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Abstract
Motivated by Gröbner basis theory for finite point configurations, we define and study
the class of standard complexes associated to a matroid. Standard complexes are certain
subcomplexes of the independence complex that are invariant under matroid duality. For
the lexicographic term order, the standard complexes satisfy a deletion-contraction-type
recurrence. We explicitly determine the lexicographic standard complexes for lattice path
matroids using classical bijective combinatorics.
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1 Introduction

Matroids come with a rich enumerative theory. Mostly, this can be attributed to the deletion-
contraction paradigm that is inherent to matroid theory and that culminates in the existence
of the Tutte polynomial; see [23, Chap. 6]. Other objects encoding valuable enumer-
ative properties can be associated to matroids. Trivially, the collection of independent
sets I(M) of a matroid M is a simplicial complex, whose number of faces of various
dimensions and topological features give enumerative invariants of M . Far less trivial are
Brylawski’s broken circuit complexes [5]. Built on ideas of Whitney, these are simpli-
cial complexes associated to matroids with a totally ordered groundset. Their enumerative
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and topological properties explain many combinatorial characteristics of the underlying
matroid [23, Chap. 7]. Both complexes, the independence as well as the broken circuit com-
plex, can be constructed from a deletion-contraction-type process. The goal of this paper
is to define and study a new class of simplicial complexes associated to matroids and to
showcase their combinatorial structure.

Our simplicial complexes are motivated by Gröbner bases theory: Let V ⊆ {0, 1}n be
a 0/1-point configuration and � a term order on R[x1, . . . , xn]. The standard monomials
of the vanishing ideal I (V ) are squarefree and thus encode a simplicial complex that we
call the standard complex S�(V ) of V . A matroid M on groundset [n] := {1, 2, . . . , n} is
canonically represented by its basis configuration VM ⊂ {0, 1}n and we define its standard
complex as S�(M) := S�(VM).

Encoding and studying combinatorial objects by means of zero-dimensional ideals and
Gröbner bases has a long history; see [2, 7, 11, 13, 15, 17, 19] for a non-exhaustive selec-
tion. In particular [13] emphasizes the use of standard monomials but the point of view of
simplicial complexes and matroids has been largely neglected. Let us highlight some of the
interesting properties of standard complexes of matroids: For any term order �, the standard
complex S�(M) is a subcomplex of the independence complex I(M) of M (Corollary 2.5)
and its number of faces is precisely the number of bases of M (Corollary 2.3). Moreover,
the standard complex is invariant under matroid duality, that is, S�(M) = S�(M∗), where
M∗ is the matroid dual to M (Proposition 2.6).

For a nonempty matroid M , we write m(M) for the largest element in its groundset
E ⊆ N, and we write Slex(M) for the standard complex with respect to the lexicographic
term order such that x1 � x2 � · · · . Then the standard complex has the following deletion-
contraction-type decomposition. Recall that for a simplicial complex K and v not a vertex
of K , the cone of K with apex v is the complex v ∗ K := K ∪ {v ∪ σ : σ ∈ K}.

Theorem 1.1 Let M be a matroid and m = m(M). If m is not a loop or coloop, then

Slex(M) = Slex(M\m) ∪ Slex(M/m) ∪ (
m ∗ (

Slex(M\m) ∩ Slex(M/m)
))

.

Otherwise, we have

Slex(M) =
{
Slex(M\m) if m is a coloop,
Slex(M/m) if m is a loop.

If M = {∅}, then Slex(M) = {∅}. This gives a recursive definition of Slex(M).
Recall that for a map f : X → Y between topological spaces, the mapping cone is

the topological space Y �f (X) cone(f (X)). Thus Theorem 1.1 states that Slex(M) is the
mapping cone associated to the inclusion

Slex(M\m) ∩ Slex(M/m) ↪→ Slex(M\m) ∪ Slex(M/m). (1.1)

Theorem 1.1 also has the following combinatorial consequence. Let M be the collection
of matroids with groundsets contained in N and write B(M) for the collection of bases of a
matroid M ∈ M.

Corollary 1.2 There is a unique family {ΛM }M∈M of bijections

ΛM : B(M) → Slex(M)
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such that for every M ∈ M, m = m(M), and B ∈ B(M) one has

ΛM(B) ⊆ B,

ΛM(B) = ΛM\m(B) if m �∈ B,

ΛM(B) \ m = ΛM/m(B\m) if m ∈ B.

In Section 3, we prove Theorem 1.1 and recursively construct the bijection in Corol-
lary 1.2 explicitly.

We call a subclass M′ ⊆ M of matroids such that M\m(M), M/m(M) ∈ M′ for
every M ∈ M′ max-minor-closed and observe that Corollary 1.2 provides a tool to under-
stand the standard complex for matroids in the class M′ by explicitly constructing a family
{ΛM }M∈M′ of bijections and then showing that this family has the proposed properties.

