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Abstract
Just as the damped Newton method for the numerical solution of nonlinear algebraic prob-
lems can be interpreted as a forward Euler timestepping on the Newton flow equations, the
damped Gauß–Newton method for nonlinear least squares problems is equivalent to for-
ward Euler timestepping on the corresponding Gauß–Newton flow equations. We highlight
the advantages of the Gauß–Newton flow and the Gauß–Newton method from a statisti-
cal and a numerical perspective in comparison with the Newton method, steepest descent,
and the Levenberg–Marquardt method, which are respectively equivalent to Newton flow
forward Euler, gradient flow forward Euler, and gradient flow backward Euler. We finally
show an unconditional descent property for a generalized Gauß–Newton flow, which is
linked to Krylov–Gauß–Newton methods for large-scale nonlinear least squares problems.
We provide numerical results for large-scale problems: An academic generalized Rosen-
brock function and a real-world bundle adjustment problem from 3D reconstruction based
on 2D images.
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1 Introduction

We consider nonlinear least-squares problems of the form

min
1

2
‖f (x)‖2

2 over x ∈ R
n, (1)

where f : Rn → R
m is twice continuously differentiable. The necessary optimality con-

ditions of (1) require that in a minimum x∗ ∈ R
n the gradient of the objective function

vanishes
F(x) := f ′(x)T f (x) = 0, (2)

where f ′ denotes the Jacobian of f . Equation (2) is called the normal equation. It is impor-
tant to realize that the normal equation is only a necessary condition for a minimum, which
is also satisfied in other spurious stationary points (maxima, saddle points) of the objective.
Stationary points can often be characterized by their Hessian

F ′(x) = f ′(x)T f ′(x) +
m∑

i=1

fi(x)∇2fi(x) =: H(x) + Q(x),

which splits up into a first order term H based solely on f ′ and a second-order term Q, in
which the current residual f and its Hessian tensor enter (but no first order derivatives).

Example 1 (Parameter estimation) The main area of application for this type of problem
is maximum likelihood estimation for parameter estimation problems with normally dis-
tributed measurement errors (see, e.g., [4]): In this case, we would like to determine an
unknown but deterministic model parameter x̄ ∈ R

n, which parametrizes a deterministic
model response function h : Rn → R

m. We assume we can obtain measurements from the
real-world system modeled by h and x̄ with normally distributed measurements η ∈ R

m

with expected value h(x̄) and known covariance �, which is an m-by-m symmetric pos-
itive semi-definite matrix. With � = �− 1

2 , the maximum likelihood estimation problem
becomes a nonlinear least squares problem of the form (1) by setting

f (x) = �[h(x) − η].
Obviously, the measurements η enter linearly into f and thus all derivatives of f are inde-
pendent of η. In particular, they only enter in the Hessian F ′(x) through the second order
term Q in a multiplicative fashion.

Related previous work The Gauß–Newton method (see, e.g., [4, 5, 17, 25]), which solves
a sequence of linear least-squares problems (linearized within the norm), is the method of
choice to solve problem (1) in many cases. Like all Newton-type methods, it is in general
only locally convergent. Because its search direction is a descent direction for the objec-
tive, line-search methods such as [3] are applicable to enforce convergence from arbitrary
starting points. Alternatively, the Levenberg–Marquardt method [15, 16] uses an adaptive
Tikhonov-type regularization to enforce convergence, which is equivalent to a trust-region
globalization [17, 27]. Starting with the seminal paper by Davidenko [7], a large body of lit-
erature is dedicated to the construction of globalization methods by applying time-stepping
methods for ordinary differential equations to the Newton flow equations (see, e.g., [6, 8–
10, 14]) or generalized Newton flow equations [22, 23, 28]. Similarly, gradient descent and
proximal point algorithms can be interpreted as forward or backward Euler time-stepping
on the gradient flow equations (we refer the reader to the discussion in [20, Sec. 4]). A
detailed study of the Gauß–Newton flow equations appears to be missing up to now.
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Contributions and structure of the paper We review the local convergence of the Gauß–
Newton method and the notion of statistically stable solutions, which are defined by a
spectral radius condition (Section 2). We introduce the Gauß–Newton flow and compare it
with the Newton flow and gradient flow (Section 3). The Levenberg–Marquardt method is
recovered as a backward Euler timestepping on the gradient flow, which means that it is
a proximal point method. The damped Gauß–Newton method is a forward Euler timestep-
ping scheme on the Gauß–Newton flow equations. We illustrate certain salient features of
the different flows on the well-known Rosenbrock function. We also learn from this exam-
ple that the local spectral radius condition has no meaningful global counterpart along the
Gauß–Newton flow, which in turn implies that full steps have to be taken locally to guar-
antee convergence to only statistically stable solutions (Section 4). For the case of inexact
Gauß–Newton methods based on approximate solutions of the linearized least-squares sys-
tems with the aid of Krylov subspace methods, we show that the LSQR search direction [19]
is always a descent direction (Section 5). Finally, we provide in Section 6 numerical results
for Krylov–Gauß–Newton methods on large-scale academic and real-world problems: A
generalized Rosenbrock function and a bundle adjustment problem from 3D reconstruction
based on 2D images.

