fig. 5, left plot). The exact shapes are the same as those of the previous exam-
ple. The solution is approximated over the time interval (0, 1] so that the cylinder leaves
the domain at t = 0.7 and at t = 1 the Gaussian is centered on the right boundary. The
time dependent inflow boundary condition u = g on − is imposed weakly as described
in (5.23) (g is chosen as the trace of the known exact solution). In Fig. 5, the final time
approximation is reported in the middle plot without stabilization and the in right plot with
stabilization. Observe that from t = 0.7 the solution is smooth. Nevertheless the unstabi-
lized Galerkin method fails to produce an accurate approximation of the smooth final time
solution. Spurious oscillations from the discontinuity have spread over the whole computa-
tional domain and remain also when the rough part of the solution has left. The convergence
of the L2-error at final times for the stabilized and unstabilized approaches is shown in
Fig. 6 (h = 1/nele, nele = 40, 80, 160, 320). We see that for the stabilized method both

Fig. 6 Comparison of errors plotted against mesh size h for stabilized (full line) and unstabilized (dashed
line) methods with P1 (left) and P2 (right). Initial data from Fig. 5 (left plot). The space time error in material
derivative has circle markers. The final time global L2-error has square marker. The dotted reference lines
have slope 1,2 from top to bottom in the left graphic and 1,2,3 from top to bottom in the right graphic
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Fig. 7 Comparison of stabilized (full line) and unstabilized (dashed line) methods with P1 (left) and P2
(right) approximation. Evolution of the global L2-error in time. Initial data from Fig. 5, left graphic. In each
case the upper curve has nele = 40 and the lower curve nele = 80

the P1 and P2 approximations have optimal convergence to the smooth solution. The unsta-

bilized method converges approximately as O(h
1
2 ) in both cases and its material derivative

diverges.

6.2 Long Term Stability

To see the effect of perturbations on the solution for long time we revisit the computational
example of the previous section, but extend the time interval to (0, 3). The cylinder leaves
the domain at t = 0.7 and at the final time the solution is very small. One would then expect
the error of the method to go to zero with machine precision, since the solution to approx-
imate is very close to the trivial zero solution. In Fig. 7 the global L2-norm is reported,
for two consecutive meshes (nele = 40 and nele = 80) and both the stabilized (full line)
and the unstabilized (dashed line) methods. In the stabilized case the improvement of the
approximation at t = 0.7, when the cylinder leaves the domain, is clearly visible and the
solution also improves as the Gaussian is evacuated. We see convergence to zero at machine
precision of the error and also convergence under mesh refinement. In the unstabilized case
the change at time t = 0.7 is barely visible, the error decreases only very slowly in time and
not noticeably under mesh refinement. Similarly as in the previous example, we conclude
that the standard Galerkin method with weakly imposed boundary conditions in our sim-
ulations fails to evacuate the high frequency perturbations produced by the discontinuous
initial data on the two meshes considered.

Appendix

Here we give the proofs of the approximation results for the L2-projection, Lemmas 2 and
3 and finally the weighted discrete interpolation result (5.4).
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First we give a simple super approximation result for the Lagrange interpolant ih that
will be useful for the proofs of inequalities (5.11) and (5.12). For a general discussion of
discrete commutator properties we refer to [1].

Lemma 5 Let φ ∈ Wk+1,∞(Ω) satisfying (5.1) with K > 1 and h < 1. Then for h
1
2 /K

sufficiently small, there holds for all vh ∈ Vh, S ∈ T ,

|φvh − ih(φvh)|Hs(S) ≤ Ch
1
2 −s/K φvh S, 0 ≤ s ≤ 2.

Proof By the approximation properties of ih there holds

|φvh − ih(φvh)|Hs(S) ≤ Chk+1−s Dk+1(φvh) S . (6.2)

Using the product rule and the fact that Dk+1vh = 0 since vh|S ∈ Pk(S), we see that

Dk+1(φvh) S ≤ C

k+1

l=1

|φ|Wl,∞(S)|vh|Hk+1−l (S).

By applying the inverse inequality (2.6) repeatedly the derivatives on vh can be eliminated
at the price of factors of the inverse of h,

hk+1−s Dk+1(φvh) S ≤ Ch1−s vh S

k+1

l=1

hl−1|φ|Wl,∞(S). (6.3)

Using the bound (5.1) it then follows that

k+1

l=1

hl−1|φ|Wl,∞(S) ≤ C

k+1

l=1

hl−1(Kh
1
2 )−l φ L∞(S) ≤ C(Kh

1
2 )−1 φ L∞(S). (6.4)

Where we used the assumption that h < 1 and K > 1 in the last inequality. Combining the
bounds (6.2), (6.3) and (6.4) it follows that

φvh − ih(φvh) Hs(S) ≤ Ch1−s(Kh
1
2 )−1 φ L∞(S) vh S .

The claim now follows by applying (5.8).

Proof (Lemma 2) First note that by the construction of there holds

|∇ | ≤ C(
√

hK)−1 ≤ (C
√

h/K)h−1

and we see that we may apply (5.5)–(5.7) with φ = for (C
√

h/K) small enough.

