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Abstract
We study the impact of using fluid-structure interactions (FSI) to simulate blood flow in
a stenosed artery. We compare typical flow configurations using Navier–Stokes in a rigid
geometry setting to a fully coupled FSI model. The relevance of vascular elasticity is inves-
tigated with respect to several questions of clinical importance. Namely, we study the effect
of using FSI on the wall shear stress distribution, on the Fractional Flow Reserve and on
the damping effect of a stenosis on the pressure amplitude during the pulsatile cycle. The
coupled problem is described in a monolithic variational formulation based on Arbitrary
Lagrangian Eulerian (ALE) coordinates. For comparison, we perform pure Navier–Stokes
simulations on a pre-stressed geometry to give a good matching of both configurations. A
series of numerical simulations that cover important hemodynamical factors are presented
and discussed.
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1 Introduction

The application of computational fluid dynamics (CFD) to blood flow is a rapidly grow-
ing field of biomedical and mathematical research. Currently the development of numerical
methods in hemodynamics is evolving from a purely academic tool to aiding in clinical
decision making [9, 41]. In particular the investigation of blood flow in stenosed arter-
ies can help to shape medical treatment. For example virtual/computed Fractional Flow
Reserve (cFFR) can evaluate the physiological significance of sclerotic plaque [8, 27,
42]. Moreover, the correct reconstruction of wall shear stress (WSS) is of crucial impor-
tance for the cell signaling and as a consequence for the stenosis development [24] or for
the assessment of rupture of cerebral aneurysms [12]. These two factors are studied in
detail.

Hemodynamical simulations face numerous challenges, that are connected with mea-
surements, medical image segmentation, mathematical modelling and development of
numerical methods [33]. In this work we confine to an idealized geometry and a New-
tonian fluid and focus on the comparison between a compliant wall vs. a rigid vessel
wall. As a model example we have chosen a curved channel that resembles a large human
artery. Stenotic and non-stenotic configurations are considered. The channel is preloaded
by first considering a steady inflow to reach a certain physiological pressure and diame-
ter before starting the pulsatile heart cycle. We investigate the aforementioned important
clinical hemodynamical factors cFFR and WSS.

In the physiology of vessel macrocirculation the compliance plays a crucial role. How-
ever for individual arteries the problem is still open and there is no gold standard that can be
adapted into clinical practice. For a discussion on assumptions in hemodynamic modeling
of large arteries we refer to [32, 40].

Numerous numerical studies were performed to compare rigid with compliant vessel
simulations. The results report reduction of WSS for compliant vessels compared to rigid
walls. In the case of a carotid bifurcation the authors of [30] reported significant WSS
reduction, however have not observed significant changes in the flow patterns. Further-
more, computational studies of flow in cerebral artery aneurysms indicated that rigid models
tended to over estimate the WSS magnitude [39]. Moreover, it is worth to mention that
even vessels like the aorta, that are often treated as rigid, can undergo substantial radial wall
motion. The motion consists of bulk deformation and wall compliance that results in notable
changes of flow characteristics [22, 44].

After the brief introduction in Section 1 we present the monolithic formulation of the
FSI problem, see Section 2. The setting of the simulations is the topic of Section 3. The
numerical method is described in Section 4. Section 5 is dedicated to the presentation of
investigated hemodynamical factors and the discussion of numerical results obtained on
relevant test cases. Finally in Section 6 we present a conclusion of this work.

2 Model Description

We consider a 3-dimensional domain , that represents a part of a vessel. The domain
is partitioned in the reference configuration � = F ∪ I ∪ S , where F is the fluid domain,
S the solid domain and I = ∂F ∩ ∂S is the fluid structure interface.

The velocity field v and the deformation field u are split into fluid vf := v|F , uf := u|F
and solid vs := v|S , us := u|S counterparts respectively. The pressure variable pf only
exists on the fluid domain.
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The boundary of the fluid domain �f := ∂F \I is split into the inflow boundary �in
f and

the outflow boundary �out
f . Similarly the solid boundary �s = ∂S \ I is split into inflow

�in
s and outflow �out

s boundaries. Boundary conditions are described in Section 3.