2 The Gauß–NewtonMethod

The (local) Gauß–Newton method generates a sequence (xk)k ⊂ R
n from an initial solution

guess x0 ∈ R
n via the iteration

xk+1 = xk + sk,

where the increments sk ∈ R
n are the solutions of the linear least-squares problems

(linearization under the norm)

min
1

2
‖f ′(xk)s + f (xk)‖2

2 over s ∈ R
n. (3)

This problem is convex and always has a solution. If f ′(xk) has full column rank,
the solution is uniquely given by the Moore–Penrose pseudoinverse f ′(xk)

+ =
[f ′(xk)

T f ′(xk)]−1f ′(xk)
T via

sk = −f ′(xk)
+f (xk).

There is also a different viewpoint: The Gauß–Newton method is a Newton-type method
on the normal equation (2), where we discard the second-order term Q in the approximation
of the inverse of the Hessian F ′, i.e.,

xk+1 = xk − f ′(xk)
+f (xk) = xk − H(xk)

−1F(xk).

At the center of the analysis of the Gauß–Newton method and the Gauß–Newton flow
(to be described in Section 4) is the matrix

G(x) := H(x)−1Q(x).

Lemma 1 If f ′(x) has full column rank, then the spectrum of G(x) is real and its
eigenvectors are real and orthogonal with respect to the scalar product endowed by
f ′(x)T f ′(x).
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Proof Any eigenpair (λ, v) ∈ C × C
n of G(x) is a solution of the generalized eigenvalue

problem
Q(x)v = λH(x)v.

Because Q(x) is symmetric and f ′(x) has full rank, H(x) = f ′(x)T f ′(x) is positive defi-
nite, which implies that (λ, v) are real and the orthogonality of the eigenvectors with respect
to H(x) (see, e.g., [21]).

It is well-known that the local convergence of the Gauß–Newton method to a solution
x∗ ∈ R

n of the normal equations (2) is only guaranteed by Ostrowski’s theorem [13, 18] if
the spectral radius condition

κGN := ρ
(
G(x∗)

)
< 1 (4)

holds. The convergence is linear with rate equal to κGN. Conversely, if κGN > 1, it is easy
to see that there exists an arbitrarily small perturbation of x∗ in the direction of principal
eigenvector of the matrix in (4), which leads the iterates away from x∗.

Because the residuals f (x) enter multiplicatively in Q(x), solutions with small resid-
ual will satisfy the condition (4). It might appear as a disadvantage of the Gauß–Newton
method that it will not be attracted by solutions of the normal equation (2) that violate (4)
in comparison with, e.g., a Newton method, which exhibits local convergence to any solu-
tion to the normal equation (2). For parameter estimation problems, however, this behavior
is actually an advantage:

Example 2 (Mirror trick, see [5]) We continue with Example 1. Assume we have obtained
a minimizer x∗ ∈ R

n of (1) for which κGN > 1. By Lemma 1, there exists an eigenvalue
λ ∈ R

n of G(x∗) with modulus greater than one. Let v ∈ R
n \ {0} denote the eigenvector

of G(x∗) corresponding to λ, which implies that

Q(x∗)v = λH(x∗)v. (5)

Because x∗ is a minimizer, the Hessian must be positive semi-definite, which together
with (5) leads to

0 ≤ vT F ′(x∗)v = vT H(x∗)v + vT Q(x∗)v = (1 + λ)vT H(x∗)v = (1 + λ)‖f ′(x∗)v‖2
2.

If f ′(x∗) has full column rank, then λ > −1 and because |λ| = κGN > 1 it follows that
λ > 1.

By our statistical assumptions, the measurement errors are symmetrically distributed
around the true model response. Let us, in a thought experiment, mirror the measurements
ηi around hi(x

∗), i.e., we generate statistically plausible measurements

η̃ := 2h(x∗) − η.

