Skip to main content
Log in

Boundary Controllability and Asymptotic Stabilization of a Nonlocal Traffic Flow Model

  • Original Article
  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study the exact boundary controllability of a class of nonlocal conservation laws modeling traffic flow. The velocity of the macroscopic dynamics depends on a weighted average of the traffic density ahead and the averaging kernel is of exponential type. Under specific assumptions, we show that the boundary controls can be used to steer the system towards a target final state or out-flux. The regularizing effect of the nonlocal term, which leads to the uniqueness of weak solutions, enables us to prove that the exact controllability is equivalent to the existence of weak solutions to the backwards-in-time problem. We also study steady states and the long-time behavior of the solution under specific boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adimurthi, Ghoshal, S.S., Veerappa Gowda, GD: Exact controllability of scalar conservation laws with strict convex flux. Math. Control Relat. Fields 4, 401–449 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aggarwal, A., Goatin, P.: Crowd dynamics through non-local conservation laws. Bull. Braz. Math. Soc. (N.S.) 47, 37–50 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aı̆zerman, M.A., Bredihina, E.A., Černikov, S.N., Gantmaher, F.R., Gel’fand, I.M., Gel’fer, S.A., Harazov, D.F., Kadec, M.I., Korobeı̆nik, J.F., Kreı̆n, M.G., Oleı̆nik, O.A., Pyateckiı̆-Šapiro, I.I., Subhankulov, M.A., Temko, K.V., Tureckiı̆, A.N.: Seventeen Papers on Analysis. American Mathematical Society Translations, Ser. 2, vol. 26. American Mathematical Society, Providence (1963)

    Google Scholar 

  4. Amadori, D., Shen, W.: Front tracking approximations for slow erosion. Discrete Contin. Dyn. Syst. - A 32, 1481–1502 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ancona, F., Bressan, A., Coclite, G.M.: Some results on the boundary control of systems of conservation laws. In: Hou, T.Y., Tadmor, E (eds.) Hyperbolic Problems: Theory, Numerics, Applications, pp 255–264. Springer, Berlin (2003)

  6. Ancona, F., Coclite, G.M.: On the attainable set for temple class systems with boundary controls. SIAM J. Control Optim. 43, 2166–2190 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ancona, F., Marson, A.: On the attainable set for scalar nonlinear conservation laws with boundary control. SIAM J. Control Optim. 36, 290–312 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Armbruster, D., Marthaler, D.E., Ringhofer, C., Kempf, K., Jo, T. -C.: A continuum model for a re-entrant factory. Oper. Res. 54, 933–950 (2006)

    Article  MATH  Google Scholar 

  9. Bardos, C., Leroux, A.Y., Nédélec, J. C.: First order quasilinear equations with boundary conditions. Commun. Partial Differ. Equ. 4, 1017–1034 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barles, G., Ishii, H., Mitake, H.: On the large time behavior of solutions of Hamilton–Jacobi equations associated with nonlinear boundary conditions. Arch. Rational Mech. Anal. 204, 515–558 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Barles, G., Souganidis, P.E.: On the large time behavior of solutions of Hamilton–Jacobi equations. SIAM J. Math. Anal. 31, 925–939 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Beauchard, K., Zuazua, E.: Large time asymptotics for partially dissipative hyperbolic systems. Arch. Rational Mech. Anal. 199, 177–227 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Betancourt, F., Bürger, R., Karlsen, K.H., Tory, E.M.: On nonlocal conservation laws modelling sedimentation. Nonlinearity 24, 855–885 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bianchini, S., Hanouzet, B., Natalini, R.: Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Commun. Pure Appl. Math. 60, 1559–1622 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bressan, A.: Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem. Oxford Lecture Series in Mathematics and its Applications, vol. 20. Oxford University Press, Oxford (2000)

    Google Scholar 

  16. Bressan, A., Shen, W.: Entropy admissibility of the limit solution for a nonlocal model of traffic flow. arXiv:2011.05430 (2020)

  17. Bressan, A., Shen, W.: On traffic flow with nonlocal flux: a relaxation representation. Arch. Rational Mech. Anal. 237, 1213–1236 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)