In the second part of the paper, we implement this idea in the case of the (max-)minor-
closed class of lattice path matroids. Lattice paths in Z

2 with only north or east steps are
partially ordered by ‘staying weakly below’. It was noted by Bonin, de Mier, and Noy [4]
that the collection of lattice paths between two bounding paths U (for upper boundary) and
L (for lower boundary) with common endpoints are the bases for a (transversal) matroid,
called a lattice path matroid. The combinatorics of lattice path matroids (and lattice path in
general) has been of considerable interest in recent years; see, for example, [1, 3, 9, 12, 21,
22]. It turns out that our construction of compatible bijections on the (max-)minor-closed
class of lattice path matroids relates to classical bijective combinatorics. We explicitly
describe the family ΛM in this case in Section 4; it can be nicely described in terms of lattice
path combinatorics and is a well-known statistic in certain cases (Theorems 4.4 and 4.8).
Surprisingly, we will observe that the bijection in the case of lattice path matroids does only
depend on the lower boundary rather than on the complete set of bases in this case (Corol-
lary 4.9). For trivial lower and upper boundaries, the standard complex in question appeared
already in the literature and was discussed in [2], see also [11, Theorem 1.2].

2 0/1-Configurations and Standard Complexes

Let R[x] = R[x1, . . . , xn] be the polynomial ring in n variables. A term order on the
collection of monomials Monn = {xα : α ∈ N

n} is a total order � such that 0 � xα

and xα � xβ implies xαxγ � xβxγ for all α, β, γ ∈ N
n. For a given term order � and

polynomial f �= 0, we denote by in�(f ) the leading term of f and for an ideal I ⊆ R[x]
the initial ideal in�(I ) is the monomial ideal spanned by {in�(f ) : f ∈ I, f �= 0}. The
standard monomials of I with respect to � are Std�(I ) := {xα : xα �∈ in�(I )}. This
is a possibly infinite collection of monomials closed under divisibility. If I = I (A) is the
vanishing ideal of a algebraic variety A ⊂ R

n, then Std�(I ) is a basis for the vector space
of polynomial functions R[A] := R[x]/I on A. Every finite collection of points V ⊂ R

n

is an algebraic variety and the knowledge of Std�(I (V )) is of the essence for example in
polynomial optimization [13] or the design of experiments [19]. We refer the reader to the
wonderful book [6] for Gröbner basis theory in general.

If V ⊆ {0, 1}n is a 0/1-point configuration, then x2
i − xi vanishes on V for every i.

Independent of the term order, we have x2
i ∈ in�(I (V )) which shows that

Proposition 2.1 If V is a 0/1-point configuration, then Std�(I (V )) is a collection of
squarefree monomials.
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For τ ⊆ [n], let us write xτ = ∏
i∈τ xi . In light of the previous proposition, we define

the standard complex of a 0/1-configuration V with respect to a term order � as

S�(V ) := {τ ⊆ [n] : xτ ∈ Std�(I (V ))}.
For a finite configuration V ⊂ R

n, every function f : V → R is the restriction of a
polynomial on R

n. This shows that R[V ] ∼= R
V and gives us

Proposition 2.2 For any 0/1-configuration V ⊆ {0, 1}n, the standard complex S�(V ) is a
simplicial complex on [n] with |S�(V )| = |V |.

Let M be a rank-r matroid on groundset [n] and let B(M) be its collection of bases. The
basis configuration of M is the point configuration

VM := {eB ∈ {0, 1}n : B ∈ B(M)},
where eB is the characteristic vector of B ⊆ [n]. This is precisely the collection of vertices
of the matroid base polytope PM of M that gives a prominent geometric representation of
M; see [8, 18]. For a term order �, we write S�(M) := S�(VM). We record the following
consequence of Proposition 2.2.

Corollary 2.3 For any matroid M we have |S�(M)| = |B(M)| for any term order �.

Recall that the circuits C(M) of M are the inclusion-minimal sets C ⊆ [n] such that
C �∈ I(M).

Proposition 2.4 ([10, Prop. 4.3.]) Let M be rank-r matroid on groundset [n]. Then the
vanishing ideal of VM is generated by the polynomials x2

i − xi for i = 1, . . . , n as well as
x1 + · · · + xn − r and xC for C ∈ C(M).

Proposition 2.4 now implies that I (VM) contains the Stanley–Reisner ideal [16] of the
independence complex I(M), which gives the following result.

Corollary 2.5 Let M be a matroid on groundset [n] and � a term order. Then
S�(M) ⊆ I(M) is a subcomplex.

Proof Note that xC ∈ in�(I (VM)) for C ∈ C(M) independent of the term order. Thus
S�(M) is a collection of sets τ ⊆ [n] such that C �⊆ τ for all C ∈ C(C). This means that τ

is an independent set of M .

The matroid M∗ dual to M is the matroid with bases B(M∗) = {[n] \ B : B ∈ B(M)}.