The corresponding least-squares residuals are

f̃ (x) = �
[
h(x) − η̃

] = �
[
h(x) − (2h(x∗) − η)

]
,

which indeed implies mirrored residuals f̃ (x∗) = −f (x∗). Because we changed f only by
a constant, the derivatives of f̃ and f coincide. Hence, x∗ also solves the normal equations
(2) for f̃ due to

F̃ (x∗) = f̃ ′(x∗)f̃ (x∗) = −f ′(x∗)f (x∗) = −F(x∗) = 0.

For the Hessian, the sign of the Q term swaps because

F̃ ′(x∗) = f ′(x∗)T f ′(x∗) −
m∑

i=1

fi(x
∗)∇2fi(x

∗) = H(x∗) − Q(x∗). (6)
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From (6) and (5), we obtain

vT F̃ ′(x∗)v = (1 − λ)vT H(x∗)v = (1 − λ)‖f ′(x∗)v‖2
2.

Because λ > 1, this shows that the Hessian F̃ (x∗) has negative curvature in the direction
of v if f ′(x∗) has full column rank. It is, thus, not a minimizer of (1) with the mirrored
measurements. In this sense, x∗ is not a statistically stable solution of (1) for the orig-
inal measurements η. It is indeed advantageous that the Gauß–Newton method will not
be attracted to such spurious solutions of the normal equation (2), in contrast to, e.g., the
Newton method.

3 Continuous Flows and TimesteppingMethods for Least-Squares
Problems

In connection with (1), we give three examples of ordinary differential initial value
problems. The corresponding flows are the Newton flow, the gradient flow, and the Gauß–
Newton flow. Together with appropriate timestepping in the form of forward and backward
Euler methods, we can derive the most popular globalization techniques for solving
nonlinear least-squares problems.

3.1 The Newton Flow

We can derive the Newton flow by embedding the normal equation (2) into a family of
root-finding problems that depend on a parameter t ∈ [0,∞) according to

F(x) − e−tF (x0) = 0.

Obviously, x0 is a solution for t = 0 and we obtain a solution of the normal equations for
t = ∞. If F ′(x0) is invertible, the Implicit Function Theorem guarantees a local solution
x(t) satisfying

ẋ(t) = −F ′ (x(t))−1 F(x(t)), x(0) = x0. (7)

A forward Euler step on the Newton flow equation (7) delivers one Newton step

xk+1 = xk − F ′(xk)
−1F(xk).

We strongly discourage the use of the Newton method for solving (1), because the iterates
are attracted to spurious solutions of the normal equation (2) such as maxima or saddle
points of (1). Furthermore, the use of the full Hessian F ′(x) is problematic if F ′(x0) is
indefinite, because any continuous path x(t) from x0 to a minimum x∗ of (1), where F ′(x∗)
is necessarily positive semi-definite, must entail a point t̄ at which F ′(x(t̄)) is singular by
the intermediate value theorem applied to the (real) eigenvalues of F ′(x(t)). In this case,
the Newton flow and the Newton step computation break down.

3.2 The Gradient Flow

A flow that is only attracted to minima is the gradient flow

ẋ(t) = −∇
(

1

2
‖f (x(t))‖2

2

)
= −f ′(x(t))T f (x) = −F(x), x(0) = x0. (8)
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Its equilibria are exactly the solutions of the normal equation (2) and equilibria x∗ with
indefinite or negative definite Hessian F ′(x∗) are not asymptotically stable. It is interesting
to note that the objective decreases along the gradient flow

d

dt

(
1

2
‖f (x(t))‖2

2

)
= f (x(t))T f ′(x(t))ẋ(t) = −‖F(x)‖2

2.

A forward Euler discretization leads to the method of steepest descent (also called gradient
descent)

xk+1 = xk − tkF (xk),

which can be extremely slow for medium to badly conditioned problems. A backward Euler
discretization leads to the step equations

xk = xk+1 + tkF (xk+1) ⇔ F(xk+1) + 1

tk
(xk+1 − xk) = 0.

These equations are the necessary optimality conditions of

min
1

2
‖f (x)‖2

2 + 1

2tk
‖x − xk‖2

2 over x ∈ R
n.

Thus, backward Euler on the gradient flow delivers the Levenberg–Marquardt method,
which adds a Tikhonov regularization term. This method has a strong link to trust-region
methods, there the inverse steplength 1/tk plays the role of an optimal Lagrange multiplier
for a quadratic trust-region constraint.

3.3 The Gauß–Newton Flow

The Gauß–Newton flow is given by

ẋ(t) = −f ′(x(t))+f (x(t)), x(0) = x0. (9)

As for the gradient flow (8), the objective decreases along the Gauß–Newton flow because

d

dt

(
1

2
‖f (x(t))‖2

2

)
= f (x(t))T f ′(x(t))ẋ(t) = −F(x(t))T H(x(t))−1F(x(t)) ≤ 0.