2.1 Fluid Material Model

Although, blood exhibits many unique properties, i.e., in certain regimes blood shows a non-
Newtonian behaviour, we confine this work to considering an incompressible Newtonian
fluid with the viscosity of μf = 0.033 g · cm−1s−1 and the density ρf = 1 g · cm−3.
The assumption of a Newtonian model for blood rheology is widely accepted for large and
medium vessels, see e.g. [33]. The flow is governed by the Navier–Stokes equations

ρf

(
∂tvf + (vf · ∇)vf

) − μf div
(
∇vf + ∇vT

f

)
+ ∇pf = 0 in F , (1a)

div vf = 0 in F . (1b)

2.2 Solid Material Model

Arterial walls consist of heterogeneous layers with significant difference in physical prop-
erties. The schematic layer construction of an arterial wall consists of intima (inner layer),
media (middle layer), and adventitia (outer layer). For detail account we refer to [17]
and [21]. We briefly describe how the elastic constitutional law used in this work is derived.

Since arteries hardly change their volume within the physiological range of deformation
[10], they can be regarded as incompressible or nearly incompressible materials. This moti-
vates the application of a multiplicative decomposition of the deformation tensor (F) into

its volumetric part J
1
3 and the deviatoric part F̄:

F = I + ∇us , F = J
1
3 F̄, where J = detF and F̄ = J− 1

3 F.

Its associated modified deviatoric Cauchy Green tensor C̄ then has the structure

C̄ = F̄T F̄.

Thereby the free-energy function � can be split in a volumetric and deviatoric part as
described in [21] or [19]:

� = �V OL(J ) + �DEV (C̄).

Artery and vein walls consist of elastin and collagen fibres. The measurements of stress-
strain curve exhibit stiffening effects at higher pressures due to the collagen fibres, c.f.
[17]. Whereas under low loading of the artery the properties of elastin dominates. This
motivates to model the artery as pseudo-elastic material. Following [13] and [21] we employ
an exponential deviatoric energy functional

�DEV (C̄) = μ

2γ

(
expγ (tr(C̄)−3) −1

)
.

For the volumetric part of the energy functional the simple convex energy function

�V OL(J ) = κ

2

(
1

2
(J 2 − 1) − ln(J )

)
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is used as stated in [4, 5]. By assuming hyperelastic stress response we obtain the second
Piola–Kirchhoff stress tensor �s :

�s(J,F) = ∂�V OL(J )

∂C
+ ∂�DEV (C̄)

∂C

= μsJ
−2/3

(
I − 1

3
tr(FT F)(FT F)−1

)
eγ (J−2/3tr(FT F)−3)

+κs

2
(J 2 − 1)J (FT F)−1,

with the material parameters μs = 44.2 kPa and γ = 20 as well as κs = 4998 kPa. Similar
values have been used in [3]. Moreover the solid density equals ρ̂s = 1.2 g · cm−3.

The equation for the conservation of momentum in the elastic vessel wall is then given
by

ρ̂sdtvs − div (F�s) = ρ̂sfs in S, (2a)

dtus = vs in S, (2b)

where we formulated the hyperbolic problem as a first order system in time by introducing
the solid velocity vs and the deformation field us as separate variables. The solid problem is
formulated in the Lagrangian coordinates on the reference domain S , which is not moving
with time. Hence, the density ρ̂s = 1.2 g · cm−3 is the reference density which is unaffected
by any compression or extension.

On the interior boundary of the solid domain, which is the interface to the fluid domain,
the typical coupling conditions of fluid-structure interaction problems are given. The proper
handling of the outer boundary, where the vessel is embedded in tissue, is a delicate task.
For our study, this difficulty is neglected and for further reading we refer to [26].

2.3 Fluid-structure Interactions

One aim of this work is to study the impact of coupled fluid-structure interactions on typical
blood flow configurations found in medical applications. We therefore couple the Navier–
Stokes equations (1a)–(1b) with the elastic material law (2a)–(2b) via coupling conditions
on the common interface I . The coupled dynamics of a fluid-structure interaction problem
leads to a free boundary problem with moving domains and a moving interface.