    Book  MATH  Google Scholar 

  19. Chen, G.-Q., Christoforou, C.: Solutions for a nonlocal conservation law with fading memory. Proc. Amer. Math. Soc. 135, 3905–3915 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, G.-Q., Frid, H.: Decay of entropy solutions of nonlinear conservation laws. Arch. Rational Mech. Anal. 146, 95–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, W., Liu, C., Wang, Z.: Global feedback stabilization for a class of nonlocal transport equations: The continuous and discrete case. SIAM Control Optim. 55, 760–784 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chiarello, F., Friedrich, J., Goatin, P., Göttlich, S., Kolb, O.: A non-local traffic flow model for 1-to-1 junctions. Eur. J. Appl. Math. 31, 1029–1049 (2020)

    Article  MathSciNet  Google Scholar 

  23. Chiarello, F.A., Goatin, P.: Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel. ESAIM Math. Model. Numer. Anal. 52, 163–180 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chiarello, F.A., Goatin, P.: Non-local multi-class traffic flow models. Netw. Heterog. Media 14, 371–387 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chiarello, F.A., Goatin, P., Rossi, E.: Stability estimates for non-local scalar conservation laws. Nonlinear Anal. Real World Appl. 45, 668–687 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chiarello, F.A., Goatin, P., Villada, L.M.: Lagrangian-antidiffusive remap schemes for non-local multi-class traffic flow models. Comput. Appl. Math. 39, 60 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chu, J., Shang, P., Wang, Z.: Controllability and stabilization of a conservation law modeling a highly re-entrant manufacturing system. Nonlinear Anal. 189, 111577 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Coclite, G.M., Coclite, M.M.: Stationary solutions for conservation laws with singular nonlocal sources. J. Differ. Equ. 248, 229–251 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Coclite, G.M., Coron, J.M., De Nitti, N., Keimer, A., Pflug, L.: A general result on the approximation of local conservation laws by nonlocal conservation laws: The singular limit problem for exponential kernels. arXiv:2012.13203(2020)

  30. Coclite, G.M., De Nitti, N., Keimer, A., Pflug, L.: Singular limits for a nonlocal conservation law. Preprint. Nonlinear Anal. (to appear) (2020)

  31. Coclite, G.M., Gargano, F., Sciacca, V.: Up-wind difference approximation and singularity formation for a slow erosion model. ESAIM . Model. Numer. Anal. 54, 465–492 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Coclite, G.M., Jannelli, E.: Well-posedness for a slow erosion model. J. Math. Anal. Appl. 456, 337–355 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Colombo, R., Herty, M., Mercier, M.: Control of the continuity equation with a non local flow. ESAIM Control Optim. Calc. Var. 17, 353–379 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Colombo, R.M., Garavello, M., Lécureux-Mercier, M.: Non-local crowd dynamics. C. R. Math. Acad. Sci. Paris 349, 769–772 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Colombo, R.M., Garavello, M., Lécureux-Mercier, M.: A class of nonlocal models for pedestrian traffic. Math. Models Methods Appl. Sci. 22, 1150023 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Colombo, R.M., Lécureux-Mercier, M.: Nonlocal crowd dynamics models for several populations. Acta Math. Sci. Ser. B (Engl. Ed.) 32, 177–196 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Colombo, R.M., Marcellini, F., Rossi, E.: Biological and industrial models motivating nonlocal conservation laws: a review of analytic and numerical results. Netw. Heterog. Media 11, 49–67 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Coron, J.M., Wang, Z.: Output feedback stabilization for a scalar conservation law with a nonlocal velocity. SIAM J. Math. Anal. 45, 2646–2665 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Coron, J.M.: On the null asymptotic stabilization of the two-dimensional incompressible Euler equations in a simply connected domain. SIAM J. Control Optim. 37, 1874–1896 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Coron, J.M.: Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations. ESAIM Control Optim. Calc. Var. 8, 513–554 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  41. Coron, J.M.: Control and Nonlinearity. Mathematical Surveys and Monographs, vol. 136. American Mathematical Society, Providence (2007)