Forward Euler timestepping delivers the damped Gauß–Newton method

xk+1 = xk − tkf
′(xk)

+f (xk).

Backward Euler timestepping yields the step equations

xk = xk+1 + tkf
′(xk+1)

+f (xk+1) ⇔ F(xk+1) + tkH(xk+1)
[
xk+1 − xk

] = 0,

which could be interpreted as a variable metric Levenberg–Marquard method. Unfortu-
nately, the step equation cannot be readily interpreted as an optimality condition. If we
approximate H(xk+1) by H(xk), we essentially arrive again at a damped Gauß–Newton
method with damping factor 1/(1 + tk).

An interesting alternative interpretation of the Gauß–Newton method is to embed the
original problem (1) in a family of problems parameterized by t ∈ [0, ∞), whose solution
is x0 for t = 0 and a solution x∗ of (1) for t = ∞:

min
1

2

∥∥f (x) − e−t f (x0)
∥∥2

2 over x ∈ R
n. (10)

This gives rise to a residual in the normal equations of the form

F(x) = e−t f ′(x)T f (x0).

992



A Flow Perspective on Nonlinear Least-Squares Problems

Using the implicit function theorem analogously to the Newton flow case, we arrive at the
initial value problem

(
H(x(t)) +

m∑

i=1

[
fi(x(t)) − e−t fi(x0)

] ∇2fi(x(t))

)
ẋ(t) = −F(x(t)), x(0) = x0.

(11)
If f ′(x0) has full column rank, then a local solution x(t) exists and the initial flow direction
equals the Gauß–Newton flow

ẋ(0) = −f ′(x(0))+f (x(0)).

There is no guarantuee, however, that the matrix on the left-hand side of (11) stays invertible
for all t ≥ 0. Nonetheless, we can embed the solution of (10) with a finite t in an outer
loop, in which we sequentially update x0 by an approximate solution of (10). This leads to a
sequential homotopy method for Gauß–Newton methods similar to the one proposed in [24]
for inexact Sequential Quadratic Programming methods.

3.4 Comparison of the Newton, Gradient, and Gauß–Newton Flows

We compare the different flows for the classical Rosenbrock function, which fits into the
class of parameter estimation problems (Example 1) with n = m = 2 and

h(x) =
(

x2 − x2
1

1 − x1

)
, η =

(
0
0

)
, � =

(
10 0
0 1

)
,

and which yields the well-known optimization problem

min
1

2

[
100(x2 − x2

1)2 + (1 − x1)
2
]

over x ∈ R
2.

The point x∗ = (1, 1)T is a unique global minimum, because it is the only point which
attains the lower bound 0 of the objective. We can easily compute

f ′(x) =
( −20x1 10

1 0

)
, F (x) =

( −200x1(x2 − x2
1) + x1 − 1

100(x2 − x2
1 )

)
,

F ′(x) =
(

600x2
1 − 200x2 + 1 −200x1

−200x1 100

)
.

Solving for det F ′(x) = 0, we obtain that the Hessian F ′(x) is singular along the parabola
x2 = x2

1 + 1
200 , which is just slightly above the trough of the banana valley x2 = x2

1 . The
right-hand sides of the gradient, Newton, and Gauß–Newton flows can be verified to be

−F(x) =
(

200x1(x2 − x2
1 ) + 1 − x1

−100(x2 − x2
1 )

)
,

−F ′(x)−1F(x) = 1

200x2
1 − 200x2 + 1

(
1 − x1

200x4
1 − 400x2

1x2 − x2
1 + 2x1 + 200x2

2 − x2

)
,

−f ′(x)+f (x) =
(

1 − x1

2x1 − x2
1 − x2

)
.

Obviously, the Newton flow has a singularity along the shifted parabola x2 = x2
1 + 1

200 .
Thus, the Newton flow cannot cross this barrier if started from above it (cf. Fig. 1).
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Fig. 1 A comparison of gradient, Newton, and Gauß–Newton flows emanating from the two different starting
points p1 = (−1,−1) and p2 = (− 1

2 , 1) for the Rosenbrock example. Level sets of the objective function
are indicated in black. The unique global optimum lies at p∗ = (1, 1). The gradient flow is perpendicular to
the level sets. The Newton flow emanating from the upper point cannot cross the manifold x2 = x2

1 + 1
200 ,

where the Hessian F ′(x) is singular, and diverges to infinity. The Gauß–Newton flows do not exhibit sharp
turns

Moreover, we see that in the Rosenbrock example, the Gauß–Newton flow does not
suffer from stiffness, which is induced in the gradient and Newton flow by fast transients
towards the trough of the banana valley (cf. Fig. 1), where they take a sharp turn.