In the following, we briefly sketch the derivation of the coupled fluid-structure inter-
action problem. For details we refer to the literature [36, Chapter 5]. To overcome the
mismatch of a Navier–Stokes equations (1a)–(1b) defined in Eulerian coordinates, e.g. on
the evolving fluid domain F(t), and the solid problem (2a)–(2b) derived on the fixed ref-
erence domain S we use the well established concept of Arbitrary Lagrangian Eulerian
(ALE) coordinates. See [14] or [36, Chapter 5] for a detailed derivation. We denote by F
the fixed fluid reference domain and by Tf (t) : F → F(t) the ALE map. Then, the veloc-
ity and the pressure can be mapped onto the fixed domain by defining v̂f := vf ◦ T −1

f

and p̂f := pf ◦ T −1
f . This allows to transform the Navier–Stokes problem in its variational

formulation onto the fluid reference domain
(
Jf

(
∂t v̂f +

(
F−1

f (v̂f − ∂tTf ) · ∇̂
)
v̂f

)
,φ

)

F
+

(
Jf σ̂ fF

−T
f , ∇̂φ

)

F

+
(
JfF

−1
f : ∇̂v̂T

f , ξ
)

F
=

(
Jf ρf f̂,φ

)

F
,
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where φ and ξ are test functions. We denote by Ff := ∇̂Tf the gradient of the deformation
variable and by Jf := det(Ff ) its determinant. Most characteristic feature of the ALE
formulation is the appearance of the domain convection term −(F−1

f ∂tTf · ∇)v̂ that takes
care of the implicit motion of the fluid domain. Furthermore, the Cauchy stress tensor is
mapped to the reference domain which gives rise to the Piola transform Jf σ̂ fF

−T
f . The

reference stress is given by

σ̂ f (v, p) = −p̂f I + ρf νf (∇̂v̂F−1 + F−T ∇̂v̂T ).

It remains to describe the construction of the ALE map. Typically the ALE map is defined
by means of an artificial fluid domain deformation uf via

Tf (x, t) := x + ûf (x, t),

where ûf is an extension of the solid deformation us from S to the fluid reference domain
F . The most simple choice for the extension operator is to use a harmonic extension by
implicitly solving the vector Laplacian

− �̂uf = 0 in F , uf = us on I, uf = 0 on ∂F \ I . (3)

For a discussion of this extension operator we refer to the literature [36, Sections 3.5.1
and 5.3.5]. Hereby, Tf can be considered as a natural extension of the Lagrange–Euler map
Ts(x, t) := x + us(x, t) such that we will skip the subscripts f and s when denoting the
deformation T (x, t) := x + u(x, t), its gradient F = ∇T and its determinant J = det(F).
In the following we skip all hats referring to the use of ALE coordinates.

As the fluid reference domain F and the Lagrangian solid domain S do not move,
they always share the well defined common interface I . Here, we require the continuity of
velocities, which is denoted by the kinematic coupling condition

vf = vs on I,

continuity of normal stresses, denoted as dynamic coupling condition

F�sn = Jσ fF−T n on I,

and finally, the geometric coupling condition which says that the evolving domains F(t)

and S(t) may not overlap and may not separate at the interface.
Since the velocity field and the deformation field are continuous across the interface,

we formulate the coupled fluid-structure interaction problem using global solution fields
v ∈ H 1(�)3 and u ∈ H 1(�)3. Hereby, the kinematic coupling condition and the extension
condition uf = us in (3) are strongly realized as parts of the function spaces. The dynamic
coupling condition is realized by testing the variational formulations of the Navier–Stokes
equations and the solid problem by one common continuous test function φ ∈ H 1(�)3. The
resulting variational system of equations is given by

(
J (∂tv + (F−1(v − ∂tu) · ∇)v),φ

)
F + (

J σ̂ fF−T , ∇φ
)
F

+(ρ̂s∂tv,φ)S + (F�s , ∇φ)S = (Jρf f, φ)F + (ρ̂sf, φ)S , (4a)
(
JF−1 : ∇vT , ξ

)
F = 0, (4b)

(∂tu − v, ψs)S = 0, (4c)

(∇u,∇ψf )F = 0. (4d)

For detailed account of monolithic formulations for fluid structure interactions we refer
to [36].
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3 Simulation Setup

We perform pulsatile blood-flow simulations by numerically solving system (4a)–(4d). The
simulation setup that includes geometry and material parameters has been inspired by the
Benchmark paper [3]. Note however that in some of the cases the assumption of rigid vessel
walls is employed such that u = 0 and F = I on �. Then system (4a)–(4d) reduces to the
standard incompressible Navier–Stokes equations. In what follows we distinguish between
FSI- and NS-cases, respectively.

