Skip to main content
Log in

Approximation of Probability Density Functions for PDEs with Random Parameters Using Truncated Series Expansions

  • Original Article
  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

The probability density function (PDF) of a random variable associated with the solution of a partial differential equation (PDE) with random parameters is approximated using a truncated series expansion. The random PDE is solved using two stochastic finite element methods, Monte Carlo sampling and the stochastic Galerkin method with global polynomials. The random variable is a functional of the solution of the random PDE, such as the average over the physical domain. The truncated series are obtained considering a finite number of terms in the Gram–Charlier or Edgeworth series expansions. These expansions approximate the PDF of a random variable in terms of another PDF, and involve coefficients that are functions of the known cumulants of the random variable. To the best of our knowledge, their use in the framework of PDEs with random parameters has not yet been explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aulisa, E., Capodaglio, G., Ke, G.: Construction of h-refined continuous finite element spaces with arbitrary hanging node configurations and applications to multigrid algorithms. arXiv:1804.10632 (2018)

  2. Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45, 1005–1034 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Tempone, R., Zouraris, G.E.: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42, 800–825 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babuška, I., Tempone, R., Zouraris, G.E.: Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation. Comput. Methods Appl. Mech. Eng. 194, 1251–1294 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bell, E.T.: Partition polynomials. Ann. Math. 29, 38–46 (1927)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berberan-Santos, M.N.: Expressing a probability density function in terms of another PDF: A generalized Gram-Charlier expansion. J. Math. Chem. 42, 585–594 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blinnikov, S., Moessner, R.: Expansions for nearly Gaussian distributions. Astron. Astrophys. Suppl. Ser. 130, 193–205 (1998)

    Article  Google Scholar 

  8. Brenn, T., Anfinsen, S.N.: A revisit of the Gram-Charlier and Edgeworth series expansions. Preprint, https://hdl.handle.net/10037/11261 (2017)

  9. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, 3rd edn., vol. 15. Springer, New York (2007)

    Google Scholar 

  10. Bui-Thanh, T., Ghattas, O., Martin, J., Stadler, G.: A computational framework for infinite-dimensional Bayesian inverse problems part i: The linearized case, with application to global seismic inversion. SIAM J. Sci. Comput. 35, A2494–A2523 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Capodaglio, G.: Github webpage. https://github.com/gcapodag/MyFEMuS

  12. Chacón, J. E., Duong, T.: Data-driven density derivative estimation, with applications to nonparametric clustering and bump hunting. Electron. J. Statist. 7, 499–532 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, P., Schwab, C.: Model order reduction methods in computational uncertainty quantification. In: Ghanem, R., Higdon, D., Owhadi, H (eds.) Handbook of Uncertainty Quantification, pp 937–990. Springer, Cham (2017)

  14. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17, 790–799 (1995)

    Article  Google Scholar 

  15. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics, vol. 40. SIAM, Philadelphia (2002)

    Book  Google Scholar 

  16. Cliffe, K.A., Giles, M.B., Scheichl, R., Teckentrup, A.L.: Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput. Visual. Sci. 14, 3–15 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Contaldi, C.R., Bean, R., Magueijo, J.: Photographing the wave function of the universe. Phys. Lett. B 468, 189–194 (1999)

    Article  Google Scholar 

  18. Cramér, H.: On the composition of elementary errors: First paper: Mathematical deductions. Scand. Actuar. J. 1928, 13–74 (1928)

    Article  MATH  Google Scholar 

  19. Cramér, H.: Mathematical Methods of Statistics. Princeton Mathematics Series, vol. 9. Princeton University Press, Curray (2016)

    Google Scholar 

  20. Dashti, M., Stuart, A.M.: The Bayesian approach to inverse problems. In: Ghanem, R., Higdon, D., Owhadi, H (eds.) Handbook of Uncertainty Quantification, pp 311–428. Springer, Cham (2017)