Two remarks are appropriate here: First, fast attraction to the banana-shaped bottom of
the valley is detrimental for line-search and trust-region based globalization if no second-
order correction is employed, because stepsizes and trust-region radii are required to be
rather tiny to ensure descent in the objective. Second, from a stability point of view, forward
Euler timestepping requires tiny stepsizes for stiff equations, which thus applies for the
gradient and Newton method but not for the Gauß–Newton method. These two properties
speak clearly in favor of using the Gauß–Newton method.

The obtuse angle of very nearly 135◦ between the Newton and the Gauß–Newton flows
at x̂ = (−1,−1) in Fig. 1 hints at another important point: The convergence theory of
inexact Newton methods based on generalized Newton flows (see [22, 23]) is not helpful in
the analysis of the Gauß–Newton method. More rigorously, we can algebraically check that

∥∥∥F(x̂) − F ′(x̂)H(x̂)−1F(x̂)

∥∥∥
2

=
∥∥∥∥200

( −x̂3
1 + x̂2

1 + x̂1x̂2 − x̂2
0

)∥∥∥∥
2

= 800

>

∥∥∥∥

( −402
−200

)∥∥∥∥
2

= ‖F(x̂)‖2.

This means that the Gauß–Newton direction does not satisfy the contravariant κ-condition
A2 in [23]. We also learn that its norm-free linearized counterpart, the κGN-condition (4), is
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meaningful only in the vicinity of a solution x∗ and that ρ(G(x)) has no relevance for the
globalization of Gauß–Newton methods for x far away from a solution x∗.

4 Asymptotic Stability of the Gauß–Newton Flow

The interpretation of the Gauß–Newton method as a Newton-type method provided in
Section 2 allows for the study of generalized Newton flows [22, 23], which determine the
behavior of the damped iteration

xk+1 = xk + tksk

for small stepsizes tk ∈ (0, 1]. We can then interpret the Gauß–Newton iteration as a for-
ward Euler timestepping method with stepsize tk on the continuous Gauß–Newton flow x(t)

determined by the initial value problem (9).

Lemma 2 (Asymptotic stability of critical points) Assume x∗ ∈ R
n is an equilibrium point

of the Gauß–Newton flow x(t) in (9) and f ′(x∗) has full column rank. With λ ∈ R we denote
the smallest eigenvalue of the matrix G(x∗). Then, x∗ is asymptotically stable if λ > −1
and unstable if λ < −1.

Proof We study the spectrum of the linearization of the flow right-hand side about x∗. To
simplify notation, we abbreviate A(x) = f ′(x). The Moore–Penrose pseudoinverse can be
differentiated with the formula [12, Theorem 4.3]

d

dx
A+ = −A+ dA

dx
A+ + A+(A+)T

dA

dx

T

(Im − AA+) + (
In − A+A

) dA

dx

T

(A+)T A+.

At x∗, we can exploit A(x∗)+f (x∗) = 0 and in addition the general identities dA
dx

(x)f (x) =
Q(x) = Q(x)T and A+(A+)T = [AT A]−1 to obtain

(
d

dx
A(x)+

) ∣∣∣∣
x=x∗

f (x∗) =
[
A(x∗)T A(x∗)

]−1
Q(x∗).

Hence, we obtain for the linearization of the flow right-hand side around the critical point
x∗ that

d

dx

(−f ′(x)+f (x)
) ∣∣∣∣

x=x∗
= −

(
d

dx
A(x∗)+

)
f (x∗) − f ′(x∗)+f ′(x∗)

= −In − H(x∗)−1Q(x∗) = −In − G(x∗),

which has purely real eigenvalues by Lemma 1. This matrix has only negative eigenval-
ues for λ > −1, which implies that x∗ is asymptotically stable, and at least one positive
eigenvalue for λ < −1, in which case x∗ is unstable.