Proposition 2.6 Let M be a matroid and � a term order. Then S�(M) = S�(M∗).

It follows from the definition that VM∗ = (1, . . . , 1) − VM . The next lemma then yields
Proposition 2.6. Denote by Ti the reflection in the hyperplane {x : xi = 1

2 }. Thus Ti maps
v ∈ {0, 1}n to (v1, . . . , vi−1, 1 − vi, vi+1, . . . , vn) ∈ {0, 1}n.

Lemma 2.7 Let V ⊂ {0, 1}n be a 0/1-configuration. Then S�(V ) = S�(Ti(V )) for every
i = 1, . . . , n.
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Proof Note that Ti acts on R[x] by Ti(f )(x1, . . . , xn) = f (x1, . . . , xi−1, 1 −
xi, xi+1, . . . , xn). In particular I (Ti(V )) = Ti(I (V )). Let xα be a monomial. Then
Ti(xα)−xα is a polynomial all whose terms strictly divide xα and thus are strictly smaller in
any term order. It follows that in�(I (V )) ⊆ in�(I (Ti(V ))) and thus S�(V ) ⊆ S�(Ti(V )).
However |V | = |Ti(V )| = |S�(Ti(V ))| ≥ |S�(V )| = |V |, which proves the claim.

3 Lex Order, Mapping Cones, and Bijections

Let � be the lexicographic term order with x1 � x2 � · · · � xn. That is xα ≺ xβ if for
the smallest i for which αi �= βi we have αi > βi . The lexicographic order is strongly
tied to elimination in ideals and projections of algebraic sets [6, Chap. 3] and lends itself to
inductive or recursive arguments.

For a 0/1-configuration V ⊆ {0, 1}n, we define

V a := {v ∈ {0, 1}n−1 : (v, a) ∈ V } for a = 0, 1.

The following lemma gives a recursive description of the standard monomials for a
0/1-point configuration. The recursive structure of standard monomials with respect to the
lexicographic term order has been noted in various contexts; see, for example [14] for the
description of the standard monomials for general point sets and the discussions in the last
section of that paper. In the context of VC-dimensions, Anstee, Rónyai, and Sali call Slex(V )

order shattering and give a similar recursive description (and proof) in Theorem 4.3 of [2].

Lemma 3.1 Let V ⊂ {0, 1}n be a non-empty 0/1-configuration and let ≺ be the
lexicographic term order with x1 � x2 � · · · � xn. Then

Slex(V ) = Slex(V
0) ∪ Slex(V

1) ∪
(
n ∗ (Slex(V

0) ∩ Slex(V
1))

)
.

Proof Let us denote the right-hand side by S ′. We first show that if τ �∈ S ′, then there is a
polynomial fτ ∈ I (V ) with in�(fτ ) = xτ . Let τ �∈ S ′ be inclusion-minimal. If n �∈ τ , then
τ �∈ Slex(V

0) ∪ Slex(V
1) and there are polynomials f i

τ ∈ I (V i) with leading term xτ for
i = 0, 1. By virtue of the lexicographic term order, the polynomial fτ = (1−xn)f

0
τ +xnf

1
τ

also has leading term xτ and vanishes on V .
If n ∈ τ , then σ := τ \ {n} is contained in, say, Slex(V

1). Now, σ cannot be con-
tained in Slex(V

0) as well, as it would imply τ ∈ n ∗ (Slex(V
0) ∩ Slex(V

1)) ⊆ S ′. Hence,
there is a polynomial f 0

σ ∈ I (V 0) with leading term σ . Consequently, the polynomial
fτ := (xn − 1)f 0

σ has leading term xτ and vanishes on V .
Let I ′ ⊆ I (V ) be the ideal generated by the polynomials fτ for τ �∈ S ′. Then

|S ′| ≥ dimR R[x]/I ′ ≥ dimR R[x]/I (V ) = |V |.
On the other hand, we have |S ′| = |Slex(V

0)| + |Slex(V
1)| = |V 0| + |V 1| = |V |. This

shows that I ′ = I (V ) and proves the claim.

If V = ∅, then Slex(V ) = ∅. On the other hand, if |V | = 1, then Slex(V ) = {∅}. This
gives starting conditions for a recursive computation of Slex(V ) for general V ⊆ {0, 1}n. In
this case, we can rephrase Lemma 3.1 as follows, which also yields (1.1).

Corollary 3.2 Let V ⊆ {0, 1}n. Then Slex(V ) is the mapping cone for the inclusion

Slex(V
0) ∩ Slex(V

1) ↪→ Slex(V
0) ∪ Slex(V

1).
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Let M be a matroid with groundset [n]. If n is neither a loop nor a coloop, then M \ n

is the matroid with bases B ∈ B(M) with n �∈ B. The contraction is the matroid M/n with
bases B \ n for B ∈ B(M) and n ∈ B. It follows that if V = VM is the basis configuration
of a matroid M , then V 0 = VM\n × {0} and V 1 = VM/n × {1}. This shows Theorem 1.1.
Note that if n is a loop, then V 1 = ∅ whereas if n is a coloop, then V 0 = ∅.