3.1 Geometry

The geometry of the computational domain reflects an idealized coronary artery. We show a
sketch of the geometry in Fig. 1. It consists of three parts, two straight and one curved tube.
The straight parts are aligned with the x- and y-axes for inflow and outflow, respectively.
The centerline of the curved section is a part of a circle with center in (1, 0, 0) and radius
R = 1. It can be indicated as a parametrization

ψC(s) :=
⎧
⎨

⎩

(0,−1 + s, 0)T , 0 ≤ s ≤ 1,

(1 + cos(πs/2), sin(πs/2), 0)T , 1 ≤ s ≤ 2,

(s − 1, 1, 0)T , 2 ≤ s ≤ 3.

The fluid domain F is a cylinder around the centerline ψC(s) with radius rF = 0.15 cm.
Furthermore, the solid domain (i.e., the vessel wall) is a cylindrical outer layer of width

Fig. 1 Computational domain showing Geometry 3 with a non-symmetric stenosis
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0.06 cm, i.e. the outer radius is given by rS = 0.21 cm. These dimensions correspond to the
dimensions of realistic arteries.

We consider two stenotic and one non-stenotic configuration. The stenosis is modelled
by a reduction of the inner radius rF on the second part of the curved boundary. This can
be described by the parametrization

rsten
F (s) :=

⎧
⎨

⎩

0.15 cm, 0 ≤ s ≤ 1.5,

0.15 cm − 0.02 cm
(

cos(4πs) − 1
)
, 1.5 ≤ s ≤ 2,

0.15 cm, 2 ≤ s ≤ 3.

Moreover we proceed twofold. First, we consider a symmetric stenosis such that the fluid
domain is a cylinder of radius rsten

F (s) around the centerline ψC(s). Second, we modify
the centerline in such a way that the stenosis is only on the inner side of the curve. This is
achieved by shifting the centerline to match the radius variation, i.e.,

ψ
shif t
C (s) := ψC(s) − rsten

F (s)ω(s),

where ω(s) is the direction of the shift

ω(s) =
{

(0,−0.02
(

cos(4πs) − 1
)
, 0), 1.5 ≤ s ≤ 2,

(0, 0, 0)T elsewhere
.

In both stenotic configurations, the resulting reduction of the radius equals 0.04 cm and
the lumen area shrinks by 46% from 0.152π cm2 ≈ 0.07cm2 to 0.112π cm2 ≈ 0.038 cm2.
Computational geometries are summarized in Table 1. Figure 1 shows Geometry 3.

3.2 Boundary Conditions

The blood flow is enforced by a Dirichlet inflow condition on the inflow boundary �in
f given

by

We prescribe a parabolic inflow profile

vin(x, y, z, t) = vmax(t)

(
1 − x2

0.152 cm2
− z2

0.152 cm2

)
(0, 1, 0)T ,

where the maximum value vmax(t) is presented in Fig. 2. The temporal inflow profile (5)
consists of three stages:

– Ramp phase (0 s ≤ t ≤ 0.1 s) with increasing inflow rate.
– Steady phase (0.1 s < t ≤ 0.3 s) with constant inflow rate.

Table 1 Summary of geometry configurations. Figure 1 shows Geometry 3

Description Centerline Inner radius Outer radius

Geometry 1 without stenosis ψC(s) 0.15 cm 0.21 cm

Geometry 2 symmetric stenosis ψC(s) rsten
F (s) 0.21 cm

Geometry 3 non-symmetric stenosis ψ
shif t
C (s) rsten

F (s) 0.21 cm
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Fig. 2 Inflow profile. The exact flow rate is given in (5)

– Pulsatile phase (0.3 s < t) with pulsatile inflow corresponding to heartbeats.

vmax(t) = 1

28.3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5(1.0 − cos(πt/0.1))3.0, 0 ≤ t ≤ 0.1,

3.0, 0.1 ≤ t ≤ 0.3,

5.931
−1.3933 cos(2π1t) + 1.3532 sin(2π1t)

−0.9409 cos(2π2t) + 0.2332 sin(2π2t)

−0.3026 cos(2π3t) − 0.1190 sin(2π3t)

−0.2264 cos(2π4t) − 0.0631 sin(2π4t)

−0.1064 cos(2π5t) − 0.2137 sin(2π5t)

+0.0402 cos(2π6t) − 0.0691 sin(2π6t)

−0.0307 cos(2π7t) − 0.0451 sin(2π7t)

+0.0271 cos(2π8t) − 0.0735 sin(2π8t)

, 0.3 ≤ t ≤ 3.3.
(5)

The third pulsatile part is an approximation, by means of a Fourier series of order 8, of a
typical coronary velocity profile provided by [1].