We believe a warning is appropriate at this point: In contrast to the spectral radius con-
dition (4) on G(x∗) for the discrete Gauß–Newton iteration, the condition for asymptotic
stability of the Gauß–Newton flow concerns only the negative part of the spectrum of G(x∗).
In the light of the mirror trick of Example 2, the flow might be attracted to statistically
unstable solutions. We illustrate this behavior in the following example by the means of a
simple parameter estimation problem that we want to solve with a damped Gauß–Newton
method using a simple Armijo backtracking line-search.
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Example 3 (Frequency reconstruction) Given a sequence of n + 1 measurements (ηi)0≤i≤n

taken at time ti = 2πi
n

from the signal hi(a
∗, ω∗,
∗) = a∗ sin(ω∗ti +
∗) we aim to recon-

struct the amplitude, frequency and phase x∗ = (a∗, ω∗,
∗) ∈ R
3. Under the assumption

that the measurement noise ηi − hi(x
∗) is normally distributed around 0 with covariance

σ = 0.1, this leads to the maximum likelihood parameter estimation problem

min
1

2σ
‖f (x)‖2

2 over x = (a, ω,
) ∈ R
3

with f (x) = [η0−h0(x), . . . , ηn−hn(x)]�. For n = 100 and measurements generated with
the true signal parameters x∗ = (1, 4, 1) we apply a Gauß–Newton method with simple
Armijo backtracking line-search using α = 1

2 as backtracking factor and β = 0.1 for the
descent condition and compare the behavior with the full-step Gauß–Newton method for
two different initial values (see Fig. 2).

Example 3 suggests how to interpret the convergence behavior of a damped Gauß–
Newton method with line-search. The line-search condition will always guarantee descent
and thus convergence to a stationary point within the current level-set. However, only if
the convergence finally happens with full-steps, the solution will be statistically stable – a
property that can be used in algorithms to distinguish statistically stable from statistically
unstable solutions. To summarize it, a GN method with stepsize damping can help to global-
ize the convergence but in general it can not always prevent the iterates from getting trapped
at a statistically unstable critical point, in particular when the initial guess is far away from

Fig. 2 A comparison of the full-step Gauß–Newton method (denoted GN) with a damped Gauß–Newton
method using a simple Armijo backtracking line-search (denoted GNB), each starting from two different
points x̃1 = (1.5, 6, 1.5)� and x̃2 = (3, 2, 2)�. The upper plots represent the residual–norm of all iterates,
the stepnorm of all iterates, and the stepsize of the iterates using the line-search method until the termination
criterion ‖sk‖2 ≤ 5 · 10−8 or k ≥ 40 is reached. The lower plot represents the measurements and the model
response of the final iterates. It can be seen that for both starting points the full-step GN method failed to
converge and just diverges. The backtracking GN method converges for both points but the stepsize of the
Armijo backtracking line-search only converges with full steps for the first point (green line)
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the solution. In such a case domain knowledge has to be used to find a good initial guess for
the iterates.

5 Krylov–Gauß–NewtonMethods

For large-scale problems, we are forced to solve the linearized least-squares problems (3)
only approximately, e.g., by Krylov subspace methods, which leads to the name Krylov–
Gauß–Newton or Truncated Gauß–Newton method (cf. [13]).

Two particular Krylov subspace methods for the approximate solution of (3) are LSQR
and LSMR [11, 19]. In their i-th subiteration, they construct an orthonormal basis Vi(xk) ∈
R

n×i of the i-dimensional Krylov subspace

Ki(H(xk), F (xk)) := {p(H(xk))F (xk) | p is a polynomial of degree at most i − 1}
by a Golub–Kahan bidiagonalization process. (If the dimension of Ki(H(xk), F (xk)) is
smaller than i, then the solution is already contained in Ki−1(H(xk), F (xk)).) We then solve
the reduced space linear least-squares problems

min
1

2

∥∥f ′(xk)Vi(xk)y + f (xk)
∥∥2

2 over y ∈ R
i , (LSQR)

min
1

2

∥∥∥f ′(xk)
T

[
f ′(xk)Vi(xk)y + f (xk)

]∥∥∥
2

2
over y ∈ R

i . (LSMR)

In that sense, LSQR strives for the best linearized fit, while LSMR strives for the lowest
violation of the linearized normal equation.

For LSQR, the normal equation

Vi(xk)
T H(xk)Vi(xk)y + Vi(xk)

T F (xk) = 0

delivers the solution

y∗
i (xk) = −

[
Vi(xk)

T H(xk)Vi(xk)
]−1

Vi(xk)
T F (xk),

provided that f ′(xk) has full column rank. For fixed i, we can consider the LSQR–Gauß–
Newton flow equations

ẋ(t) = Vi(x(t))y∗
i (x(t)), x(0) = x0.