Lemma 3.1 also gives us a way to prove Corollary 1.2.

Proof of Corollary 1.2 For M = {∅} ∈ M, we have B(M) = {∅} = Slex(M) and set
ΛM(∅) := ∅.

For a nonempty matroid M ∈ M with m = m(M), we assume by induction that ΛM\m
and ΛM/m are bijections with the desired properties. Let B ∈ B(M). If m �∈ B, then
B ∈ B(M\m) and we set ΛM(B) := ΛM\m(B). If m ∈ B, then B ∈ B(M/m) and let
τ := ΛM/m(B \ m). If τ �∈ Slex(M \ m), then we set ΛM(B) := τ . Otherwise, we set
ΛM(B) := τ ∪ {m}. It follows from Lemma 3.1 that this is well-defined and a bijection
from B(M) to Slex(M). It also follows from Lemma 3.1 that ΛM is the unique bijection for
M ∈ M also satisfying ΛM(B) ⊆ B.

4 Standard Complexes for Lattice PathMatroids

In this section, we discuss the proposed bijection in Corollary 1.2 for the max-minor class
of lattice path matroids. As we see below, this bijection closely relates to classical bijective
combinatorics on lattice paths.

A lattice pathC from (0, 0) to (d, n−d) in Z
2 is a sequence of d east steps e in direction

(1, 0) and n − d north steps n in direction (0, 1). We denote the collection of all such path
by Ln,d . A path C ∈ Ln,d may be represented as a word in {e,n}, and we refer to its i-th
letter as Ci . We refer to the actual line segment of a step in R

2 between its endpoints as its
realization. For later reference, we also define a diagonal step d in direction (1, 1) and an
empty step ε.

Say that U is weakly above L for U,L ∈ Ln,d if U never goes below L. In terms of
words this means that every prefix L contains at least as many east steps as the correspond-
ing prefix of U . For two such paths, let L[U, L] ⊆ Ln,d be the set of all lattice paths weakly
between U and L, i.e, weakly below U and weakly above L. We refer to U as the upper
boundary of L[U, L] and to L as the lower boundary.

If n and d are fixed, then we may identify L ∈ Ln,d by its ordered collection of east steps
E(L) = {l1 < · · · < ld}. If U ∈ Ln,d with E(U) = {u1 < · · · < ud}, then U is weakly
above L if and only if

li ≤ ui for i = 1, . . . , d.

We denote this by E(L) ≤comp E(U).
It was observed by Bonin, de Mier, and Noy [4] that the collection of lattice path between

U and L give rise to a matroid. The special case of Dyck paths was studied by Ardilla [1].
Let U, L ∈ Ln,d with U weakly above L. Then

B[U, L] = {E(C) : C ∈ L[U, L]} = {
Z ⊆ [n] : |Z| = d,E(L) ≤comp Z ≤comp E(U)

}

is the collection of bases of a matroid M[U, L] on groundset [n], called a lattice path
matroid. The collection M of lattice path matroids is closed under deletion, contraction,
and duality.
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We denote the lexicographic standard complex of M[U, L] by Slex[U, L] :=
Slex(M[U, L]). Let

Λ = ΛM[U,L] : B[U, L] → Slex[U, L]
be the bijection of Corollary 1.2. For a lattice path C ∈ M[U, L] we thus have

Λ(E(C)) ⊆ E(C).

The goal of this section is to make this selection of east steps explicit by means of lattice
path combinatorics. Concretely, this means to find a combinatorial statistic st associating to
each path C ∈ L[U, L] a subset st(C) of its east steps E(C) such that Λ(E(C)) = st(C).

4.1 Simple Version of Main Theorem

As a warm-up, we provide a description for the special case of the trivial lower boundary

Ltr = e · · · e︸ ︷︷ ︸
d times

n · · · n︸ ︷︷ ︸
n−d times

∈ Ln,d .

For a path C ∈ Ln,d , the statistic st(C) is obtained by marking certain east steps as follows:
scan through the word of C from left to right and mark the step Ci = e if there are as many
n’s to the left of position i as there are unmarked e’s. See Example 4.2 for an example of
this marking process. As indicated in Fig. 1, one may interpret the marked and unmarked
east steps of a path C as well graphically by drawing the Ltr -marking path of C. This path,
markLtr (C), of total length d consists of east steps e and diagonal steps d. It starts at (0, 0)

and uses diagonal steps whenever possible without going above the path C, and otherwise
uses east steps. The marked east steps of C are then those whose realizations are also east
steps of the marking path markLtr (C).