For the outflow of the fluid on �out
f in the FSI case we apply absorbing boundary

conditions:

(σ n+1
f · n)|�out =

((√
ρf

2
√

2

Qn

An
+ √

p∗
)2

+ pe − p∗
)

n,

where p∗ = E

1−ν2 . The condition is equipped with the reference pressure pe which is chosen
such that a vascular pressure of 80 mmHg at t = 0.3 s is achieved. The absorbing condition
explicitly disallows pressure waves to reenter the domain, for details see [29]. The struc-
ture is fixed at the inflow boundary and is allowed to move in y-z direction at the outflow
boundary.

In order to compare both rigid and elastic computations, we run the FSI simulation first
and then prescribe the resulting reference pressure profile Pref (t) at the outflow boundary
in the rigid wall case such that

〈(
ρf νf ∇vf − pI

)
n,φ

〉
�out

f
= 〈

Pref (t)n,φ
〉
�out

f
.

This is the usual do-nothing outflow condition including a pressure offset, see [20].
The first two phases of (5) are designed to reach the intravascular pressure of 80 mmHg.

This procedure resembles pre-stressed of the vessel wall and it is required to apply the
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nonlinear solid law described in Section 2.2 in the right tract of the stress-strain curve. We
first start the FSI simulation on the undeformed stress free reference domain and pre-stress
the geometry by the ramp and steady phases. The resulting geometry at t = 0.3 s is then
extracted to compute the FSI as well as the Navier–Stokes simulation on this deformed
geometry. This geometry corresponds to a reconstructed artery geometry from MRI or CT
images, as during the measurements the blood flows with the pressure of at least 80 mmHg
through the blood vessel. Due to the stiffening effects of the material only small deforma-
tions will occur if the pressure is increased further. If only the geometry from MRI or CT
images is available one has to recompute the stress free geometry to be able to observe these
minor deformations due to the stiffening of the elastin fibres. As the stress free reference
domain is known here a priori, pre-stressing procedures as discussed in [18] do not need to
be applied.

3.3 Initial Conditions

The system is initially at rest as we start the simulation with zero velocity, zero displacement
and zero pressure at the boundaries. The FSI simulation is computed on the undeformed
reference domain, see Section 3.1. In the NS case, the geometry is rigid and corresponds to
the deformed pipe which we obtain in the FSI simulation at time 0.3. Thus the NS geometry
already takes the deformation by the ramp and steady phases into account.

4 Numerical Approximation, Solution and Implementation

The realization of a numerical framework for monolithic fluid-structure interactions is
very challenging and a detailed description is not possible in one manuscript. We there-
fore give a brief description and refer to the relevant and detailed literature. See [36] for a
comprehensive overview.

We employ a very strict form of the ALE formulation, where all equations are solved
on the reference domain. No mesh update is used. This prevents the necessity of projec-
tions between moving meshes and also it is the only straightforward approach for obtaining
higher order discretization in time [38]. In principle this approach allows for direct Galerkin
discretizations of the monolithic variational formulation (4a)–(4d) and the choice of finite
element spaces should be based on the following considerations.

– The finite element mesh should resolve the fluid-structure interface I in reference
framework.

– In the fluid domain, the velocity-pressure pair Vh × Qh should fulfil the inf-sup con-
dition to cope with the incompressibility constraint. Or, if a non-stable finite element
pair is used, stabilization terms must be added. Our realization is based on equal order
tri-quadratic elements for pressure and velocity, enriched with the local projection
stabilization method [6].

– To reach a balanced approximation of the velocity-deformation pairing the same
function space is used for the global deformation field.

To sum up, the discrete solution Uh := (vh, uh, ph) is found in the space Xh = [Vh]3 ×
[Vh]3×V

f
h , where Vh extends over the complete domain and V

f
h over the fluid domain only.

In time we use a variant of the Crank–Nicolson time discretization scheme that gives
better stability properties by an implicit shifting. We refer to [38] for details. By restrict-
ing (4a)–(4d) to the fully discrete setting, a system on nonlinear algebraic equations arises
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in each time step. As nonlinear solver we employ a Newton scheme with an analytical
evaluation of the Jacobian, see [34] or [36, Section 5.2.2] for details on the derivation.