    Google Scholar 

  42. Coron, J.M., Bastin, G., d’Andréa-Novel, B.: Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems. SIAM J. Control Optim. 47, 1460–1498 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Coron, J.M., Kawski, M., Wang, Z.: Analysis of a conservation law modeling a highly re-entrant manufacturing system. Discrete Contin. Dyn. Syst. Ser. B 14, 1337–1359 (2010)

    MathSciNet  MATH  Google Scholar 

  44. Coron, J.M., Wang, Z.: Controllability for a scalar conservation law with nonlocal velocity. J. Differ. Equ. 252, 181–201 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Coron, J.M., Wang, Z.: Control of a scalar conservation law with a nonlocal velocity. In: Ancona, F., Bressan, A., Marcati, P., Marson, A (eds.) Hyperbolic Problems: Theory, Numerics, Applications. AIMS on Applied Mathematics, vol. 8, pp 1023–1030. American Institute of Mathematical Sciences, Springfield (2014)

  46. Dafermos, C.M.: Trend to steady state in a conservation law with spatial inhomogeneity. Q. Appl. Math. 45, 313–319 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  47. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, 4th edn. Grundlehren der Mathematischen Wissenschaften, vol. 325. Springer-Verlag, Berlin (2016)

    Book  Google Scholar 

  48. De Filippis, C., Goatin, P.: The initial-boundary value problem for general non-local scalar conservation laws in one space dimension. Nonlinear Anal. 161, 131–156 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ersoy, M., Feireisl, E., Zuazua, E.: Sensitivity analysis of 1 − d steady forced scalar conservation laws. J. Differ. Equ. 254, 3817–3834 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Friedrich, J., Kolb, O., Göttlich, S.: A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Netw. Heterog. Media 13, 531–547 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  51. Greenshields, B., Channing, W., Miller, H., et al.: A study of traffic capacity. In: Highway Research Board Proceedings. National Research Council (USA), Highway Research Board, vol. 1935 (1935)

  52. Gugat, M., Herty, M., Schleper, V.: Flow control in gas networks: exact controllability to a given demand. Math. Methods Appl. Sci. 34, 745–757 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  53. Gugat, M., Herty, M., Schleper, V.: Erratum: flow control in gas networks: exact controllability to a given demand. Math. Methods Appl. Sci. 38, 1001–1004 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. Gugat, M., Keimer, A., Leugering, G., Wang, Z.: Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks. Netw. Heterog. Media 10, 749–785 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Gugat, M., Leugering, G.: Global boundary controllability of the de St. Venant equations between steady states. Ann. Inst. H. Poincaré, Anal. Non Linéaire 20, 1–11 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  56. Hanouzet, B., Natalini, R.: Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Arch. Rational Mech. Anal. 169, 89–117 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  57. Holden, H., Risebro, N.H.: Front Tracking for Hyperbolic Conservation Laws, 2nd edn. Applied Mathematical Sciences, vol. 152. Springer, Heidelberg (2015)

    Book  Google Scholar 

  58. Huang, K., Du, Q.: Stability of a nonlocal traffic flow model for connected vehicles. arXiv:2007.13915 (2020)

  59. Ichihara, N., Ishii, H.: The large-time behavior of solutions of Hamilton-Jacobi equations on the real line. Methods Appl. Anal. 15, 223–242 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  60. Ishii, H.: A short introduction to viscosity solutions and the large time behavior of solutions of Hamilton–Jacobi equations. In: Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications. Lecture Notes in Mathematics, vol. 2074, pp 111–249. Springer, Heidelberg (2013)

  61. Karafyllis, I., Theodosis, D., Papageorgiou, M.: Analysis and control of a non-local PDE traffic flow model. Int. J. Control. https://doi.org/10.1080/00207179.2020.1808902 (2020)