For i ≥ 1, the objective value is guaranteed to decrease along the flow due to

d

dt

(
1

2
‖f (x)‖2

2

)
= F(x)T ẋ = −F(x)T Vi(x)

[
Vi(x)T H(x)Vi(x)

]−1
Vi(x)T F (x) < 0

whenever F(x) �= 0 and f ′(x) has full column rank (suppressing the arguments of x =
x(t)). We see that there is no further condition on the required accuracy to solve (3) other
than i ≥ 1: We always obtain a descent direction. This observation suggests the following
numerical strategy: Far away from a solution, we approximate solutions to (3) with rather
low accuracy. When we are close to a solution, indicated for instance by stagnation in the
nonlinear objective value, we tighten the accuracy more and more to finally benefit from the
statistical stability properties of the exact Gauß–Newton direction. A simple implementation
of this approach is illustrated in Algorithm 1.
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Algorithm 1 LSQR–Gauß–Newton method.

1: function LSQRGAUSSNEWTON(x0, xtol, otol, kmax, α, β, γ, σ, τ, τmin)
2: Evaluate f (x0)

3: for k = 0, . . . , kmax do
4: Compute sk as an approximate solution of (3) by LSQR [11] with BTOL = 0

and ATOL = τ

5: Set t ← 1, evaluate f (xk)
T f ′(xk)sk

6: loop � Armijo backtracking line-search
7: Set xk+1 ← xk + tsk , evaluate f (xk+1)

8: if ‖f (xk+1)‖2
2 ≤ ‖f (xk)‖2

2 + 2tβf (xk)
T f ′(xk)sk then break

9: Backtrack t ← αt

10: if‖f (xk)‖2−‖f (xk+1)‖2 ≤σmax{‖f (xk+1)‖2, 1} then reduceτ ←max{γ τ, τmin}
11: if ‖sk‖2 ≤ xtol or ‖f (xk)‖2 − ‖f (xk+1)‖2 ≤ otol‖f (x0)‖2 then terminate

For LSMR, the normal equation reads

Vi(xk)
T H(xk)

2Vi(xk)y + Vi(xk)
T H(xk)F (xk) = 0.

Repetition of the steps above leads to an objective value variation along the LSMR–Gauß–
Newton flow of

d

dt

(
1

2
‖f (x)‖2

2

)
= −F(x)T Vi(x)

[
Vi(x)T H(x)2Vi(x)

]−1
Vi(x)T H(x)F (x).

From here, it is not clear whether we always get a descent direction. We have found LSMR
to be working well in practice without giving rise to directions of ascent. This is in line
with observation 1 in [11, Sec. 7.1], where the authors report that the residual r(x) =
f ′(x)Vi(x)y∗

i (x) + f (x) for LSMR “seems to be monotonic (no counterexamples were
found)”.

6 Numerical Results

We report on our numerical experience with a line-search LSQR–Gauß–Newton method
applied to two test cases: The first is an extended Rosenbrock function in variable dimen-
sions with and without synthetic random measurements. The second is a challenging
real-world problem called Bundle Adjustment for the construction of a 3D environment
from a large number of markers in 2D pictures.

The results were obtained with a Python implementation of Algorithm 1. We used
CasADi [2] for the computation of function derivatives. The default parameters were α = 1

2
for the backtracking factor, β = 1

10 for the Armijo descent condition, σ = 10−4 for the
objective stagnation test to trigger a reduction by a factor of γ = 1

10 of the LSQR tolerance
τ , initially set to 10−3 and bounded below by τmin = 10−12.

All computations were performed on a 64bit Ubuntu 16.04 Linux machine with 128 GB
of RAM and Intel Core i7-5820K computational cores at 3.3 GHz. No parallelization was
used.
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6.1 An Extended Rosenbrock Function

We consider the following n-dimensional extension of the Rosenbrock function (cf. [26]) in
the form of Example 1 with

h2i−1(x) =xi − 1,

h2i (x) =x2
i − xi+1,

}
i =1, . . . , n−1, �ij =diag(1, 10, . . . , 1, 10) ∈ R

(2n−2)×(2n−2).

with measurements η ∈ R
2n−2 that are normally distributed with expectation 0 and

covariance �−2. For η = 0, the unique global optimum is x∗
i = 1 for i = 1, . . . , n.

We run Algorithm 1 on this example with xtol = 10−5 and otol = 10−12 for 20 runs
with different random realizations of η each for n = 101, . . . , 107 with an initial guess
(x0)i = 1 for i = 1, . . . , n, which is not a solution because η �= 0. The resulting statistics
are displayed in Table 1. We see that we can find solutions of the large instances with a
relatively small total number of LSQR iterations in comparison to the problem dimension.
The required CPU time appears to grow linearly in n.