The resulting linear systems of equations are very large and extremely ill-conditioned
with condition numbers that are by far larger than those of fluid and solid equation on their
own, see [2, 35] for numerical studies. The approximation of these systems is still a great
challenge, in particular if it comes to 3d applications. Only few fast solvers for the nonlinear
setting are available [2, 23, 35]. Our approach is based on a multigrid solution that appears to
be superior in 3d. In [16] we present the solution approach, which is based on a partitioning
of the Jacobian based on two simple strategies:

1. Within the Navier–Stokes equations we neglect those parts of the Jacobian that come
from the derivative with respect to the domain extension uf . The resulting nonlinear
solver is an approximated Newton method that however still solves the original problem
since the residual is exact. In [36, Section 5.2.3] and [16] we have found that such an
approximated Newton solver is even more efficient, despite slightly increased iteration
counts. This is due to the very costly evaluation of the full Jacobian that is not required
in our approach.

2. We exploit the discretization of the equation dtus = vs . Precisely, if we consider the
Crank–Nicolson scheme

un
s = un−1

s + k

2

(
vn−1
s + vn

s

)

we replace the dependency of the solid stress tensor on the deformation by the velocity,
i.e., we replace the term �s(un

n) by

�s(us) = �s

(
un−1

s + k

2

(
vn−1
s + vn

s

))
.

This equivalent transformation allows us to completely remove the new solid deforma-
tion un

s from the discretized momentum equation, see [16].

The combination of these two modifications allows for a natural splitting of the Jaco-
bian within the multigrid smoother. Further, it allows to apply very simple iterations of
Vanka-type, as smoother in the geometric multigrid preconditioner, that are easy to par-
allelize. In [15, 16] we have demonstrated the efficiency of the approach in different 3d
configurations. The implementation is based on the finite element toolkit Gascoigne3D [7].

In the context of hemodynamical fluid-structure interactions, a family of exact and inex-
act Newton methods based on a separate treatment of the physical coupling conditions, the
interface location and the fluid- and solid-fields was previously studied in [28].

5 Simulations

We finally use the presented finite element framework for a computational analysis of sev-
eral hemodynamic parameters that are relevant to answer clinical questions. We focus on the
dependence of these parameters on the elasticity of the vessel walls. The additional effort of
fully coupled fluid-structure interactions over pure Navier–Stokes simulations is immense
and should be justified by corresponding effects.

The behavior of three specific parameters is investigated. The wall shear stress (WSS)
plays an eminent role in several applications. It is used as indicator to model the growth
of atherosclerotic plaques [37, 45] but also when it comes to deriving measures to evaluate
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the risk of plaque rupture [25] or the rupture of aneurysms [12]. Both the minimum wall
shear stress and the distribution of the wall shear stress on the vessel walls are important
measures. In Section 5.1 we analyze the effect of the different complexities, Navier–Stokes
and fluid-structure interactions, on the WSS distribution in all three different geometries.

Furthermore we analyze the computational fractional flow reserve (cFFR). The frac-
tional flow reserve (FFR) is a technique that measures pressure differences across a stenosis.
In medical practice, the FFR is determined by inserting a catheter in the artery and measur-
ing flow parameters at maximum blood flow. During the procedure, the tip of the catheter,
where the sensor is located, is retrieved, such that measurements are available along the
affected section of the vessel. Healthy vessels should give a pressure ratio close to 1.
If the ratio drops below 0.8, i.e. a 20% drop in pressure, the stenosis is considered to
be severe [43]. Aim of the computational fractional flow reserve is to replace the risky
intervention by computer simulations based on medical imaging.

Finally, we discuss the amplitude of the pressure oscillation during one heart cycle.
In clinical observation it is usually observed that the amplitude significantly drops after
a stenotic region in a blood vessel. By comparing Navier–Stokes simulations with cou-
pled fluid-structure interactions, we will show that this effect can only be described by
considering the fully coupled model including elastic vessel walls.