Proof of (5.8). To prove (5.8), consider a triangle S, assume that the max value in
max(x,t)∈S×Iδ

(x, t) is taken at (x∗, t∗) ∈ S × Iδ . Then

max
(x,t)∈S×Iδ

(x, t) v S = (x∗, t∗)v S ≤ ( (x∗, t∗) − (·, t̃))v S + v S

≤ Ch
1
2 K−1 (x∗, t∗) v S + (·, t̃)v S,

for any t̃ ∈ Iδ . Assuming that Ch
1
2 K−1 ≤ 1

2 we see that

max
(x,t)∈S×Iδ

(x, t) v S ≤ 2 (·, t̃)v S, ∀t̃ ∈ Iδ .
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Proof of (5.9). For the proof of (5.9) first apply the stabilities (5.5)–(5.6). For the L2-norm
this yields

(v − πhv) Ω ≤ (v − ihv) Ω + πh(ihv − v) Ω ≤ C (v − ihv) Ω .

Then apply interpolation locally and (5.8).

(v − ihv) S ≤ max
x∈S

(x) v − ihv S ≤ C max
x∈S

(x)hk+1 Dk+1v S

≤ 2Chk+1 Dk+1v S .

The claim follows by summing over S ∈ T . The bound on the H 1-norm is identical.

Proof of (5.10). The stabilization operator is defined by the sum of the jumps of the
gradient over the faces of the element. The first step is to split that jump using the triangle
inequality over each face. Given a face F = ∂S1 ∩ ∂S2 for elements S1 and S2 this takes the
form.

[[∇(v − πhv)]] 2
F ≤ 2 ∇(v − πhv) 2

∂S1∩F + ∇(v − πhv) 2
∂S2∩F .

By breaking up the jumps on the contributions from respective element faces in this was we
have

s (v − πhv, v − πhv) ≤ C

S∈T
max
x∈S

(x)

2

h2β∞ ∇(v − πhv) 2
∂S .

Now apply the trace inequality (2.10) on each element to see that

∇(v − πhv) ∂S ≤ C h
1
2 |∇(v − πhv)|H 1(S) + h− 1

2 ∇(v − πhv) S .

For the first term in the right hand side add and subtract ihu, split it using a triangle inequal-
ity and use an inverse inequality in one of the terms and interpolation in the other to see
that

|∇(v − πhv)|H 1(S) ≤ C |∇(v − ihv)|H 1(S) + |∇(ihv − πhv)|H 1(S)

≤ Chk−1 Dk+1v S + Ch−1 ∇(v − πhv) S .

It follows using (5.8) that

S∈T
(x)2h2β∞ ∇(v − πhv) 2

∂S ≤ Cβ∞h2k+1 Dk+1v 2 + Cβ∞h ∇(v − πhv) 2 .

The claim now follows by applying (5.9) to the second term of the right hand side.

Proof (Lemma 3)

Proof of (5.11). To prove (5.11) recall that

|∇ −1| = | −2∇ | ≤ C(
√

hK)−1 −1

and we may apply (5.5) with φ = −1 to get
−1( 2vh − πh(

2vh)) Ω ≤ C −1( 2vh − ih(
2vh)) Ω .

Consider one simplex S, take out the weight and then apply Lemma 5 followed by (5.8)

−1( 2vh − ih(
2vh)) S ≤ max

x∈S

−1 2vh − ih(
2vh) S ≤ Ch

1
2 /K vh S .
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Finally take the square of both sides and sum over the simplices. The H 1-norm estimate
follows using similar arguments.

Proof of (5.12). For the inequality (5.12) we consider one element of the sum and apply
the trace inequality (2.10),

−1∇( 2vh − πh(
2vh)) ∂S ≤ C max

x∈S

−1h
1
2 |∇( 2vh − πh(

2vh))|H 1(S)

+ max
x∈S

−1h− 1
2 ∇( 2vh − πh(

2vh)) S . (6.5)

In the first term, add and subtract ∇ih(
2vh) and use the triangle inequality followed by an

inverse inequality to obtain

max
x∈S

−1h
1
2 |∇( 2vh − πh(

2vh))|H 1(S)

≤ C max
x∈S

−1h
1
2 |∇( 2vh − ih(

2vh))|H 1(S) + h−1 ∇(ih
2vh − πh(

2vh)) S .

For the first term in the right hand side we use Lemma 5, with s = 2,

h
1
2 max

x∈S

−1|∇( 2vh − ih(
2vh))|H 1(S) ≤ C max

x∈S

−1K−1h−1 2vh S

≤ CK−1h−1 vh S . (6.6)

To bound the second term we use (5.8), sum over S ∈ T and use the stability of the
L2-projection (5.6) to get

S∈T
max
x∈S

−2 h−1 ∇(ih
2vh − πh(

2vh))
2
S ≤ Ch−1 −1∇(ih

2vh − 2vh)
2
Ω .

We see that after summation over S the second term in the right hand side of (6.5) also is on
this form.