  21. de Kock, M.B., Eggers, H.C., Schmiegel, J.: Edgeworth versus Gram-Charlier series: x-cumulant and probability density tests. Phys. Part. Nuclei Lett. 8, 1023–1027 (2011)

    Article  Google Scholar 

  22. Di Marco, V.B., Bombi, G.G.: Mathematical functions for the representation of chromatographic peaks. J. Chromatogr. A 931, 1–30 (2001)

    Article  Google Scholar 

  23. Eggers, H.C., de Kock, M.B., Schmiegel, J.: Determining source cumulants in femtoscopy with Gram-Charlier and Edgeworth series. Modern Phys. Lett. A 26, 1771–1782 (2011)

    Article  Google Scholar 

  24. Fan, M., Vittal, V., Heydt, G.T., Ayyanar, R.: Probabilistic power flow studies for transmission systems with photovoltaic generation using cumulants. IEEE Trans. Power Syst. 27, 2251–2261 (2012)

    Article  Google Scholar 

  25. Fishman, G.S.: Monte Carlo: Concepts, Algorithms, and Applications. Springer, New York (1996)

    Book  MATH  Google Scholar 

  26. Frauenfelder, P., Schwab, C., Todor, R.A.: Finite elements for elliptic problems with stochastic coefficients. Comput. Methods Appl. Mech. Eng. 194, 205–228 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inf. Theory 21, 32–40 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ghanem, R.G., Spanos, P.D.: Stochastic finite element method: Response statistics. In: Ghanem, R. G., Spanos, P. D. (eds.) Stochastic Finite Elements: A Spectral Approach, pp 101–119. Springer, New York (1991)

  29. Gunzburger, M.D., Webster, C.G., Zhang, G.: Stochastic finite element methods for partial differential equations with random input data. Acta Numer. 23, 521–650 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31, 351–362 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Huang, S., Quek, S., Phoon, K.: Convergence study of the truncated Karhunen–Loeve expansion for simulation of stochastic processes. Int. J. Numer. Methods Eng. 52, 1029–1043 (2001)

    Article  MATH  Google Scholar 

  32. Izenman, A.J.: Review papers: Recent developments in nonparametric density estimation. J. Amer. Statist. Assoc. 86, 205–224 (1991)

    MathSciNet  MATH  Google Scholar 

  33. Jondeau, E., Rockinger, M.: Gram–Charlier densities. J. Econ. Dyn. Control 25, 1457–1483 (2001)

    Article  MATH  Google Scholar 

  34. Juszkiewicz, R., Weinberg, D., Amsterdamski, P., Chodorowski, M., Bouchet, F.: Weakly non-linear Gaussian fluctuations and the Edgeworth expansion. arXiv:astro-ph/9308012 (1993)

  35. Kendall, M.G.: Advanced Theory Of Statistics, vol. I. Charles Griffin, London (1943)

    Google Scholar 

  36. Li, C.F., Feng, Y.T., Owen, D.R.J., Li, D.F., Davis, I.M.: A Fourier–Karhunen–Loève discretization scheme for stationary random material properties in SFEM. Int. J. Numer. Methods Eng. 73, 1942–1965 (2008)

    Article  MATH  Google Scholar 

  37. Ma, X., Zabaras, N.: An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method. Inverse Probl. 25, 035013 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Marzouk, Y.M., Najm, H.N., Rahn, L.A.: Stochastic spectral methods for efficient Bayesian solution of inverse problems. J. Comput. Phys. 224, 560–586 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Metropolis, N., Ulam, S.: The Monte Carlo method. J. Amer. Statist. Assoc. 44, 335–341 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mihoubi, M.: Bell polynomials and binomial type sequences. Discrete Math. 308, 2450–2459 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ñíguez, T.M., Perote, J.: Forecasting heavy-tailed densities with positive Edgeworth and Gram-Charlier expansions. Oxf. Bull. Econ. Statist. 74, 600–627 (2012)