Definition 4.1 (Combinatorial statistic, simple version) Mark east steps of C ∈ Ln,d using
the Ltr -marking path P = markLtr (C). Then

stLtr (C) := E(C) \ E(P ) ⊆ E(C)

is the unmarked east steps in C.

Fig. 1 The path in Example 4.2 with its Ltr -marking path
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Example 4.2 We mark the path C ∈ L18,10 in Fig. 1 as

C = e n e n e e n e n e e n e n n e e n

markLtr (C) = e d d e d d e d d d

and obtain

stLtr (C) = {3, 5, 8, 10, 13, 16, 17} ⊆ {1, 3, 5, 6, 8, 10, 11, 13, 16, 17} = E(C).

Note that stLtr (C) is constructed in a greedy-like manner and, more over, is independent
of the upper boundary U .

Remark 4.3 As observed using the statistics database FindStat [20], one may as well define
stLtr (C) using the following hook placements in the area between C and the lower boundary
Ltr . Scan the columns below a given path C ∈ Ln,d from left to right and place, if possible,
the corner box of a south-east hook into the north-most box below C in that column that
is not already covered by other hooks. The columns of the placed corner boxes are then
exactly the columns that contribute to the statistic. We refer to Fig. 2 for an example of this
procedure.

Theorem 4.4 (Simple version) Let U ∈ Ln,d and let Λ = ΛM[U,Ltr ]. Then

st(C) = Λ(E(C)) for all C ∈ L[U, Ltr ].
In particular, the standard complex in this case can be described as

Slex(M[U, Ltr ]) = {
st(C) : C ∈ L[U, Ltr ]} .

Fig. 2 An example of the hook placement of Remark 4.3
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4.2 General Version of Main Theorem

After having given the simple version of the statistic for the trivial lower boundary Ltr ,
we modify the definition of the marking path depending on the given lower boundary by
introducing another intermediate path. We remark that it seems to be not possible to give
a description in terms of hook placements as in Remark 4.3 for this general situation of
non-trivial lower bounds.

Let C,L ∈ Ln,d with C weakly above L. The L-demarcation path of C, demL(C), is
defined to start at (0, 0) with steps

demL(C)i =

⎧
⎪⎪⎨

⎪⎪⎩

n if Ci = n, Li = n,

e if Ci = e, Li = e,
d if Ci = n, Li = e,
ε if Ci = e, Li = n.

Graphically, this means that demL(C) starts at (0, 0) and then is obtained by combin-
ing the e-coordinate of L with the n-coordinate of C. In particular, this implies that the
L-demarcation path of C is weakly between L and C.

Example 4.5 The L-demarcation path demL(C) of the path C ∈ L21,11 in Fig. 3 relative to
the given lower boundary L ∈ L21,11 is:

C = n n n e e e n e e n e n n e n n n e e e e
L = e e e n e e e n n e n e e n n n n e e n n

demL(C) = d d d ε e e d ε ε d ε d d ε n n n e e ε ε

Fig. 3 The path in Example 4.5 with the given lower boundary L, its L-demarcation path in dotted blue and
its L-marking path in red
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Let C, L ∈ Ln,d with C weakly above L. The L-marking path of C, markL(C), consists
of diagonal steps d, east steps e and north steps n. It goes from (0, 0) to (d, n − d)

and uses diagonal steps whenever possible without going above the path C or below the
L-demarcation path demL(C). If it would go above C, it uses an east steps instead, and if it
would go below demL(C), it uses a north step instead. The marked east steps of C are then
those whose realizations are also east steps of the marking path markL(C).

Definition 4.6 (Combinatorial statistic, general version) Let C, L ∈ Ln,d with C weakly
above L and mark east steps of C using the L-marking path P = markL(C). Then

stL(C) := E(C) \ E(P ) ⊆ E(C)

is the unmarked east steps in C.

Example 4.7 We mark east steps in the path C ∈ L21,11 in Fig. 3 relative to the given lower
boundary L ∈ L21,11 as

C = n n n e e e n e e n e n n e n n n e e e e

and obtain

stL(C) = {4, 5, 6, 8, 11, 14, 18, 19} ⊆ {4, 5, 6, 8, 9, 11, 14, 18, 19, 20, 21} = E(C).

Theorem 4.8 (General version) Let U, L ∈ Ln,d with U weakly above L and let
Λ = ΛM[U,L]. Then

st(C) = Λ(E(C)) for all C ∈ L[U, L].
In particular, the standard complex in this case can be described as

Slex(M[U, L]) = {st(C) : C ∈ L[U, L]} .

Surprisingly, this combinatorial description yields the following property of the bijec-
tion Λ in the case of lattice path matroids.

Corollary 4.9 Let U, U ′, L ∈ Ln,d such that U is weakly above U ′ and U ′ is weakly
above L. Then

ΛM[U,L]
∣∣
B[U ′,L] = ΛM[U ′,L].

In particular, Slex[U ′, L] ⊆ Slex[U, L].

Proof This is a direct consequence of Theorem 4.8.