On every S take out the factor maxx∈S
−1 and apply Lemma 5 followed by (5.8) to

arrive at

h− 1
2 −1∇(ih

2vh − 2vh) Ω ≤ CK−1h−1 vh Ω

which together with (6.6), summed over S, concludes the proof of (5.12).

Proof (Inequality (5.4)). For simplicity consider the form β · ∇uh = ∂xuh. Using the
product rule ∂x(

2vh) = (∂x
2)vh + 2∂xvh and the triangle inequality it follows that

h
1
2 (∂x(

2vh) − πh(∂x(
2vh)))

2
−1 ≤ 2h (∂x

2)vh − πh(∂x
2vh)

2
−1

+2h ( 2∂xvh) − πh(
2∂xvh)

2
−1 . (6.7)

Noting that by the L2-stability of πh, the bound of , Lemma 5, (5.1) and (5.8)

h (∂x
2)vh − πh(∂x

2vh)
2

−1 ≤ Ch (∂x
2)vh − ih(∂x

2vh)
2

−1 ≤ CK−2 vh
2 .

It only remains to bound the second term of (6.7). We add and subtract π0
2 defined by

π0
2|S = |S|−1

S

2
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and use the triangle inequality to obtain

h ( 2∂xvh) − πh(
2∂xvh)

2
−1 ≤ Ch ( 2∂xvh − (π0

2)∂xvh)
2

−1

+Ch ((π0
2)∂xvh − πh((π0

2)∂xvh)
2

−1

+Ch (πh((π0
2)∂xvh) − πh(

2∂xvh))
2

−1

= T1 + T2 + T3.

First, for T3, observe that by the stability of the L2-projection (5.5) we have

h (πh((π0
2)∂xvh) − πh(

2∂xvh))
2

−1 ≤ Ch ( 2∂xvh − (π0
2)∂xvh)

2
−1 ≤ CT1,

(6.8)
so only T1 and T2 need to be bounded. For T1, by the approximation 2 −π0

2
L∞(S) ≤

Ch
1
2 /K 2

L∞(S) and applying (5.8) repeatedly, we have for one simplex S,

−1( 2∂xvh − (π0
2)∂xvh) S ≤ h

1
2 /K max

x∈S

2 max
x∈S

−1 ∂xvh S

≤ Ch− 1
2 K−1 vh S .

Taking the square of both sides and summing over all simplices yields the bound for T1,

h ( 2∂xvh − (π0
2)∂xvh)

2
−1 ≤ CK−2 vh

2 .

Finally for the term T2 we use (5.3) with β0 = (π0
2)ex . This leads to

h ((π0
2)∂xvh − πh((π0

2)∂xvh)
2

−1 ≤ Cwss −1 (π0
2)vh, (π0

2)vh .

Adding and subtracting 2 and using the triangle inequality and the fact that 2 is smooth
leads to

s −1 (π0
2)vh, (π0

2)vh ≤2s (vh, vh)+2s −1 ( 2−π0
2)vh, (

2 − π0
2)vh .

For the second term of the right hand side consider the boundary of one triangle and apply
the trace inequality (2.10), followed by the approximation of π0 to get

h( 2 − π0
2)∇vh ∂S ≤ C max

x∈S

2K−1h
3
2 h

1
2 |∇vh|H 1(S) + h− 1

2 ∇vh S

≤ CK−1 2vh S .

The last step followed using the inverse inequality (2.6) and (5.8). Proceeding by applying
the previous bound to all triangle faces, it follows that

s −1((
2−π0

2)vh, (
2−π0

2)vh)≤C

S∈T
max
x∈S

−2 h( 2−π0
2)∇vh

2
∂S (6.9)

≤ C

S∈T
max
x∈S

−2K−2 2vh
2
S ≤ CK−2 vh

2 ,

where the last step follows using (5.8). The proof is now finished by collecting the bounds
(6.8)–(6.9).
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Proof (Lemma 4). Using δt ≤ Ch and (5.1) there holds

vh

tn

tn−1

∂t dt
Ω

≤ Cδt/(Kh
1
2 )

S∈T
max

(x,t)∈S×[tn−1,tn]
(x, t)2 vh

2
S

1
2

≤ δt
1
2 C/K vh n .

For the second inequality we applied (5.8) elementwise and then upper bounded
mint∈[tn−1,tn] vh (·, t) S by vh n . For the bound of the second term observe that,
estimating

tn

tn−1

tn

t

∂tt
2 ds dt ≤ δt2 max

t∈[tn−1,tn] |∂tt
2|

and then applying (5.1) repeatedly with l = 1 and 2, to show

max
t∈[tn−1,tn] |∂tt

2| ≤ C2h−1K−2 max
t∈[tn−1,tn]

2.

It follows that for all S ∈ T ,

vh

tn

tn−1

tn

t

∂tt
2 ds dt

1
2

S

≤ δt
1
2 CK−1 max

(x,t)∈S×[tn−1,tn]
vh S .

Applying (5.8) we conclude that

S∈T
vh

tn

tn−1

tn

t

∂tt
2 ds dt

1
2

2

S

≤ δtC2K−2

S∈T
min

t∈[tn−1,tn] vh (·, t) 2
S

≤ δtC2K−2 vh
2

n
.
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