5.1 Wall Shear Stress (WSS)

The tangential component of the surface force at the vessel wall is denoted as wall shear
stress (WSS). By means of the Cauchy’s theorem we have

WSS = (σ f (v, p)n · τ )τ = [I − nnT ]σ f (v, p)n,

where n is a unit outward normal vector to the vessel wall and τ is corresponding tangential
vector. Note that WSS is a vector and its often confused with its magnitude |WSS|2 which
is a scalar quantity denoted by wss.

The plots of the wall shear stress are presented on the boundary of the fluid domain, see
Figs. 3, 4 and 5. The surrounding solid is removed from these plots such that only the fluid
domain is given.

We use the same scale ranging from 0 Pa to 20 Pa in all figures. The distribution of wss

is always presented for 3 different points in time. First, when the pulsatile flow reaches
its minimum inflow pressure, then, at maximum pressure and finally for an intermediate
pressure value. Each specific situation is shown from two different angles, such that the
inner and outer surfaces are well visible.

Comparing the coupled fluid-structure interaction model (left) with the pure Navier–
Stokes flow (right) always shows much higher wss values in the Navier–Stokes case.
Regions of very high wss are only found in the outside of the curve in the case of Navier–
Stokes. In the case of the FSI model, the values are smoothly spread. In general, the vessels
are widened and show a larger diameter of the lumen in the case of FSI. Due to computation
of the Navier–Stokes simulations on the deformed domain from the FSI simulation after the
ramp phase (5) with pressure of 80 mmHg and the stiffening effects of the material law the
diameter between NS and FSI only varies slightly.

Figures 4 and 5 show a shift of the wall shear stress distribution. High values are found
all around the stenosed parts, on the inside and the outside of the curved areas. Again, the
Navier–Stokes model is not able to yield an equal distribution of wss around the cylinder
surface and it only concentrates on the outside of the curved section.
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Fig. 3 Wall Shear stress for Geometry 1 (without stenosis). On the left FSI, on the right NS. We show each
configuration from two different perspectives, such that inner and outer region of the curved arch are visible.
Small oscillations in the NS case are visual effects due to projections of the wall shear stress onto the curved
boundary only

To sum up, it appears to be important to consider elastic fluid-structure interactions, if
the spatial distribution of the wall shear stress is of interest. The Navier–Stokes model is
nearly unaware of the stenosis and always concentrates the WSS on the outside of the curved
region. If rupture locations [12] or localized growth processes are of interest [37, 45], the
use of FSI is essential.

5.2 Computational Fractional Flow Reserve (cFFR)

The computational fractional flow reserve (cFFR) is the ratio of the maximum blood pres-
sure after the stenosis (distal) and before the stenosis (proximal). We denote by pd the distal
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Fig. 4 Wall Shear stress for Geometry 2 (symmetric stenosis). On the left FSI, on the right NS. We show each
configuration from two different perspectives, such that inner and outer region of the curved arch are visible

pressure and by pa the proximal pressure such that the computational fractional flow reserve
is defined by

cFFR = pd

pa

.

In our configuration, see Fig. 1, we evaluate the distal and proximal values in

pa = p(0, 0, 0) and pd = p(1.7, 1, 0). (6)

Since the cFFR varies slightly with time the maximum value over the cardiac cycle is
computed. Further computational aspects of cFFR are covered by the recent benchmarking
paper [11]. In healthy vessels we expect cFFR ≈ 1 and in the medical practice, a steno-
sis with cFFR > 0.8 is considered to be functionally non significant [43]. No medical
intervention, e.g. by placing a stent would be required.
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Fig. 5 Wall Shear stress for Geometry 3 (non-symmetric stenosis). On the left FSI, on the right NS. We show
each configuration from two different perspectives, such that inner and outer region of the curved arch are
visible

The results of cFFR computations are presented in Table 2. The first striking observa-
tion is that the Navier–Stokes model is not able to reflect the presence of the stenosis at
all. A pressure drop of about 5% is observed for all configurations and is only due to the
curvature of the domain. The FSI model is well able to yield cFFR ≈ 1 in the case of the

Table 2 Values of cFFR analysis
in all three geometries,
considering the fully coupled fsi
model and the pure
Navier–Stokes case

Description FSI NS

Geometry 1 without stenosis 0.99 0.96

Geometry 2 non-symmetric stenosis 0.96 0.94

Geometry 3 symmetric stenosis 0.96 0.95
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healthy configuration and shows a loss of about 5% in both stenotic geometries. Based on
these simulations, the stenosis would not be considered to be severe and in the need of an
intervention. These results clearly show that a pure Navier–Stokes simulation is not able to
serve as computational basis for replacing the medical FFR procedure by simulations.