In light of Proposition 2.6, this theorem also yields the following open problem. For a
path C ∈ Ln,d we write C∗ ∈ Ln,n−d to be the path given by C∗

i = e if Ci = n and vice
versa.

Open problem 1 For U, L ∈ Ln,d with U weakly above L, find a bijection

ϕ : L[U, L] ←̃→ L[L∗, U∗]
with the property that stL(C) = stL∗(ϕ(C)) for all C ∈ L[U, L].

Given J ∈ Slex(M[U, L]) = Slex(M[L∗, U∗]), we will see below how to construct the
unique C ∈ L[U, L] and the unique C′ ∈ L[L∗, U∗] with stL(C) = stU∗(C′) = J . The

772 A. Engström et al.



open problem is thus to provide a bijection without referring to the set J in the first place.
By definition, the bijection in question must send L to U∗ and U to L∗. In particular, it is
not the obvious bijection C �→ C∗.

4.3 Proof of Theorems 4.4 and 4.10

Let U, L ∈ Ln,d with U weakly above L and consider the obvious decomposition

L[U, L] = L[U, L]e � L[U, L]n
where L[U, L]e and L[U, L]n denote all paths in L[U, L] ending in an east step or,
respectively, in a north step. Observe that

L[U, L]e �= ∅ ⇔ Un = e, L[U, L]n �= ∅ ⇔ Ln = n.

We also write L[U, L]e◦ and L[U, L]n◦ for the corresponding paths with the last east or,
respectively, north step removed. If they exist, these truncated paths may clearly again be
realized as lattice paths between boundaries:

L[U, L]e◦ = L[U e◦ , Le◦] if Un = e,

L[U, L]n◦ = L[Un◦ , Ln◦] if Ln = n

where U e◦ , Le◦ ∈ Ln−1,d−1 and Un◦ , Ln◦ ∈ Ln−1,d are obtained from U and L by respectively
removing the last east or north step. (Note that in the first situation, the last east step of L

might not be its last step and in the second, the last north step of U might not be its last step.)

Proof of Theorem 4.4. We first prove that the simple version of the combinatorial statistic
by showing the following theorem. Theorem 4.4 then follows with Theorem 1.1.

Theorem 4.10 Let U ∈ Ln,d and set

SL = {
stLtr (C) : C ∈ L[U, Ltr ]} ,

Se
L = {

stLtr (C) : C ∈ L[U, Ltr ]e◦
}
,

Sn
L = {

stLtr (C) : C ∈ L[U, Ltr ]n◦
}

.

We then have
SL = Se

L ∪ Sn
L ∪ n ∗ (Se

L ∩ Sn
L).

We prove this theorem in several steps and refer to Fig. 4 for graphical illustrations of
the given arguments.

Lemma 4.11 Let C ∈ Ln,d with stLtr (C) = {j1 < · · · < j�}. Then
� ≤ d ≤ n − � and jk ≥ 2k for all 1 ≤ k ≤ �.

Proof We have stLtr (C) ⊆ E(C) and therefore � = |stLtr (C)| ≤ |E(C)| = d . Moreover,
the marking path markLtr (C) consists of � diagonal steps and of d − � east steps and thus
ends at the point (d, �). Because C ends at (d, n − d) and is weakly above markLtr (C), we
also have � ≤ n − d or, equivalently, d ≤ n − �.

The second property jk ≥ 2k follows from the observation that, if there was a smallest k

with jk < 2k, the realization of the jk-th step (which is an east step) in the path C would
also be an east step of its marking path markLtr (C) and thus jk /∈ stLtr (C).
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Fig. 4 All paths C ∈ L18,d with stLtr (C) = {3, 5, 8, 10, 13, 16, 17}, one for each d ∈ {7, . . . , 11}

Lemma 4.12 Fix n, d and J ⊆ {1, . . . , n} with |J | = � such that � ≤ d < n − �. Then
there is an explicit bijection

{
C ∈ Ln,d : stLtr (C) = J

} ←̃→ {
C′ ∈ Ln,d+1 : stLtr (C′) = J

}
.

Proof Let C ∈ Ln,d such that |stLtr (C)| = �. As we have already seen in the proof of
Lemma 4.11, the marking path of C ends at (d, �). Because C ends at (d, n − d) and
� < n − d, the path C contains a unique last north step whose realization starts on the
marking path. Replacing this north step by an east step yields a path C′ ∈ Ln,d+1 for which
stLtr (C′) = stLtr (C).

On the other hand, let C′ ∈ Ln,d+1 such that |stLtr (C′)| = �. Because d + 1 > �,
the path C′ contains a last east step whose realization is also an east step of its marking
path markLtr (C′). Replacing this east step by a north step yields a path C ∈ Ln,d with
stLtr (C) = stLtr (C′).