    Article  Google Scholar 

  42. Nobile, F., Tempone, R., Webster, C.G.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46, 2411–2442 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nobile, F., Tempone, R., Webster, C.G.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46, 2309–2345 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Noh, Y.K., Sugiyama, M., Liu, S., du Plessis, M.C., Park, F.C., Lee, D.D.: Bias reduction and metric learning for nearest-neighbor estimation of Kullback-Leibler divergence. In: Artificial Intelligence and Statistics, pp. 669–677 (2014)

  45. O’brien, M.: Using the Gram-Charlier expansion to produce vibronic band shapes in strong coupling. J. Phys. Condens. Matter 4, 2347 (1992)

    Article  Google Scholar 

  46. Olivé, J., Grimalt, J.O.: Gram-Charlier and Edgeworth-Cramér series in the characterization of chromatographic peaks. Anal. Chimica Acta 249, 337–348 (1991)

    Article  Google Scholar 

  47. Pender, J.: Gram Charlier expansion for time varying multiserver queues with abandonment. SIAM J. Appl. Math. 74, 1238–1265 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Petrov, V.V.: Limit Theorems of Probability Theory: Sequences of Independent Random Variables. Tech. rep., Oxford, New York (1995)

  49. Petrov, V.V.: Sums of Independent Random Variables. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 82. Springer, Berlin (2012)

    Google Scholar 

  50. Popovic, R., Goldsman, D.: Easy Gram-Charlier valuations of options. J. Deriv. 20, 79–97 (2012)

    Article  Google Scholar 

  51. Rickman, J., Lawrence, A., Rollett, A., Harmer, M.: Calculating probability densities associated with grain-size distributions. Comput. Mater. Sci. 101, 211–215 (2015)

    Article  Google Scholar 

  52. Sasaki, H., Noh, Y.K., Sugiyama, M.: Direct density-derivative estimation and its application in KL-divergence approximation. In: Artificial Intelligence and Statistics, pp. 809–818 (2015)

  53. Schevenels, M., Lombaert, G., Degrande, G.: Application of the stochastic finite element method for gaussian and non-gaussian systems. In: ISMA2004 International Conference on Noise and Vibration Engineering, pp. 3299–3314 (2004)

  54. Sedgewick, R., Flajolet, P.: An introduction to the analysis of algorithms. Pearson Education India, Bengaluru (2013)

    MATH  Google Scholar 

  55. Stuart, A.M.: Inverse problems: a Bayesian perspective. Acta Numer. 19, 451–559 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  56. Tartakovsky, D.M., Broyda, S.: PDF equations for advective–reactive transport in heterogeneous porous media with uncertain properties. J. Contam. Hydrol. 120–121, 129–140 (2011)

    Article  Google Scholar 

  57. Wallace, D.L.: Asymptotic approximations to distributions. Ann. Math. Statist. 29, 635–654 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  58. Wan, X., Karniadakis, G.E.: An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. J. Comput. Phys. 209, 617–642 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  59. Xiu, D., Hesthaven, J.S.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27, 1118–1139 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zapevalov, A., Bol’shakov, A., Smolov, V.: Simulating of the probability density of sea surface elevations using the Gram-Charlier series. Oceanology 51, 407–414 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

MG and HW thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support and hospitality during the program Uncertainty Quantification for Complex Systems: Theory and Methodologies where work on this paper was undertaken. This work was supported by UK EPSRC grant numbers EP/K032208/1 and EP/R014604/1. GC and MG were supported in part by the US Air Force Office of Scientific Research grant FA9550-15-1-0001 and by the US Department of Energy Office of Science grant DE-SC0016591.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Gunzburger.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dedicated to Professor Enrique Zuazua on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capodaglio, G., Gunzburger, M. & Wynn, H.P. Approximation of Probability Density Functions for PDEs with Random Parameters Using Truncated Series Expansions. Vietnam J. Math. 49, 685–711 (2021). https://doi.org/10.1007/s10013-020-00465-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-020-00465-5

Keywords

Mathematics Subject Classification (2010)

Navigation