6.2 Large Scale Bundle Adjustment

Bundle Adjustment is a method of Structure from Motion (SfM) for estimating geomet-
ric 3D data from big sequences of 2D images. The core ingredient that couples the real
world 3D position of an object and the resulting 2D position of the corresponding marker
in the image is the camera model that depends on camera position, orientation, and some
additional parameters such as focal lengths and lense distortion parameters. The camera
model gives a prediction of the 2D positions of the markers depending on the real world
3D coordinates of an object and the camera parameters. By defining the residual function
f as the difference of predicted 2D positions and the measurements, a large scale nonlinear
least squares problem can be set up to estimate the most likely 3D positions and cam-
era parameters. For a detailed description of the camera model and how the least-squares
problem is defined we refer the reader to [1]. We note that, since 3D translation of the real-
world coordinates and the camera positions by an arbitrary vector results in the same 2D
image measurements, the bundle adjustment problems exhibit an intrinsic ambiguity, which
results in a structural violation of the full-rank condition on f ′(x). As in [1], we rely on the
regularizing properties of Krylov-space methods for our computations.

We use the bundle adjustment datasets Ladybug, Trafalgar Square, Dubrovnik, and
Venice, which are freely available at http://grail.cs.washington.edu/projects/bal and consist

Table 1 Statistics (minimal, median, and maximal numbers) of the results for the extended Rosenbrock
example over 20 runs each

Iterations Total LSQR iterations CPU time

n min med max min med max min med max

10 7 15 34 45 131 315 0.006 0.017 0.036

100 9 12 31 79 174 392 0.011 0.020 0.048

1000 8 11 29 65 225 646 0.019 0.040 0.111

10000 9 14 38 123 326 1201 0.127 0.246 0.792

100000 8 13 38 102 325 1285 1.110 2.362 7.723

1000000 9 12 24 107 254 668 13.764 23.041 54.875
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Fig. 3 3D visualization of the largest Venice problem instance results

of several problems with varying numbers of 2D pictures and 3D objects (see Fig. 3
for a visualization resulting from the largest Venice dataset). The evaluation of the func-
tion f is partially based on the SciPy Cookbook Python Notebook, which is available
at https://scipy-cookbook.readthedocs.io/items/bundle adjustment.html. We use the same
Python implementation of Algorithm 1 as in the previous example. The derivatives are
obtained using CasADi [2].

6.2.1 Results

We run Algorithm 1 with the parameters α = 1
2 for the back-tracking factor, β = 10−3 for

the Armijo descent condition, σ = 10−2 for the objective stagnation test to trigger a reduc-
tion by a factor of τ = 1

10 of the LSQR tolerance τ , initially set to 1
10 and bounded from

below by τmin = 10−4. We chose xtol = 10−10 and otol = 10−7. As in the synthetic
extended Rosenbrock example, variable and residual dimensions are very nearly propor-
tional for all problems.

In all cases, Algorithm 1 terminates within a maximum of 56 Krylov–Gauß–Newton
iterations, always taking full steps eventually. As can be seen in Table 2, even the

Table 2 Statistics (minimal,
median, and maximal numbers)
of the results for the Bundle
Adjustment problem datasets

Iterations Total LSQR iterations

Dataset min med max min med max

Ladybug 18 24 43 629 1933 4806

Trafalgar 22 28 42 2730 3290 4822

Dubrovnik 24 27 56 2944 4005 8561

Venice 22 30 44 3712 4831 9480
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Fig. 4 The CPU time for the approximate solution of different bundle adjustment problems with an LSQR–
Gauß–Newton method grows linearly with the problem dimension

problems with large problem dimension are solved within relatively few Krylov–Gauß–
Newton steps. We observe that the total CPU time appears to grow linearly with the
problem dimension, see Fig. 4. When it comes to the total number of inner LSQR itera-
tions, we note that again relatively few are needed compared to the problem dimensions,
see Table 2.

7 Conclusion

In the full-rank case, the full-step Gauß–Newton method has the favorable property of
not being attracted to statistically unstable minima. The nonlinear least-squares objec-
tive decreases along the the Gauß–Newton flow and the Krylov–Gauß–Newton flow if
LSQR is used. The damped (Krylov–)Gauß–Newton method is equivalent to forward Euler
timestepping on the (Krylov–)Gauß–Newton flow, while the Levenberg–Marquardt method
is equivalent to backward Euler timestepping on the gradient flow. We showed for the pop-
ular example of the Rosenbrock function that the Gauß–Newton flow equations constitute a
non-stiff differential equation, in contrast to the Newton and gradient flow equations, which
give rise to fast transients towards the trough of the notorious banana-shaped valley. From
this vantage point, line-search globalization for the Newton and gradient methods suffer
from much stricter stepsize restrictions than the Gauß–Newton method. Krylov–Gauß–
Newton methods have an intrinsic regularizing property to make them appropriate also for
ill-conditioned large-scale nonlinear least-squares problems.
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