5.3 Pressure Amplitude

The third quantity of interest is the dynamic pressure amplitude before and after the stenosis,
i.e., a temporally resolved analysis of the proximal and distal pressures pa and pd evaluated
in the coordinates as mentioned in (6). We study the progress of the pressure to investigate
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Table 3 Pressure Amplitude in mmHg

Navier–Stokes FSI

proximal distal drop proximal distal drop

Geometry 1 39.2 32.7 7.5 32.1 31.4 0.7

Geometry 2 41.0 33.4 7.6 35.8 30.5 5.3

Geometry 3 41.3 33.6 7.7 35.8 30.4 5.4

We compare the drop of the amplitude over the stenotic region and compare the results for pure Navier–
Stokes flow (left) with fully coupled fluid-structure interactions (right)

possible damping effects of a stenosis. The change of the pressure profile after a strongly
stenotic region, is reported as an assessment tool for cardiovascular risk [31].

We show the evolution of the pressures pa(t) and pd(t) over the third heart beat in Fig. 6.
On the left, we show results for the fully coupled FSI models, on the right we give the cor-
responding pressure lines for the Navier–Stokes case. Comparable to the cFFR study given
in the previous section, the most striking observation is the invariance of the Navier–Stokes
solution to the kind of vessel geometry. For all cases, healthy vessel, centered stenosis and
non symmetric stenosis, the Navier–Stokes results are nearly identical and always indicate
a loss in pressure amplitude of about 7.5%. In contrast, the FSI solution is able to better
preserve the oscillation in the case of the healthy vessel and shows a drop of about 5% for
the two stenotic cases. A closer look reveals that the distal pressure lines are very similar in
all cases. The slight oscillations in the distal pressure in case of the FSI simulation are not
numerical instabilities. Instead they stem from the oscillatory behavior of the elastic vessel
wall.

Finally, Table 3 collects the amplitudes before and after the stenosis. This third study also
shows enormous qualitative and quantitative discrepancies between the simulation results
depending on the model under consideration.

6 Conclusions

We have studied a prototypical geometry that represents a large and curved artery. Three
different configurations are considered: a healthy vessel with a diameter (the lumen) of
0.15 cm and two cases where a stenosis is given in the curved area of the vessel. First, the
stenosis is centered around the vessel centerline, finally, a shifted variant where the stenosis
is concentrated on the inside of the curve. The blood flow is driven by a time-dependent
flow rate with values that are clinically relevant. For all configurations we study the effect
of the elasticity in the vessel walls, i.e., we compare a pure Navier–Stokes simulation with
a fully coupled fluid-structure interaction system.

Three different indicators that are also relevant in clinical decision making are investi-
gated: the distribution of the wall shear stress that is made responsible for stenosis growth
and risk of rupture, the computational fractional flow reserve that is used to estimate the
severity of a stenosis and the amplitude of the pressure oscillation that also measures the
severity of a stenosis. In all cases we observe that the simple Navier–Stokes model is not
able to depict the effect of the plaque. In particular the pressure lines are nearly identical for
all three geometrical configurations. The FSI model is however well able to replicate clinical
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observations. For instance, the energy, in terms of pressure oscillations, is fully preserved
throughout the curved region, if elasticity of the vessel walls is taken into account.

Although the study covers only an idealised geometry and boundary conditions, the
proposed regime corresponds to physiological blood flow. Therefore, we stress that the com-
pliance of the vessel has significant impact on clinical hemodynamical factors. In medical
practise one has to be aware of the difference in the results from CFD with FSI and NS
models and the limitations of the later.

Acknowledgements The authors acknowledge the financial support by the Federal Ministry of Education
and Research of Germany, grant number 05M16NMA. PM and TR acknowledge the support of the GRK
2297 MathCoRe, funded by the Deutsche Forschungsgemeinschaft, grant number 314838170. Finally, we
thank the anonymous reviewers whose comments and remarks helped us to improve this manuscript.

Funding Open Access funding enabled and organized by Projekt DEAL.

Compliance with Ethical Standards

Conflict of interests The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

References

1. ADAN WEB: http://hemolab.lncc.br/adan-web/. Accessed: 30 Jan 2020 (2020)
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