  62. Keimer, A., Pflug, L.: Existence, uniqueness and regularity results on nonlocal balance laws. J. Differ. Equ. 263, 4023–4069 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  63. Keimer, A., Pflug, L.: On approximation of local conservation laws by nonlocal conservation laws. J. Math. Anal. Appl. 475, 1927–1955 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  64. Keimer, A., Pflug, L., Spinola, M.: Nonlocal scalar conservation laws on bounded domains and applications in traffic flow. SIAM J. Math. Anal. 50, 6271–6306 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  65. Li, T.: Controllability and Observability for Quasilinear Hyperbolic Systems. AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, MO, vol. 3. Higher Education Press, Beijing (2010)

    Google Scholar 

  66. Li, T.: Exact boundary controllability of nodal profile for quasilinear hyperbolic systems. Math. Methods Appl. Sci. 33, 2101–2106 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  67. Li, T., Wang, K., Gu, Q.: Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems. SpringerBriefs in Mathematics. Springer, Singapore (2016)

    Book  Google Scholar 

  68. Li, T.T.: Global Classical Solutions for Quasilinear Hyperbolic Systems. RAM: Research in Applied Mathematics, vol. 32. John Wiley & Sons, Ltd., Chichester; Masson, Paris (1994)

    Google Scholar 

  69. Marbach, F.: Small time global null controllability for a viscous Burgers’ equation despite the presence of a boundary layer. J. Math. Pures Appl. (9) 102, 364–384 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  70. Mascia, C., Terracina, A.: Large-time behavior for conservation laws with source in a bounded domain. J. Differ. Equ. 159, 485–514 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  71. Oleinik, O.: Discontinuous solutions of non-linear differential equations. Uspekhi Mat. Nauk 12, 3–73 (1957)

    MathSciNet  Google Scholar 

  72. Panov, E.Y.: On decay of entropy solutions to multidimensional conservation laws. SIAM J. Math. Anal. 52, 1310–1317 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  73. Prieur, C., Winkin, J., Bastin, G.: Robust boundary control of systems of conservation laws. Math. Control Signals Syst. 20, 173–197 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  74. Ridder, J., Shen, W.: Traveling waves for nonlocal models of traffic flow. Discrete Contin. Dyn. Syst. - A 39, 4001–4040 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  75. Salas, M.D., Abarbanel, S., Gottlieb, D.: Multiple steady states for characteristic initial value problems. Appl. Numer. Math. 2, 193–210 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  76. Shang, P., Wang, Z.: Analysis and control of a scalar conservation law modeling a highly re-entrant manufacturing system. J. Differ. Equ. 250, 949–982 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  77. Sinestrari, C.: Large time behaviour of solutions of balance laws with periodic initial data. NoDEA Nonlinear Differ. Equ. Appl. 2, 111–131 (1995)

    MATH  Google Scholar 

  78. Tchousso, A., Besson, T., Xu, C.-Z.: Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov’s second method. ESAIM Control Optim. Calc. Var. 15, 403–425 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  79. Xu, C.-Z., Sallet, G.: Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems. ESAIM Control Optim. Calc. Var. 7, 421–442 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  80. Yong, W.-A.: Entropy and global existence for hyperbolic balance laws. Arch. Rational Mech. Anal. 172, 247–266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  81. Zeidler, E.: Nonlinear Functional Analysis and its Applications I. Fixed-Point Theorems. Springer, New York (1986)

    MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge the travel funding provided by the “Bavaria California Technology Center” (BaCaTeC). N. De Nitti has been partially supported by the Alexander von Humboldt foundation and by the TRR-154 Project of the DFG. We thank G. M. Coclite and E. Zuazua for many helpful conversations on topics related to this work.

We also thank the referees for their constructive and valuable suggestions, which helped to improve the paper significantly. L. Pflug is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Project-ID 416229255-CRC1411.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Keimer.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dedicated to Enrique Zuazua on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayen, A., Coron, JM., De Nitti, N. et al. Boundary Controllability and Asymptotic Stabilization of a Nonlocal Traffic Flow Model. Vietnam J. Math. 49, 957–985 (2021). https://doi.org/10.1007/s10013-021-00506-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-021-00506-7

Keywords

Mathematics Subject Classification (2010)

Navigation