Those two operations are inverses of each other and are thus the desired bijection. This
can be seen as follows: Consider C and its marking path P = markLtr (C), and also C′
and its marking path P ′ = markLtr (C′), and let i be the index of the north step in C that
is replaced in C′ by an east step (or vice versa). Then the relative positions of C, P and,
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respectively, the relative positions of C′, P ′ coincide, except that C′ is horizontally one step
closer to P ′ than C is to P . We refer to Fig. 4 for several examples.

Proposition 4.13 Fix n, d and J = {j1 < · · · < j�} ⊆ {1, . . . , n}. Then there exists a
path C ∈ Ln,d with stLtr (C) = J if and only if the two conditions

jk ≥ 2k for all 1 ≤ k ≤ � and � ≤ d ≤ n − �

are both satisfied. Moreover, the path with this property is unique in this case.

Proof We have seen in Lemma 4.11 that these two conditions are both necessary for such
a path to exist. For d = � the (unique) path C with E(C) = {j1, . . . , j�} has the desired
property stLtr (C) = E(C). It then follows with Lemma 4.12 that there exists, for any d with
� ≤ d ≤ n − �, a unique path C′ in Ln,d with stLtr (C′) = J . (This path is obtained from
C ∈ Ln,� by multiple replacements of north steps by east steps as described.)

Let U ∈ Ln,d . For the following treatment, we set

L[U, Ltr ]e = L[U, Ltr ]e,− � L[U, Ltr ]e,+,

L[U, Ltr ]e◦ = L[U, Ltr ]e,−◦ � L[U, Ltr ]e,+◦ , (4.1)

where L[U, Ltr ]e,− are the paths that go weakly below the diagonal through the point
(n − d, d) and L[U, Ltr ]e,+ is its complement in L[U, Ltr ]e. The sets L[U, Ltr ]e,−◦ and
L[U, Ltr ]e,+◦ are obtained by removing the last east step.

Corollary 4.14 Let U ∈ Ln,d with Un = e. Then
{
stLtr (C) : C ∈ L[U, Ltr ]n◦

} = {
stLtr (C) : C ∈ L[U, Ltr ]e,−◦

}
.

Proof Let C ∈ L[U, Ltr ]e◦ ⊆ Ln−1,d−1. Such a path exists by the assumption Un = e.
Proposition 4.13 implies that there exists a (then unique) path in Ln−1,d with the same
statistic value as C if and only if d ≤ n − 1 − �. Let k be the number of marked east steps
in C, this is, k = d − 1 − �. Then d ≤ n − 1 − � if and only if k ≥ 2d − n. This is the case
if and only if C ∈ L[U, Ltr ]e,−◦ .

Proof of Theorem 4.10 Consider the disjoint decomposition

L[U, Ltr ] = L[U, Ltr ]e,− ∪ L[U, Ltr ]e,+ ∪ L[U, Ltr ]n.

Observe that the definition of the statistic implies for a path C ∈ L[U, Ltr ] that

n ∈ stLtr (C) ⇐⇒ C ∈ L[U, Ltr ]e,−.

If Un = n, we have Se
L = ∅ and thus SL = Sn

L. Otherwise, we have Un = e and obtain
{
stLtr (C) : C ∈ L[U, Ltr ]} = {

stLtr (C) ∪ {n} : C ∈ L[U, Ltr ]e,−◦
}

∪ {
stLtr (C) : C ∈ L[U, Ltr ]e,+◦

}

∪ {
stLtr (C) : C ∈ L[U, Ltr ]n◦

}
.

Proposition 4.14 now implies Theorem 4.10.
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Proof of Theorem 4.8 We next generalize and modify the arguments for the simple version
to obtain the general version. We show the following theorem and Theorem 4.8 then follows
with Theorem 1.1.

Theorem 4.15 Let U, L ∈ Ln,d with U weakly above L and set

SL = {stL(C) : C ∈ L[U, L]} ,

Se
L = {

stL(C) : C ∈ L[U, L]e◦
}
,

Sn
L = {

stL(C) : C ∈ L[U, L]n◦
}

.

We then have
SL = Se

L ∪ Sn
L ∪ n ∗ (

Se
L ∩ Sn

L
)

.

We first adapt the definition of the demarcation path and the marking path to the slightly
more general setting of C ∈ Ln,d and L ∈ Ln,d ′ with d ≤ d ′. The definition of C being
weakly above L generalizes verbatim and d ≤ d ′ is a necessary condition in this case. One
may then extend C and L by appending d ′ − d many east steps to C and d ′ − d many north
steps to L to obtain two paths in Ln+d ′−d,d ′ . The definitions of the L-demarcation path
and the L-marking path of C are given by using these extensions. Figure 5 shows one such
example.

Unfortunately, we do not have an analogue of Lemma 4.11 in the general situation. We
nonetheless still have the following lemma.

Fig. 5 Two possible replacements of north steps starting on the marking path

776 A. Engström et al.



Lemma 4.16 Fix n, d < d ′ and J ⊆ {1, . . . , n} with |J | = � ≤ d and L ∈ Ln,d ′ . Then
there is an explicit bijection

⎧
⎨

⎩
C ∈ Ln,d :

C weakly above L,

stL(C) = J,

(d, n − d) /∈ markL(C)

⎫
⎬

⎭
←̃→

{
C′ ∈ Ln,d+1 : C′ weakly above L,

stL(C′) = J

}
.

In the lemma, we mean by (d, n− d) /∈ markL(C) that the marking path markL(C) of C

does not go through the endpoint (d, n − d) of C.

Proof The proof of Lemma 4.12 generalizes verbatim: Let C ∈ Ln,d be weakly above L

such that |stL(C)| = �. Because (d, n − d) /∈ markL(C), the path C contains a unique last
north step whose realization start on the marking path markL(C). Replacing this north step
by an east step yields a path C′ ∈ Ln,d+1 with stL(C′) = stL(C) which is also weakly
above L.

On the other hand, let C′ ∈ Ln,d+1 be weakly above L such that |stL(C′)| = �. Because
d + 1 > �, the path C′ contains a last east step whose realization is also an east step of its
marking path markL(C′). Replacing this east step by a north step yields a path C ∈ Ln,d

with stL(C) = stL(C′) and (d, n − d) /∈ markL(C).
Those two operations are inverses of each other and are thus the desired bijection. This

can be seen as follows: Consider C, D = demL(C) and M = markL(C), and also C′,
D′ = demL(C′) and M ′ = markL(C′), and let i be the index of the north step in C that is
replaced in C′ by an east step (or vice versa). Then the relative positions of C, D, M and,
respectively, the relative positions of C′, D′, M ′ coincide, except that C′ is horizontally one
step closer to D′ and to M ′ than C is to D and to M . We refer to Fig. 5 for two examples.

Proposition 4.17 Fix n, d < d ′ and J ⊆ {1, . . . , n}. Let L ∈ Ln,d ′ such that the unique
path E ∈ Ln,� with E(C) = J is weakly above L. Set k to be the smallest nonnega-
tive integer such that the point (� + k, n − �) is contained in markL(E). Then there exists
C ∈ Ln,d with stL(C) = J if and only if the two conditions

stL(E) = J and � ≤ d ≤ � + k

are both satisfied. Moreover, the path with this property is unique in this case.

Proof We have seen in Lemma 4.16 that these two conditions are both necessary and suffi-
cient for such a path to exist. The uniqueness is also a direct consequence of the previous
lemma because the path E is obviously the unique path in Ln,� with stL(E) = J = E(E).

One may easily check that Proposition 4.17 indeed reduces to Proposition 4.13 for the
trivial lower bound. The parameter k introduced in the previous proposition is the horizontal
distance between the path C and its marking path markL(C) at its final height n − �. In the
example on the bottom left in Fig. 5 this parameter is k = 2.

For the following treatment, we set

L[U, L]e = L[U, L]e,− � L[U, L]e,+,

L[U, L]e◦ = L[U, L]e,−◦ � L[U, L]e,+◦ ,

where
L[U, L]e,− = {C ∈ L[U, L]e : n ∈ stL(C)}
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and L[U, L]e,−◦ are the paths in L[U, L]e,− obtained by removing the final east step, and
L[U, L]e,+ and L[U, L]e,+◦ are their complements. Observe here that we do not provide
such a simple criterion to describe L[U, L]e,− as we did in (4.1).

Corollary 4.18 We have
{
stL(C) : C ∈ L[U, L]e,−◦

} = {
stL(C) : C ∈ L[U, L]e◦

} ∩ {
stL : L[U, L]n◦

}
.

Proof Let C ∈ L[U, L] and let C◦ be the path obtained from C by removing the last step.
We then have to show that n ∈ stL(C) if and only if C◦ ∈ L[U, L]e◦ and there exists a
path D◦ ∈ L[U, L]n◦ with stL(C◦) = stL(D◦).

We have that n ∈ stL(C) if and only if C◦ ∈ L[U, L]e◦ and (d − 1, n − d) /∈ markL(C◦).
The claim follows with Proposition 4.17.

Proof of Theorem 4.15 Consider the decomposition

L[U, L] = L[U, L]e,− � L[U, L]e,+ � L[U, L]n.

If Un = n, we have Se
L = ∅ and thus SL = Sn

L satisfies the proposed decomposition. The
analogous consideration holds for Ln = e. Otherwise, we have Un = e, Ln = n and, by the
definition of L[U, L]e,−, we obtain

{stL(C) : C ∈ L[U, L]} = {
stL(C) ∪ {n} : C ∈ L[U, L]e,−◦

}

∪ {
stL(C) : C ∈ L[U, L]e,+◦

}

∪ {
stL(C) : C ∈ L[U, L]n◦

}
.

Proposition 4.18 now implies Theorem 4.15.
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